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Abstract—Band selection (BS) reduces effectively the spectral
dimension of a hyperspectral image (HSI) by selecting relatively
few representative bands, which allows efficient processing in
subsequent tasks. Existing unsupervised BS methods based on
subspace clustering are built on matrix-based models, where
each band is reshaped as a vector. They encode the correlation
of data only in spectral-mode (dimension) and neglect strong
correlations between different modes, i.e., spatial modes and
spectral mode. Another issue is that the subspace representa-
tion of bands is performed in the raw data space, where the
dimension is often excessively high, resulting in a less efficient
and less robust performance. To address these issues, in this
paper we propose a tensor based subspace clustering model
for hyperspectral band selection. Our model is developed on
the well-known Tucker decomposition. The three factor matrices
and a core tensor in our model encodes jointly the multi-mode
correlations of HSI, avoiding effectively to destroy the tensor
structure and information loss. In addition, we propose well-
motivated heterogeneous regularizations on the factor matrices
by taking into account the important local and global property
of HSI along three dimensions, which facilitates the learning of
the intrinsic cluster structure of bands in the low-dimensional
subspaces. Instead of learning the correlations of bands in the
original domain, a common way for the matrix-based models, our
model learns naturally the band correlations in a low-dimensional
latent feature space, which is derived by the projections of two
factor matrices associated with spatial dimensions, leading to
a computationally efficient model. More importantly, the latent
feature space is learned in a unified framework. We also develop
an efficient algorithm to solve the resulting model. Experimental
results on benchmark data sets demonstrate that our model yields
improved performance compared to the state-of-the-art.

Index Terms—Band selection, hyperspectral image, remote
sensing, tensor, subspace clustering.
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RECENT advances on hyperspectral sensors significantly
increase the spectral resolution of hyperspectral images

(HSIs) [1]. While providing richer spectral information than
multi-spectral data, which enables improved discriminations
between different materials, HSIs raise in the meantime the
challenges of dealing with high-dimensional data [2]. On
the one hand, high-dimensional data surges the burdens in
the data acquisition, storage and transmission. On the other
hand, it leads to the curse of dimensionality problem, which
deteriorates the performance of the related post-processing
algorithms [3, 4]. Both issues limit the real applications of
HSIs.

Band selection (BS), as an effective dimension reduction
method, selects the most relevant spectral bands from HSIs
for post-processing such as classification, which reduces ef-
fectively the dimension of HSIs while obtaining comparable
or even better performance in the related task [5, 6]. De-
pending on how supervised information is involved in the
band selection, band selection methods can be categorized
into supervised methods [7–9], semi-supervised methods [10–
12] and unsupervised methods [13–17]. A recent overview
for BS can be found in [18]. We here mainly focus on the
unsupervised BS method given the fact that data labelling is
expensive, leading to often a scarce of labeled data in practice
[19, 20].

Common unsupervised BS methods include ranking-based
[14, 21–26], searching-based [5, 27–31] and clustering-based
methods [6, 16, 17, 32–38]. Ranking-based methods select
the top-ranked bands as representatives according to the
scores of bands measured by a given criterion such as band
variation [21], mutual information [23] and band correlation
[22, 24]. Searching-based methods select desired bands by
greedy algorithm or evolutionary algorithms, including im-
mune clone [30], firefly algorithms [31] and particle swarm
[27]. Clustering-based methods cluster the bands of HSIs
into different groups by well-developed clustering algorithms,
including spectral clustering [39], hierarchical clustering [6],
subspace clustering [37, 40] and probabilistic clustering [41].
As each of the resulting clusters contains spectral bands of
high similarity, one can select a representative band from each
cluster to obtain the optimal subset of bands.

In general, spectral clustering deals well with non-spherical
cluster structure of bands by using graph spectral analysis.
However, the performance of spectral clustering is sensitive to
the neighborhood size and similarity measurement between
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two bands to build a similarity matrix [42]. Hierarchical
clustering learns a tree cluster structure of bands, which
avoids repetitive clustering process of bands from scratch
when a different number of bands is required to adapt to
the complexity of subsequent tasks. However, hierarchical
clustering is sensitive to noise, outliers and initial conditions.
Moreover, wrong clustering results in previous stage cannot
be reversed, resulting in error propagation to the following
clustering stages. Probabilistic clustering based methods allow
a more flexible interpretation of band clustering than others by
providing soft clustering results, which deals well with smooth
transition between clusters (because of smoothing spectrum).
However, this type of methods often assume specific prob-
ability distributions for clusters, which might not be correct
in practice, resulting in thereby unstable performance of band
selection.

