Surface reconstruction of wear in carpets by using a wavelet edge detector

Abstract

Carpet manufacturers have wear labels assigned to their products by human experts who evaluate carpet samples subjected to accelerated wear in a test device. There is considerable industrial and academic interest in going from human to automated evaluation, which should be less cumbersome and more objective. In this paper, we present image analysis research on videos of carpet surfaces scanned with a 3D laser. The purpose is obtaining good depth Images for an automated system that should have a high percentage of correct assessments for a wide variety of carpets. The innovation is the use of a wavelet edge detector to obtain a more continuously defined surface shape. The evaluation is based on how well the algorithms allow a good linear ranking and a good discriminance of consecutive wear labels. The results show an improved linear ranking for most carpet types, for two carpet types the results are quite significant.

Publication
LECTURE NOTES IN COMPUTER SCIENCE