A GPU-accelerated real-time NLMeans algorithm for denoising color video sequences


Abstract. The NLMeans filter, originally proposed by Buades et al., is a very popular filter for the removal of white Gaussian noise, due to its simplicity and excellent performance. The strength of this filter lies in exploiting the repetitive character of structures in images. However, to fully take advantage of the repetitivity a computationally extensive search for similar candidate blocks is indispensable. In previous work, we presented a number of algorithmic acceleration techniques for the NLMeans filter for still grayscale images. In this paper, we go one step further and incorporate both temporal information and color information into the NLMeans algorithm, in order to restore video sequences. Starting from our algorithmic acceleration techniques, we investigate how the NLMeans algorithm can be easily mapped onto recent parallel computing architectures. In particular, we consider the graphical processing unit (GPU), which is available on most recent computers. Our developments lead to a high-quality denoising filter that can process DVD-resolution video sequences in real-time on a mid-range GPU.

Lecture Notes in Computer Science