Recently, subspace clustering methods yield remarkable
performances in unsupervised hyperspectral band selection
[37]. The success mainly benefits from the accurate learning
of cluster structure of bands in low-dimensional subspaces
within a representation-based framework, which makes them
robust to noise and outliers and efficient for clustering of
high-dimensional data. The superior clustering performance
facilitates a better band selection result. Subspace clustering
typically consists of two steps: subspace representation and
spectral clustering, among which the former is more impor-
tant to the BS performance and received increasing attention
[18, 36, 37]. Generally, subspace representation seeks for a
lower-dimensional representation of bands given a dictionary,
which is typically the input data itself [40]. The resulting
representation in the low dimensional subspace reveals the
correlations of bands and is utilized to construct a similarity
matrix, which is further fed into spectral clustering to obtain
clustering results [15, 18, 36, 37, 40]. Despite their excellent
band selection performance, these methods show limitations
on addressing the following two critical problems. The first
problem is that current subspace clustering based BS methods
are mostly built on matrix-based models where each 2-D
spectral band in HSIs is reshaped to a vector being as a
column/row of the input matrix. The vectorization operation
on the bands inevitably destroys the spatial structure of HSIs,
resulting in a loss of the internal structural information of data
in terms of the local and global data property [2]. For example,
the spatially local correlations between neighbouring pixels
can be hardly preserved in the matricized data. Such loss of
important spatial information might lead to a suboptimal learn-
ing of data representation in the low-dimensional subspace.
The second problem comes from the fact that most of the
existing approaches study the band correlations in the original
domain. In the matrix-based subspace clustering models, as
each data point is the concatenation of all the pixels in one
band, the input data is often of very high dimensionality. The
dimension of the vectorized bands is often several hundreds of
thousands. It is obvious that analysing the cluster structure of
these bands in the original domain is less efficient because of
the high dimensionality. This can be even worse for large-scale
data, which is often the case in the tasks of earth observations
and environment monitoring. Moreover, band selection in the

original domain also implies the analysis of band correlations
using the raw data. However, due to the present of noise in
HSI, this might result in a degraded performance.

Instead of matrix-based model, it is more favorable to
process HSIs by using a higher-order model, e.g., a tensor-
based model, where the loss of spatial information can be
avoided. An N th-order tensor is a multi-dimensional array
with N indices. Hyperspectral image can be seen as a third-
order tensor whose three indices correspond to the width and
height in the 2-D spatial domain and the bands in the spectral
domain, respectively. Recently, tensor-based methods have
attracted extensive interests [43] and received a great success
in various HSIs related tasks, including super-resolution [44],
anomaly detection [45], unmixing [46], tensor completion
[47, 48], denoising [49–51], compression [52, 53], feature
extraction [54] and classification [55]. However, analogous
research in the task of band selection is not explored in the
literature.

Tucker decomposition (TD), as a representative tensor-based
model, decomposes a tensor into a core tensor multiplied by
a factor matrix along each mode (dimension) [56]. In this pa-
per, we propose a heterogeneous regularizations based tensor
subspace clustering (TSC) model with the decomposition form
of TD for hyperspectral band selection, which addresses well
the aforementioned problems. Unlike existing approaches, our
model learns the correlations of bands in a tensor-based model,
which processes the 3-D HSI directly and efficiently. To the
best of our knowledge, this is the first attempt to tensor-based
clustering model for band selection. Although there exist some
tensor-based subspace clustering models, e.g., [57–61], they
are designed for multi-view clustering tasks in the fileds of
computer vision, including clustering of faces, objects and
scenes, where traditional gray-scale or color images are used
and specially they assume that different views of data are
accessible. In the task of band selection, HSI often contains
hundreds of channels, which results in a special data property
of HSI in spectral domain. Existing tensor-based models in
computer vision tasks fail to address this aspect. Moreover,
the lack of multi-view data of HSIs makes the application of
the tensor-based clustering models [57–61] in band selection
infeasible.

The main contributions are summarized as follows:
1) We propose a novel tensor-based subspace clustering

model for band selection for the first time. Unlike
existing matrix-based models, we treat the 3-D HSI as
a whole in a tensor-based model by using three factor
matrices and a core tensor, which encodes jointly the
multi-mode correlations of HSI, avoiding to destroy the
inherent spatial structure of HSIs. Our model is more
flexible and generalized in comparison with the matrix-
based methods and in a certain condition, it can be
reduced to the matrix-based model.

2) In order to capture well the complex 3-D structure of
HSI, we take into account the prior information regard-
ing both spatial dependencies of pixels and the spectral
correlations of bands in TSC. By differentiating spatial
modes from spectral mode, we propose accordingly het-
erogeneous regularizations (HRs) on the factor matrices
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with each considering different aspects of the data prop-
erty in terms of local and global geometric structure. The
developed HRs consist of local and global constraints.
The heterogeneous local constraints, imposed in the
gradient domain of factor matrices in different modes,
facilitate a robust and accurate representation of HSIs
and improved discrimination between bands in the fea-
ture space. The heterogeneous global constraints on the
factor matrices promote a low-rank tensor recovery and
result in an efficient and interpretable learning algorithm.
The developed HRs yield better band clustering and
improve thereby subsequent band selection procedure.

3) Unlike existing approaches, which formulate subspace
representation in the raw data space, we learn the cluster
structure of bands in a projected data space, which
is derived from the explicit projection by two factor
matrices corresponding to the spatial modes of HSIs.
The resulting dimension and redundancy in the projected
data space are much lower than that in the original do-
main, facilitating a robust and efficient learning model.
Moreover, the projections are learned jointly in a unified
framework.

