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ABSTRACT  

With the development of Autonomous Underwater Vehicles (AUVs) and high-resolution Synthetic Aperture 
Sonar (SAS) technology, Automatic Target Recognition (ATR) algorithms achieved detection accuracy above 
95% in benign environment and defined new standards for Mine Countermeasures (MCM) at sea. Despite 
those achievements, their performances are highly dependent on the seafloor type and severely drop in 
natural environments with sand ripples and rocky terrain. Thus, seafloor characterisation is critical to MCM 
operations to assess the confidence of those algorithms above certain areas. Additionally, such mapping can 
be used for mission planning. Extensive research has been devoted to addressing this issue with classical 
methods. Unsurprisingly, standard deep learning models achieved promising results on such data, but 
overwhelmingly the scientific literature relied on transfer learning from models without tailoring them neither 
to the data nor to the task. Therefore, this work proposes a novel deep learning approach for seafloor 
characterisation based on a scaled down EfficientNet architecture. The complete model is tailored to address 
the training on limited high-resolution sonar data with data-specific augmentations, the search for the 
optimal input size and input patch resolution, and efficient post-processing. The resulting model achieves 
state-of-the-art results on a dataset comprised of challenging seafloors for ATR in real MCM operations. 

1.0 INTRODUCTION 

The seafloor refers to the underwater surface between the sea and the uppermost part of the oceanic crust. 
In shallow waters, near the shore, it is mostly composed of unconsolidated sediments that may arrange in 
patterns like sandwaves forged by local currents. The study of the seafloor is complexified by the absorption 
of light underwater. Sonar has long been used to overcome that issue and to remotely capture wide seafloor 
backscatters. With the development of Autonomous Underwater Vehicles (AUVs) and high-resolution 
Synthetic Aperture Sonar (SAS), Automatic Target Recognition (ATR) algorithms achieved detection accuracy 
above 95% in benign environment [1, 2] and defined new standards for Mine Countermeasures (MCM) in 
shallow waters. Despite those achievements, their performances greatly depend on the seafloor type and 
severely drop in natural environments with vegetation, sand ripples and rocky terrain. Indeed, from the point 
of view of a low altitude AUV, minimising the ground sample distance of reconstructed Single-Look Complex 
(SLC) backscatter images, from multiple aggregated pings, to improve the detection and recognition of 
targets, it also maximises acoustic shadows that might hide an object. Thus, seafloor characterisation is 
critical to MCM operations to assess the confidence of those algorithms above certain areas. Additionally, 
such segmentation maps are beneficial to MCM for mission planning or to improve the autonomy of AUVs, 
and especially if the algorithm could directly be embarked on the vehicle. 
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1.1 Related Work 

Extensive research has been devoted to addressing seafloor characterisation with textural descriptors and 
regression models or clustering methods. The works of [3] clustered wide areas with statistical curve fitting 
of averaged side-looking strips of data called swaths. Additionally, studies in [4, 5] addressed binary image 
segmentation with Gray-Level Co-Occurrence Matrixes (GLCMs), possibly with active contours [4]. Similarly, 
Brandes and Ballard [6] investigated Multidistribution Dirichlet Clustering with circular Histograms of 
Oriented Gradients and dictionary learning. Finally, Gips [7] performed patch-based pixel-wise segmentation 
with gaussian-process classification. Aforementioned methods and others explored numerous algorithms to 
transform sonar data into maps of varying ground sample distances. Unsurprisingly, standard deep learning 
models achieved promising results on such data, but overwhelmingly authors relied on networks developed 
for daily object recognition tasks without tailoring them neither to the task nor to the data [8 – 12]. 

1.2 Problem statement 

Even though seafloor characterisation and mapping over a single survey appear as a simple task with its 
limited number of classes, seafloor patterns and dynamics highly vary due to different sensors, geographical 
location, survey altitude, seafloor topography, strong acoustic backscatterers, sensor calibration, etc. In 
addition, multiple sources of noise and bias concur in SAS images, such as reconstruction artefacts due to 
position and orientation errors in the aperture synthesis, speckle noise owing to coherent imaging, pass- 
scatterers such as organic life or bubbles, etc. All those effects account for the difficulty of the automatic 
segmentation of the seafloor. Besides, the important costs of seafloor ground thruthing with divers and in-
field analyses, hinders the supervised learning process that fall in low-label regime. Standard Deep Learning 
(DL) methods and in particular typical Convolutional Neural Networks (CNNs) would address such regime 
with a possible combination of data augmentation [10, 12], AutoEncoder (AE) pretraining of the feature 
extractor [9], transfer learning [10, 11, 13], unsupervised clustering [11] or self-supervised training such as 
the geographic location contrastive learning method of [12]. 

