Noise removal from images by projecting onto bases of principal components

Abstract

In this paper, we develop a new wavelet domain statistical model for the removal of stationary noise in images. The new model is a combination of local linear projections onto bases of Principal Components, that perform a dimension reduction of the spatial neighbourhood, while avoiding the “curse of dimensionality”. The models obtained after projection consist of a low dimensional Gaussian Scale Mixtures with a reduced number of parameters. The results show that this technique yields a significant improvement in denoising performance when using larger spatial windows, especially on images with highly structured patterns, like textures.

Publication
LECTURE NOTES IN COMPUTER SCIENCE