4) We devise an efficient algorithm based on alternating
direction method of multipliers (ADMM) to optimize
the proposed model. We provide theoretical analysis
for the convergence property and time complexity of
our algorithm. Experimental results on real data sets
demonstrate that our model outperforms the state-of-the-
art in the field.

The rest of this paper is organized as follows. Section II
introduces the notations and basic concepts behind tensor
decomposition, and reviews briefly matrix-based subspace
clustering methods for band selection. Section III presents
the proposed TSC model, develops an efficient algorithm
to optimize the resulting model and provides a theoretical
analysis on the convergence property and time complexity of
the algorithm. Experiments and analysis on benchmark data
sets are conducted in Section IV. Section V concludes the
paper.

II. PRELIMINARIES AND RELATED WORKS

A. Notations and Preliminaries

We denote scalars by lowercase letters, e.g., x, vectors
by boldface lowercase letters, e.g., x, matrices by bold-
face capital letters, e.g., X, and tensors by capital calli-
graphic letters, e.g., X , throughout this paper. For a N th-
order (mode) tensor X ∈ RI1×I2×···×IN , xi1i2···iN denotes
the (i1, i2, · · · , iN )-th entry of X . Mode-n fiber of X is
denoted by xi1,i2,··· ,in−1,:,in+1,··· ,iN , which consists of the
entries by varying one index while fixing others. By arranging
every mode-n fiber to be columns of a matrix, we obtain
the mode-n unfolding of the tensor X , which is denoted
by X(n) ∈ RIn×I1I2,··· ,In−1In+1,··· ,IN . The F-norm of a
tensor is defined as ‖X‖F = (

∑
i1,i2,··· ,iN x

2
i1i2···iN )1/2. The

Kronecker product of matrices A ∈ RI×J and B ∈ RK×L is
denoted by A⊗B, whose matrix size is IK × JL.

Definition 1 (Tensor n-mode product): The n-mode product
of a tensor X ∈ RI1×I2×···×IN with a matrix U ∈ RJ×In is
denoted by

Y = X ×n U, (1)

where Y ∈ RI1×···×In−1×J×In+1×···×IN and its elements are

Yi1···in−1jin+1···iN =

In∑
in=1

xi1i2···iNujin . (2)

The n-mode product of a tensor with a matrix can be also
represented in the unfolded matrix form:

Y(n) = UX(n). (3)

Definition 2 (Tucker decomposition (TD)): The Tucker de-
composition of a tensor X is defined as [56]:

X ≈ G ×1 U1 ×2 · · · ×N UN , s.t. UT
nUn = I (4)

where Un ∈ RIn×Rn (Rn ≤ In) are the column-orthogonal
factor matrices with constraints UT

nUn = I, and G ∈
RR1×R2×···×RN is called the core tensor whose entries repre-
sent the interactions between the columns in different factor
matrices. Elementwise, we have

xi1i2···iN =
∑

k1,k2,··· ,kN

gk1k2···kNu1i1k1u2i2k2 · · ·uNiNkN ,

(5)

where ujinkn is the (in, kn)-th entry of Uj .
The Tucker decomposition (4) can be represented in the

mode-n unfolding matrix form:

X(n) ≈ UnG(n)(UN ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U1)T .
(6)

Moreover, the Tucker decomposition can be reformulated in
the vector form:

vec(X ) ≈ (UN ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U1)vec(G),
(7)

where vec(X ) denotes an operation to vectorize the tensor X .

B. Subspace Clustering based Band Selection Models

Clustering based methods for band selection first employ
clustering algorithms to assign bands into different clusters
and then one representative band from each cluster is selected.
Subspace clustering based methods also follow this procedure.
Let X ∈ RI1×I2×I3 be a hyperspectral image, where I1 and
I2 are the spatial sizes and I3 is the number of bands. Existing
subspace clustering methods for band selection mostly unfold
the tensor X as a mode-3 matrix, i.e., X(3) ∈ RI3×I1I2 , and
assume each band (each row of X(3)) can be represented by
a linear combination of others in the same subspace. Given
a self-representation dictionary XT

(3), the resulting coefficients
matrix C ∈ RI3×I3 for such representation can be derived by
solving the general optimization problem as follows:

arg min
C

L(XT
(3) −XT

(3)C) + λR(C), s.t. diag(C) = 0 (8)
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where L(·) is a given loss function which accounts for
approximation error between XT

(3)C and the input data XT
(3),

R(·) is a regularization term and λ is a parameter to balance
the trade-off between data-fidelity and regularization terms.
The constraint diag(C) = 0 excludes a trivial solution of C to
be an identity matrix. Commonly adopted loss function L(·) is
the Frobenius norm ‖ · ‖F . According to the prior information
of data, representative methods impose regularizations on co-
efficients matrix C such as sparsity term ‖C‖1 =

∑
i

∑
j |Cij |

[42], `2-norm based collaborative term ‖C‖2F =
∑
i

∑
j C

2
ij

[40] and low-rank term ‖C‖∗ =
∑
i σi [15, 36, 37], where

σi are the singular values of C, aiming to capture better the
underlying cluster structure of data.