Two main deep learning approaches derived from computer vision have been considered in the literature on 
seafloor characterisation and mapping: patch classification [10, 12] and pixel-wise segmentation [11, 13]. 
They automatically craft discriminative features from the distribution of the input data and assign labels 
respectively to an entire patch of the image or to each pixel. Despite the encouraging results of [10], an 
important limitation of these existing approaches lies in their incompatibility to simpler tasks and their 
overfitting with the low-label regime. Recent works [14,15] alleviate this limitation but still involve a heavy 
Neural Architecture Search (NAS). In this work, we build on the block and architecture of Tan and Le [16] and 
scale down the resulting model by limiting the depth and the per sequence of layers of same number of filter 
maps. 

1.3 Paper contributions 

Therefore, this work proposes a novel deep learning approach for seafloor characterisation based on a scaled 
down EfficientNet architecture derived from computer vision for daily object recognition tasks. The complete 
model is tailored to address the training on limited high-resolution sonar data with data-specific 
augmentations. Additionally, this work embodies the search for optimal input patch characteristics and 
efficient post-processing steps to achieve reliable and fine-scale segmentations with CNN classifiers trained 
in low-label regime. The proposed CNNs are validated through a small ablation study and the best one 
achieves state-of-the-art results on such data. 



1.4 Paper organisation 

Section 1 introduces seafloor characterisation challenges for ATR and MCM. The proposed approach is 
presented in Section 2 where we start from the EfficientNet model and build a related model with 
significantly less parameters and specifically tailored to low-label regime with a particularly designed data 
augmentation procedure. Section 3 describes the pre-processing pipeline and manual annotation that were 
employed to create the training and evaluation datasets. Section 4 reports the experimental results including 
an ablation study and Section 5 concludes the paper. 

2.0 METHOD 

2.1 Neural Network Architecture 

Tan and Le [16] proved the EfficientNet family of models a close to optimal trade-off between computational 
budget and prediction accuracy on ImageNet [17], outperforming existing models at its publication time. 
Those blocks were derived from the state-of-the-art for embedded systems MobileNetv2 models [18] by 
employing its inverted residuals and linear bottleneck block. They also added squeeze and excitation layers 
after the inverted residuals to accelerate the training by learning a multiplicative bias to be applied over the 
feature maps and to help select the most discriminative ones for a limited computation, latency, and memory 
increase. To further accelerate the training with residual blocks, they employed the stochastic depth wrapper 
for residual blocks which randomly discards the block path and its backpropagation during training, to keep 
only the identity operation of the residual path. 

 
 

Figure 2-1: Diagram illustrating the architecture of our proposed and scaled down EfficientNet classifier 
represented by its feature maps output size after every layer and operation. We reverted to the filter maps 
growth of [18] for which the model’s number of filter maps is doubling every two decimation operations. 

Henceforward, this work will refer to resolution as the image resolution. The EfficientNet family [16] 
constitutes a good search space exploration for network engineering meta-architecture parameters such as 
depth, width, and input resolution instead of relying on computationally expensive search-space exploration 
algorithms to craft a set of models [17, 18, 19]. Tan and Le used a neural search architecture for the smallest 
model named EfficientNet-B0 trained on ImageNet and then solved the discretised optimisation problem of 



(1) via grid search, with reasonable hypotheses on computation growth constraints, such as (2). Their method 
is called compound scaling. 

 

 

ϕ is the computational growth parameter, doubling the necessary Floating-point Operations (FLOPs) of the 
inference for each increase of ϕ by one. α, β and γ are the grid-search parameters for the optimal unit growth 
from the baseline model with compound scaling. Finally, d, w, and r are respectively the depth, width, and 
resolution multipliers to be applied on the architecture. In particular, the depth multiplier is applied on the 
number of block repetitions between two decimation operations and is directly linked to the depth of model. 

First, we investigate the use of (1) and (2) but for a smaller input size r – which is called input resolution for 
ImageNet as the images are interpolated to a smaller input resolution. On the contrary, our mapping 
approach tiles SAS images with patches of maximum resolution. As we aim for similar global average pooling 
height and width reduction than the baseline model, we reduce the number of decimation operations – in 
the baseline model there are five strides of two, which decimates by a factor two the resolution of the feature 
maps. Our approach is to perform an average pooling over at least a grid of four-by-four feature maps and 
to increase the number of decimations by one just after reaching the next power of two. Therefore, the layer 
floors depth l is: 

 

Additionally, and contrary to the actual meaning of input resolution, for which images are interpolated, 
reducing the size altogether with the complexity of patterns, the use of maximum input resolution does not 
reduce the complexity of patterns. Hence, Networks still requires to be deep enough to be discriminative to 
them. Then, we study the effect of resolution by interpolating input images, reducing their size by a factor 2 
or 4. Finally, we reduce the growth of the number of feature maps after a decimation operation reverting to 
the design of [18], which is illustrated in Fig. 2-1. As a result, this work considers multiple architectures to 
understand how models can be robust to overfitting with such limited data, while addressing the mapping 
of the seafloor from noisy and real-world data. 

2.2 Data Augmentation 

The data augmentation is beneficial to the training of CNN models within the low-label regime by reducing 
even more overfitting and improving the generalisation ability of the model. The pipeline is derived from 
efficient standard computer vision operations and is comprised of the sequential and random application of 
flips, rotation, scaling, translation, and contrast and intensity jittering. Thus, it can compensate biases 
introduced by some input distributions such as the partial representation of the possible orientations of sand 
ripples. 

We also employ a modified sliding window strategy tiling the entire sonar image to consider only input 
information from the natural distribution fed to models. Given an input patch size and a stride, each sonar 



image is decomposed as a set of possibly overlapping windows identified by pixel coordinates. Then, 
depending on its position whether being too close to the edges to be augmented without the introduction 
of padded pixels or not, the pipeline keeps the unaugmented patch or randomly applies the transforms. 

Contrary to standard patch-based classification approaches derived from computer vision that would first 
cut the image in windows, assigning a label to each of them and then performing transforms with the 
mirroring or padding of the edges, our method works on pixel coordinates and augments both the 
backscatter and semantic maps to generate a patch and its label by pixel majority voting over the semantic 
map. Such a design implies that different random augmentations of the same pixel coordinate may result in 
different class tags. Besides, as acoustic shadows are only cast in increasing range, the random rotation is 
limited to 15° to avoid introducing non-plausible data in the input distribution. The data augmentation 
pipeline is illustrated in Fig. 2-2 and an ablation study will further examine the performance improvement of 
models. In the end, the images are fed to the data augmentation stage and then to the DL classifiers for 
training contrary to the evaluation where images remain untransformed to ensure the test stage is 
representative of the model’s ability to create segmentation maps from its predictions. 
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Figure 2-2: A pixel coordinate boundary between small sand ripples in red and large sand ripples in magenta 
and its corresponding ground truth a) displayed through different views of data augmentation b), d), f) for which 
the semantic maps are also augmented c), e), g). The centre crop corresponding to the unaugmented patch b) is 
displayed in grey colour map also in a), d), f) while our augmentation pipeline, keeping filled edges with natural 
input information, is embodied by the copper colour map. d) – e) and f) – g) represent two possible outcomes of 

randomly augmented patches with flips, rotation, scaling, and translation for which the pixel majority voting 
assigning the class tag would result in small sand ripples for e) and large sand ripples g). d) and f) are 

represented back on the bigger ground truth map a) respectively by a blue and green square. Such a design 
reduces the class tag bias otherwise introduced by fixed labels and improves models’ generalisation ability.   