The learned coefficients matrix C in (8) is used to construct
the similarity matrix by W = (|C|+|CT |)/2, which is further
applied into the standard spectral clustering [62] to obtain the
band clustering results. By selecting the closest band to the
centroid in each cluster, the representative bands are obtained.

III. THE TENSOR-BASED SUBSPACE CLUSTERING FOR
HYPERSPECTRAL BAND SELECTION

A. Problem Formulation

The matrix-based model in (8) requires to flatten each 2-
D spectral band to a vector, which inevitably destroys the
spatial structure of HSIs. Moreover, the learning of latent
representations of bands in the original domain is less efficient,
especially for large-scale HSIs due to the high dimensionality
of the vectorized bands. In order to solve these problems, we
propose a tensor-based subspace clustering mode for band
selection. We borrow the decomposition form of (4) and
represent a 3-D HSI X ∈ RI1×I2×I3 as follows:

X ≈ G ×1 U1 ×2 U2 ×3 U3, (9)

where U1 ∈ RI1×R1 and U2 ∈ RI2×R2 are the factor matrices
associated with the spatial dimensions; U3 ∈ RI3×R3 is the
factor matrix corresponding to the spectral dimension and
G ∈ RR1×R2×R3 is a core tensor. Compared to the matrix-
based model, this tensor representation encodes the multimode
correlation of data simultaneously. Specifically, according to
(6) we derive the single-mode representations of X in each
dimension as follows:

X(1) ≈ U1G(1)(U3 ⊗U2)T , (10)

X(2) ≈ U2G(2)(U3 ⊗U1)T , (11)

X(3) ≈ U3G(3)(U2 ⊗U1)T , (12)

where X(1) ∈ RI1×I2I3 , X(2) ∈ RI2×I1I3 , X(3) ∈ RI3×I1I2 ,
G(1) ∈ RR1×R2R3 , G(2) ∈ RR2×R1R3 and G(3) ∈
RR3×R1R2 .

It is observed that the three single-mode representations are
mutually correlated by the factor matrices {Ui}3i=1 and the
core tensor G. Thus, a faithful learning of {Ui}3i=1 and G is
essential. The solution to (9) in the least square sense involves
solving an ill-posed optimization problem. This can be solved
by introducing appropriate regularization on factor matrices

Fig. 1. The histograms of difference matrices (a) ∇y1X(1), (b) ∇y2X(2)
and (c) ∇y3X(3) on the data set Indian Pines. The results show that most
of the values in difference matrices are zero or near zero, indicating thereby
the strong local correlations of HSI in both spatial and spectral dimensions.

Fig. 2. The eigenvalues in three unfolding matrices: (a) X(1), (b) X(2) and
X(3) (the largest eigenvalue is normalized to one). Most of the eigenvalues
of unfolding matrices are close to zero, showing the important low-rank
properties of HSI along each mode.

according to the prior information of data. To this end, we
formulate our basic TSC model as follows:

arg min
G,Ui

1

2
‖X − [[G; U1,U2,U3]] ‖2F +

3∑
i=1

Φi(Ui), (13)

where [[G; U1,U2,U3]] = G×1 U1×2 U2×3 U3 and Φi(Ui)
are heterogeneous constraints on factor matrices Ui, which
will be detailed later.

Taking the transpose of both sides of (12), we have:

XT
(3) ≈ (U2 ⊗U1)GT

(3)U
T
3 . (14)

As each column of XT
(3) is a spectral band, we can view

the matrix (U2 ⊗ U1)GT
(3) as the dictionary and UT

3 as
the corresponding coefficients matrix, which represents the
latent features of bands in the TSC model. While solving the
problem (13), we utilize the factor matrix U3 to build a K-
nearest neighbours (KNN) graph for spectral clustering. Then,
we select the closest band to the centroid in each cluster as
representatives of HSI.

B. Heterogeneous Regularizations Based TSC Model

The well-know Tucker decomposition [56, 63] leverages
a tensor rank denoted by rankt(X ), which is defined as
rankt(X ) := (rank(X(1)), rank(X(2)), rank(X(3))), and im-
poses homogeneous constraints UT

i Ui = I for the learning
of a low-rank tensor representation. Although this tensor rank
works effectively for TD to capture the global low-rank data
structure, in the case of HSI the important local structure of
data can be hardly unveiled, which leads to a partially learned
data property in the low-dimensional data representations.
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Here, we consider specially the local and global data structure
of HSIs along three dimensions at the same time, which
motives accordingly different constraints on the three factor
matrices.

1) Local constraints: The local and global property of HSIs
can be observed both in the spatial and spectral dimensions.
We start with the local property of HSIs and elaborate here
the local constraints in TSC. In the spatial dimensions, neigh-
bouring pixels often belong to the same class and thereby
their spectral signatures are very similar, which is commonly
referred to spatial information. In the spectral dimension, due
to the high spectral resolution of HSI, the neighbouring bands
often have strong correlations, which means that most of
the neighbouring bands have similar spectral intensities. Let
∇yiX(i) be the difference matrices of X(i), where ∇yi is
the corresponding difference operator for X(i) in the vertical
direction. We show the statistical distributions of ∇yiX(i) by
their histograms in Fig. 1 on a benchmark HSI Indian Pines.
The histograms show that most of the difference matrices are
around zero, which demonstrates the local homogeneity of
HSIs in all three dimensions.