2.3 From patch coordinates to seafloor characterisation maps 

To evaluate such an ability, the easiest strategy would be to generate non overlapping patches tiling all 
images and to accumulate the predictions into maps. However, big patches and the stride of the sliding 
window prevent those maps of the seafloor to accurately represent the fine scale boundaries contrary to 
pixel-wise segmentation. To circumvent this issue, an overlapping patches strategy is used to reduce de 
discretisation, but for which a post-processing fusion strategy is required. This work studies either the centre 
crop scheme discarding the external borders of overlapping predictions – for which the extreme case with a 
stride of one pixel corresponds to patch-based pixel prediction as in [5, 7] – or a complicated majority voting 
process reverting to the former procedure in case of a tie. With such a design, the patch-based classification 
approach produces finer-scale maps and becomes more comparable to the pixel-wise segmentation one. 

3.0 DESCRIPTION OF THE DATASET 

The data comes from a MCM exercises campaign at sea with the MUSCLE AUV equipped with a SAS sensor, 
where targets and confusers were laid on the seafloor. It is comprised of a variety of seafloor patterns ranging 
from flat sandy bottoms to rock outcrops and through sand ripples. The sizes of the reconstructed SLC images 
are 7333 pixels acrosstrack and 2000 pixels alongtrack. 

3.1 Data Pre-Processing 

First, those complex images are reduced to their modulus. Then, they are curated from inconsistent values, 
median-normalised, clipped and log-converted following the procedure described in [22] to standardize and 
compress the high acoustic dynamic of the seafloor. Finally, the resulting images are bilinearly interpolated 
to reach the same alongtrack and acrosstrack resolution, in other words to reach a square ground pixel. That 
pre-processing pipeline was found effective for seafloor characterisation with CNN models in [7, 11]. 

3.2 Manual Annotations 

The seafloor being homogeneous within vast areas and hardly inhomogeneous for MCM related seafloor 
characterisation, the polygon annotation strategy was adopted to carry out the manual post-survey ground 
thruthing. Seventeen images, one from each acquisition segment, were randomly selected to establish a 
supervised training set. The polygons are characterised as Flat Bottom, Rocks, and Small and Large Sand 
Ripples. They represent the generic seafloor type classification scheme for ATR in MCM operations [23] to 
identify difficult terrain where shadows might be cast over targets. Seeking for swiftness for early 
experiments, annotators preferred to avoid diving too deep into details of the image and drop pieces of 
seafloor characterisation ground truth smaller than a target, such as small boulders isolated in a sandy area. 
Likewise, the hard annotation strategy enforces annotators to bias one class over the others when dealing 
with mixed composition areas. Contrary to the weak annotations of [11] and [13], for which an unknown 
class is assigned where no labels were given by annotators, this work endorses that the small label bias would 
not be detrimental to resulting models. According to the ability of CNN architecture to be robust to imperfect 
annotations, this work assumes instead the added amount of labelled data to be beneficial to the training. 
Ultimately, the most challenging image is put aside to constitutes the evaluation set. Unseen seafloor 
configurations and boundaries, for which the ground truth, which is displayed in Fig. 4-1-a), is characterised 
by a hundred of polygons, will account for the models’ generalisation ability. Since the other images are 
spanning all textures of interest, they are sufficient to address the training of seafloor characterisation CNNs 
with a representative distribution of the seafloor and represents the train dataset which is like the one of [9], 
but with fewer images. 

 



Table 4-1: Ablation study of our scaled down EfficientNet family with input size, input resolution, model 
architecture and reduced number of feature maps in terms of patch-based and pixel-wise accuracy (ACC). 