The aforementioned spatial information of HSIs indicates
the important intra-signal dependencies of X(1) and X(2),
which means that each column of them is smoothing. As
shown in (10) and (11), the factor matrices U1 and U2 can
be viewed as representation basis in the mode-1 and mode-
2 unfolding matrix form. Taking into account the intra-signal
dependencies in mode-1 and mode-2, we focus on learning
smoothing basis of U1 and U2 in TSC by introducing the
local regularizations:

Φi(Ui) = ‖∇yiUi‖1, (i = 1, 2). (15)

The `1 norm of the two regularizations promotes the difference
matrices {∇yiUi}2i=1 to be sparse and induces thereby the
smoothness of U1 and U2. The smoothing basis imply the
smoothness of any data point represented over the basis [64],
which allows our model preserve well the inherent local
property of HSI in the spatial domain as shown in Fig. 1
(a) and (b). As evidenced in the matrix-based model [65], the
smoothness of basis will also favor a robust representation to
non-smooth noise that present in the input data.

We treat U3 differently with U1 and U2 regarding the
local data property. In TSC model, we aim to produce consis-
tent low-dimensional representations of bands such that the
bands belonging to the same subspace have similar latent
features while the bands belong to different subspaces obtain
substantially different features. This helps improve the intra-
cluster coherence and inter-clusters discriminability, which is
beneficial for a better clustering performance. Aforementioned
analysis from Fig. 1 (c) verifies the strong correlations of
neighbouring bands, and thus it is reasonable to assume
that they often belong to the same cluster and have similar
coefficients vectors, i.e., the neighbouring columns of UT

3 .
Let ∇xUT

3 be the difference matrix of UT
3 in the horizontal

direction. Therefore, ∇xUT
3 ideally should be a column-wise

sparse matrix. Equivalently, ∇y3U3 is row-wise sparse in
the ideal case. Thus, we utilize an `1,2 norm based local
regularization ‖∇y3U3‖1,2 on the factor matrix U3. It is

known that `1,2 norm promotes effectively row-sparsity of a
matrix, which improves thereby the consistency of subspace
representation. This regularization treats all the bands equally
with the same weight of 1. However, it is more favorable to
discriminate the bands with different weights according to the
prior information of data. The idea is that the neighbouring
bands with a smaller distance are more likely to have similar
coefficients vectors. Thus, we define a diagonal weight matrix
W as follows:

Wii = e−
∑
j D

2
i,j

2σ2 , (16)

where D = ∇y3X(3) is the difference matrix of X(3) and σ is
a parameter. Then we propose a weighted local regularization:

Φ3(U3) = ‖W∇y3U3‖1,2. (17)

It is observed that the neighbouring bands with smaller dis-
tance yield a larger weight in (16), which regularizes the
associated row of ∇y3U3 in (17) to be zeros more likely than
others.

2) Global constraints: The low rankness of HSIs is often
considered as an important global data structure in the pro-
cessing of HSIs. Such global property can be observed along
three dimensions because of the connectivities of pixels and
correlated bands. In other words, {X(i)}3i=1 are low rank. We
show an example of the eigenvalues of {X(i)}3i=1 in Fig. 2
on the data set Indian Pines, where we can see most of the
eigenvalues are around zero, which verifies the low-rankness
of real HSIs along three dimensions. Existing matrix-based
models can only capture the global structure along a single
dimension, while tensor-based model enjoys the benefit of a
joint learning of the global data property in three dimensions.
To explore the global property of HSIs, we introduce the
orthogonal constraints UT

i Ui = I (i = 1, 2) on factor matrices
{Ui}2i=1 and utilize a nuclear norm ‖U3‖∗ for U3. Thus we
obtain:

Φ3(U3) = ‖W∇y3U3‖1,2 + β‖U3‖∗, (18)

where β is a parameter.
The orthogonal constraints UT

i Ui = I are important here.
On the one hand, it guarantees the low-rank property of X
in the first two dimensions, i.e., X(1) and X(2) [56]. On the
other hand, they enables a learning of bands correlation in a
projected data space. To show it explicitly, we reformulate (9)
equivalently to the equation:

X ×1 UT
1 ×2 UT

2 ≈ G ×3 U3, (19)

which leverages the orthogonal property of U1 and U2. Let
Xp = X ×1 UT

1 ×2 UT
2 ∈ RR1×R2×I3 be the projected data

of X , and we represent (19) in the mode-3 unfolding form:

XT
p(3)
≈ GT

(3)U
T
3 . (20)

This indicates that the factor matrix U3 is actually learned
from the projected data Xp(3) . Due to the low-rank property
of X , R1 and R2 are often much smaller than the original
spatial size of data, I1 and I2, respectively, leading to a more
computationally efficient model. Compared with the matrix-
based models, we here learn the representation of bands in
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the projected data space instead of using the raw data, which
can be less affected by the noise.

Considering the proposed heterogeneous regularizations, we
formulate our TSC model formally by:

arg min
G,U1,U2,U3

1

2
‖X − [[G; U1,U2,U3]] ‖2F +

2∑
i=1

αi‖∇yiUi‖1

+α3‖W∇y3U3‖1,2 + β‖U3‖∗ + λ‖G‖2F
s.t. UT

1 U1 = I, UT
2 U2 = I, (21)

where λ, αi and β are the parameters to control the trade-
off between different constraints and ‖G‖2F is adopt to avoid
overfitting problem.

Our TSC model is more generic than the matrix-based
models (8). When U1 = I, U2 = I and G = X , our
model reduces to the traditional matrix-based approach (8).
In other words, the matrix-based model can be seen as a
special case of our tensor-based model. Thus, our model is
more flexible. Also the learning of the projection matrices and
band representation in the projected data space are performed
jointly in a unified model, avoiding effectively the exploitation
of external dimensionality reduction approach. Our TSC model
takes into account the prior information of HSIs in terms of
local and global data property along three dimensions, which
is expected to capture better the complex 3-D structure of HSI
than the matrix-based models.

C. Optimization

To solve the problem in (21), we introduce auxiliary vari-
ables {Ui = Vi}3i=1, {∇yiUi = Bi}3i=1 and U3 = Z, and
reformulate equivalently (21) to the optimization problem:

min
1

2
‖X − G ×1 V1 ×2 V2 ×3 V3‖2F +

2∑
i=1

αi‖Bi‖1

+ α3‖WB3‖1,2 + β‖Z‖∗ + λ‖G‖2F
s.t. UT

1 U1 = I, UT
2 U2 = I, {Ui = Vi}3i=1

{∇yiUi = Bi}3i=1, U3 = Z (22)

We obtain the augmented Lagrangian function of (22) by:

L(G,Ui,Vi,Bi,Z)

=
1

2
‖X − G ×1 V1 ×2 V2 ×3 V3‖2F +

2∑
i=1

αi‖Bi‖1

+ α3‖WB3‖1,2 + β‖Z‖∗ + λ‖G‖2F +

3∑
i=1

(〈Yv
i ,Ui −Vi〉

+
µ

2
‖Ui −Vi‖2F + 〈Yb

i ,∇yiUi −Bi〉+
µ

2
‖∇yiUi −Bi‖2F )

+ 〈Yz,U3 − Z〉+
µ

2
‖U3 − Z‖2F , (23)

where Yv
i , Yb

i and Yz are the Lagrange multipliers and µ is
a penalty parameter. We then optimize the problem based on
the ADMM algorithm by updating one variable while fixing
others.

Algorithm 1 Cayley transform based algorithm to solve (28)
1: Input: Vi, Bi, ∇yi , Yv

i , Yb
i and µ

2: Initialization: U0
i is a random matrix with U0T

i U0
i = I,

k = 0, ε = 10−5 and kmax = 1000.
3: while true do
4: Step 1: Compute the derivative of the objective func-

tion (28) at Uk
i by

5: Hk = Uk
i −Vi +

Yv
i

µ +∇Tyi(∇yiU
k
i −Bi +

Yb
i

µ )

6: Step 2: Obtain Ek = [Hk,Uk
i ]; Fk = [Uk

i ,−Hk];
Rk = EkFk

T

7: Step 3: Compute the optimal step size τk to update Ui

by linear search algorithm [66].
8: Step 4: Update Ui by
9: Uk+1

i = Uk
i − τkEk(I + τk

2 Fk
T

Ek)−1Fk
T

Uk
i

10: Step 5: Stopping check: If ‖RkUk
i ‖ < ε or k > kmax,

then STOP; Otherwise, k := k + 1 and continue.
11: end while
12: Output: Ui

1) Update {Vi}3i=1: The objective function with respect to
V1 is shown as

arg min
V1

1

2
‖X − G ×1 V1 ×2 V2 ×3 V3‖2F

+
µ

2
‖U1 −V1 +

Yv
1

µ
‖2F . (24)

Based on (6), we reformulate the (24) in the mode-1
unfolding matrix form:

arg min
V1

1

2
‖X(1) −V1G(1)(V3 ⊗V2)T ‖2F

+
µ

2
‖U1 −V1 +

Yv
1

µ
‖2F . (25)

By setting the derivative of (25) with respect to V1 to zero,
we update V1 as follows:

V1 = (X(1)P
T
1 + µU1 + Yv

1)(P1P
T
1 + µI)−1, (26)

where P1 = G(1)(V3 ⊗ V2)T . We can update V2 and V3

similarly to V1 by:

Vi = (X(i)P
T
i + µUi + Yv

i )(PiP
T
i + µI)−1 (27)

where P2 = G(2)(V3 ⊗V1)T and P3 = G(3)(V2 ⊗V1)T .
2) Update {Ui}2i=1: We optimize the following optimization

problem to update Ui(i = 1, 2):

arg min
Ui

1

2
‖Ui −Vi +

Yv
i

µ
‖2F +

1

2
‖∇yiUi −Bi +

Yb
i

µ
‖2F

s.t. UT
i Ui = I (28)