Input 
patch 
size 

Down-
sampling 

factor 

Reduced 
feature 
maps 

w d 
Patch-
based 
ACC 

Pixel-
wise 
ACC 

Number of 
Training 

parameters 

Inference 
GFLOPs 

Map 
creation 
GFLOPs 

224 1 No 1.0 1.0 92.8 % 83.6 % 3.6 M 2.09 1386 

224 1 Yes 1.0 1.0 90.6 % 84.4 % 1.1 M 1.12 743 

128 1 No 0.68 0.48 88.6 % 84.2 % 148 k 0.11 232 

64 1 No 0.43 0.20 83.2 % 82.8 % 8 k 0.01 85 

256 1 No 1.0 1.0 96.5 % 81.3 % 3.6 M 2.73 1529 

256 1 Yes 1.0 1.0 97.2 % 83.9 % 1.1 M 1.46 818 

256 1 No 1.0 1.1 96.5 % 81.3 % 4.6 M 3.76 2106 

256 1 Yes 1.0 1.1 86.5 % 84.0 % 1.4 M 2.09 1170 

128 2 No 1.0 1.1 95.1 % 83.4 % 580 k 0.56 1180 

128 2 Yes 1.0 1.1 93.1 % 81.7 % 276 k 0.41 209 

64 2 Yes 1.0 1.1 91.4 % 84.3 % 46 k 0.06 126 

64 4 Yes 1.0 1.1 95.8 % 83.3 % 46 k 0.06 31 

128 1 No 1.0 1.1 85.6 % 85.6 % 580 k 0.56 1180 

128 1 Yes 1.0 1.1 91.8 % 86.4 % 276 k 0.41 864 

64 1 Yes 1.0 1.1 85.9 % 85.5 % 46 k 0.06 510 

 
4.0 EXPERIMENTS AND RESULTS 

4.1 Training details 

The training of classifiers is performed within a Distributed Data Parallel (DDP) strategy over 4 GPUs with 
batch size of at 256 and patches of size ranging from 64 to 256. The train dataset is split at 90% into the 
training set and the remaining 10% into the validation set. To mitigate the effect of imbalance in the training 
distribution, the cross-entropy loss is weighted by coefficients inversely proportional to the number of pixel 
occurrences of the class in the ground truth. Additionally, to ensure the best version of models are reached, 
an early stopping strategy with patience is employed to keep training models until no improvement over the 
validation accuracy can be noticed. Both designs enforce the training procedure to be more efficient and 
results to be more replicable. The starting learning rate is initiated at 0.001 and is employed within an Adam 
Optimiser strategy coupled with a scheduler reducing all individual learning rates for each layer by a small 
factor every 100 epochs, to avoid having to tailor them manually. Additionally, a small weight decay is 
introduced as a regulariser to prevent the explosion of weights. Trainings, which ranged from a couple of 
minutes to few hours depending on model size, are fast enough to perform an ablation study. 

4.2 Ablation study 

We conduct ablation experiments to explore some meta-architecture hyperparameters for EfficientNet 
models derived from the procedure elaborated in Section 2.1 and study their effects in term of accuracies 
and computation growth, which are reported in Table 4-1. Early experiments with the depth and width scaled 
down architectures, owing to lower input size, performs poorly. Indeed, the reduced number of filters 
prevents models from learning discriminative features for all possible orientations and scaling factors given 
by data augmentation. Consequently, instead of drastically reduce the number of filters at all stages we 
revert to a filter maps growth similar to the one of [18]. Alongside and as models were addressing patches 
of similar input size, we adopt the largest depth multiplier to slightly compensate the significant decrease of 



training parameters. Experiments lead to a scaled down architecture, which is compared to the standard 
EfficientNet-B0 model in Section 4.4 and a pixel-wise segmentation model from our previous work in Section 
4.5. The models are also compared on the number of training parameters and the Floating-point Operations 
(FLOPs) necessary to perform an inference, which account for the simplicity of the model and its computing 
requirements. Equally important, results highlight the discretisation effect over the labelled ground truth. 
The larger input size, the better models perform patch-based classification, which is a simpler task with 
increasing input size, to the detriment of the pixel-wise accuracy, which is a more complex task. 

4.3 Prediction mapping analysis 

Even though resulting maps are imperfect, they are promising enough from imperfect annotation, in low-
label regime, and over unseen seafloor configurations Fig. 4-1-b) and Fig. 4-1-d). Indeed, models created with 
different input sizes could capture boundaries of different sizes. In addition, models could recover from 
annotation bias of rocks over the other classes. Besides, small boulders in between sand ripples are also 
recovered even though they were not labelled in the Train set. Finally, inconsistencies between the imperfect 
ground truth and produced maps with the simplistic post-processing design of Section 2.3, are often visually 
impossible to share to one another. Therefore, annotations will have to be refined to conclude over 
comparable performances of models to generate seafloor characterisation maps. 

 
a) 

 
b) 

 

 
c) 

 

 
d) 

Figure 4-1: The semantic a) and 256-patch-based classification c) ground truth maps compared to the mappings 
respectively produced by our 64 b) and 128 d) pixels input size scaled down EfficientNet b) with the half overlap 

tiling strategy. The Green, Yellow, Red, Magenta colours respectively corresponds to the Rocks, Flat Bottom, 
Small and Large Sand Ripples. 