To solve this problem, we adopt a Cayley transform based
algorithm [66], which deals effectively with the optimizations
with orthogonality constraints. A detailed explanation to the
algorithm in [66] is included in the supplementary material of
this paper. We show the algorithm to solve (28) in Algorithm
1.
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3) Update U3: We update U3 by optimizing:

arg min
U3

1

2
‖U3 −V3 +

Yv
3

µ
‖2F +

1

2
‖∇y3U3 −B3 +

Yb
3

µ
‖2F

+
1

2
‖U3 − Z +

Yz

µ
‖2F (29)

We set the first-order derivative of (29) with respect to U3 to
zero and update U3 by

U3 = (∇Ty3∇y3 + 2I)−1

(V3 −
Yv

3

µ
+∇Ty3(B3 −

Yb
3

µ
) + Z− Yz

µ
) (30)

4) Update {Bi}2i=1: The optimization function with respect
to Bi (i = 1, 2) is

arg min
Bi

αi‖Bi‖1 +
µ

2
‖∇yiUi −Bi +

Yb
i

µ
‖2F (31)

We introduce the following soft-thresholding operator:

R4(x) =

{
sgn(x)(|x| − 4) |x| ≥ 4
0 otherwise,

(32)

then we derive the solution of (31) by

Bi = Rαi
µ

(∇yiUi +
Yb
i

µ
). (33)

5) Update B3: The objective function with respect to B3 is

arg min
B3

α3‖WB3‖1,2 +
µ

2
‖∇y3U3 −B3 +

Yb
3

µ
‖2F (34)

As W is a diagonal matrix, the problem (34) can be solved
in a row-wise manner. Denote by bi3 the i-th row of B3 and
ti the i-th row of ∇y3U3 +

Yb
3

µ , we obtain the optimization
problem with respect to bi3 as follows:

arg min
bi3

α3Wii‖bi3‖2 +
µ

2
‖ti − bi3‖22. (35)

The solution of bi3 is derived by

bi3 = (1− α3Wii/µ/‖ti‖2)+ti, (36)

where (x)+ is defined by (x)+ = max(x, 0).
6) Update Z: We update Z by solving the optimization

problem as follows:

arg min
Z

β‖Z‖∗ +
µ

2
‖U3 − Z +

Yz

µ
‖2F (37)

To solve this problem, we introduce the following thresholding
operator:

Dδ(X) = UDδ(Σ)VT , (38)

where UΣVT is the singular value decomposition (SVD) of
the matrix X; U and V are the left and right singular vectors,
respectively; Σ is a diagonal matrix with diagonal elements
being the singular values σi and Dδ(Σ) = diag(max((σi −
δ), 0)). Then, we can update Z by

Z = D β
µ

(U3 +
Yz

µ
). (39)

Algorithm 2 The proposed TSC model
1: Input: X , αi, β, λ
2: Initialize Ui and G by the Tucker decomposition (4),

Vi = Ui, Yv
i = 0, Yb

i = 0, Yz = 0, µ > 0, ρ > 1,
r = 0, ε = 1e− 5, R = 100

3: while ||Ui − Vi||∞ > ε or ||∇yiUi − Bi||∞ > ε or
||U3 − Z||∞ > ε and r < R do

4: Update {Vi}3i=1 via (27)
5: Update {Ui}2i=1 via Algorithm 1
6: Update U3 by (30)
7: Update {Bi}2i=1 via (33)
8: Update B3 by (36)
9: Update Z by (39)

10: Update G by (42)
11: Update multipliers {Yv

i }3i=1, {Yb
i}3i=1 and Yz by (45)

12: µ = ρµ, r := r + 1
13: end while
14: Output: Factor matrices Ui and core tensor G

7) Update G: The objective function with respect to G is
formulated by

arg min
G

1

2
‖X − G ×1 V1 ×2 V2 ×3 V3‖2F + λ‖G‖2F (40)

According to (7), this problem can be equivalently reformu-
lated to the following form:

arg min
vec(G)

1

2
‖vec(X )− Svec(G)‖22 + λ‖vec(G‖22, (41)

where S = V3 ⊗ V2 ⊗ V1. By setting the derivative of
(41) with respect to vec(G) to zero, we obtain the close-form
solution:

G = fold((STS + 2λI)−1(ST vec(X ))), (42)

where fold(·) is the inverse operation of vec(·), which folds
a vector as a tensor. Directly computing G by (42) might
be difficult due to the computationally expensive inverse
calculation of the large matrix STS + 2λI. Here, we adopt
a more efficient way [44] to update G.