4.4 Comparison with transfer learning and the baseline EfficientNet-B0 model 

Seafloor characterisation datasets and algorithms are hardly shared. Therefore, comparing early 
developments of methods could be troublesome. In this work, we choose to compare to the EfficientNet-B0 
model from [10], pretrained on ImageNet and its own data augmentation schemes. To that extent, we 
considered different state-of-the-art transfer learning retraining strategies ranging from complete retraining 
to frozen layers and through model part specific learning rate. The best results were obtained with the latter. 
Additionally, models need to be modified to be consistent with the new task and number of classes. The 
fewer layers are replaced to maximise the number of transferred weights from the feature extractor. Hence, 



only the first convolution, now addressing a single channel instead of colour, and the final mapping 
convolution to a fixed number of channels before the global average pooling and the classifier part, are 
discarded and reinitialised. Table 4-3 proves our method right and also reveals the inability of the patch-
based accuracy to correctly embody the performances of models due to different discretisation sizes. 

 

Table 4-3: Comparison of the EfficientNet-B0 model applied to seafloor characterisation with different 
configurations of data augmentation and transfer learning. 

Model 
Our 

augmentations 
Transfer 
Learning 

Patch-based 
classification accuracy 

Pixel-wise 
segmentation accuracy 

EfficientNet-B0 
[10] 

No Yes 85.6 % 79.4 % 

EfficientNet-B0 Yes Yes 90.6 % 82.2 % 

EfficientNet-B0 Yes No 92.8 % 83.6 % 

Our scaled down 
EfficientNet-B0 

Yes No 90.6 % 84.4 % 

 

4.5 Comparison with pixel-wise semantic segmentation 

The best resulting model achieves state-of-the-art results on a dataset comprised of challenging seafloors of 
real-world MCM surveys. However, and despite models being hardly comparable, our scaled down model is 
slightly outperformed by our previous work on pixel-wise segmentation, as shown by Table 4-4. We evaluate 
classifiers with a half patch overlap and a majority voting strategy. It was experimentally found an acceptable 
trade-off between prediction accuracy and computation increase, roughly quadrupling the number of 
patches to be processed for the same image, since it reduces the mapping discretisation comparable or 
below the size of MCM targets of interest. 

Table 4-4: Comparison of the pixel-wise segmentation model from our previous work with classifiers with the half overlap patch 
majority voting fusion strategy. 

Model 
Inference 
GFLOPs 

Training 
Parameters 

Pixel-wise classification 
accuracy 

Complete Image 
mapping GFLOPs 

EfficientNet-B0 [10] 2.15 3.6 M 79.4 % 1386 

D4SC (Previous work)  4.34 960 k 87.3 % 625 

Ours 0.41 276 k 86.4 % 864 

 

5.0 CONCLUSION 

This work investigated the effect of network engineering for a faster and more efficient patch-based 
classification mapping, to reach less memory requirements and necessary computing power, and for the 
deployment of seafloor characterisation algorithms for MCM directly inside AUVs. It failed at outperforming 
the pixel-wise semantic segmentation model over unseen seafloor configurations. Nevertheless, this work 
embodies an efficient exploration of network engineering meta-architecture search space of feature 
extractors that will be beneficial to the improvement of all segmentation models and the exploration of 
bigger ones addressing multiple geographic locations, sensors, etc. Additionally, comparable accuracies 
highlight the limits of the low amount of annotated and imperfect data. Thus, further research should extend 



the dataset to make segmentation models more robust and more capable of handling difficult sonar and 
seafloor configurations. Future work should also explore models’ ability to inform about their being out-of-
bounds or to adapt themselves to the new distribution of data. Careful designs presented in this work, might 
also be beneficial to other in low-label regime applications such as in medical images. 
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