Let QiΣiQ
T
i be the SVD of VT

i Vi, we can calculate
(STS + 2λI)−1 by:

(STS + 2λI)−1 =(Q3 ⊗Q2 ⊗Q1)(Σ3 ⊗Σ2 ⊗Σ1 + 2λI)−1

(QT
3 ⊗QT

2 ⊗QT
1 ). (43)

As Σ1,Σ2 and Σ3 are diagonal matrices, Σ3 ⊗ Σ2 ⊗ Σ1

is diagonal as well. Thus, (Σ3 ⊗Σ2 ⊗Σ1 + 2λI)−1 can be
computed much efficiently. To compute ST vec(X ) in (42), we
use the following equation:

ST vec(X ) = vec(X ×1 VT
1 ×2 VT

2 ×3 VT
3 ), (44)

which can be seen as a vector that is flatten from a tensor
obtained by a series of tensor products, i.e., X×1V

T
1 ×2V

T
2 ×3

VT
3 . This avoids the computationally expensive calculation of

S = V3 ⊗V2 ⊗V1.
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8) Update others: We update other variables by:
Yv
i = Yv

i + µ(Ui −Vi)

Yb
i = Yb

i + µ(∇yiUi −Bi)

Yz = Yz + µ(U3 − Z)

(45)

We summarize the aforementioned optimization algorithm
in Algorithm 2. According to (20), columns of UT

3 can be
viewed as the latent features of the projected bands. Once U3

is obtained by Algorithm 2, we build a KNN graph based
on UT

3 and apply the KNN graph into spectral clustering,
which derives final clustering results of bands. In each cluster,
the band, which is closest to the corresponding centroid, is
selected.

D. Computational Complexity

We here analyse the time complexity of Algorithm 2.
The major cost comes from updating {Vi}3i=1, which have
time complexity of O(R1I2I3(I1 + I3)) for updating V1,
O(I1R2I3(I2 + I3)) for updating V2 and O(I1I2I

2
3 ) for

updating V3. The updates of {Ui}3i=1 have time complexity
of O(I1R

2
1), O(I2R

2
2) and O(I33 ), respectively. The com-

plexity of updating B1 and B2 is neglectable, and the up-
dates of B3, Z and G have time complexity of O(I3R3),
O(I33 ) and O(R1I1I2I3), respectively. Considering the fact
that I1, I2, I3 � R1 and R2, the overall time complexity
of Algorithm 2 is O(RI1I2I

2
3 ), where R is the number of

iterations.

E. Convergence Analysis

The convergence property of ADMM algorithm has been
theoretically proved in [67] for solving problems with a convex
and nonsmooth objective function with two blocks of vari-
ables. However, it is difficult to guarantee the convergence of
ADMM for solving nonconvex multiblock problems. We show
a week convergence property of our algorithm by proving that
the solution obtained by Algorithm 2 converges to a Karush-
Kuhn-Tucker (KKT) point under some mild conditions. The
convergence property is stated in Theorem 1. A detailed proof
of Theorem 1 is provided in the supplementary material.

Theorem 1. Let {Γr = ({Ur
i }3i=1, {Vr

i }3i=1, {Br
i }3i=1,

Zr,Gr, {Yvr

i }3i=1), {Ybr

i }3i=1,Y
zr )}∞r=1 be the sequence that

is derived from Algorithm 2. If limr→∞ µr(Ur+1
i −Vr+1

i ) =
0 and limr→∞ µr(Ur+1

i − Ur
i ) = 0 (i = 1, 2, 3), the

sequence {Γr}∞r=1 is bounded, and its accumulation point
Γ∗ = ({U∗i }3i=1, {V∗i }3i=1, {B∗i }3i=1,Z

∗, G∗, {Yv∗

i }3i=1),
{Yb∗

i }3i=1, Yz∗) satisfies the KKT conditions. The sequence
of {Γr}∞r=1 converges to a KKT point.

IV. EXPERIMENTS

By selecting representative bands, band selection algorithms
are able to effectively reduce the spectral dimension of HSI.
The performance of band selection is often validated in the
pixel-wise classification task of HSI [6, 16, 33, 34], where
the selected subset of bands are used as features of pixels for
classifier to discriminate between different land covers. The

Fig. 3. The false color images of: (a) IndianP, (b) PaviaU and (c) KSC.

same training data and test data are used when evaluating
different band selection algorithms. In the experiments, we
employ the classifiers support vector machine (SVM) and
KNN for performance analysis of band selection. The overall
accuracy (OA), average accuracy (AA) and Kappa coefficient
(κ) are utilized as the quantitative evaluation metrics for
the classifiers. The classifiers SVM with radial basis func-
tion (RBF) kernel and KNN are implemented by using the
optimization toolbox in MATLAB 2015b. The number of
neighbours in the classifier KNN is set to three as in [6, 68].

A. Data Sets

1) Indian Pines (IndianP): The data set IndianP was cap-
tured by the Airborne/Visible Infrared Imaging Spectrometer
(AVIRIS) sensor over the Indian Pines region in North-western
Indiana on June 12, 1992. The spatial size of IndianP is
145 × 145 and there are 220 spectral bands. The false color
image is shown in Fig. 3 (a). In the experiment, we remove
20 spectral bands in 104-108, 150-163 and 200 due to water
absorption. The remaining 200 bands are utilized for test data.
IndianP contains 16 classes in total.

2) Pavia University (PaviaU): The second data set was ac-
quired by the Reflected Optics System Imaging Spectrometer
(ROSIS) during a flight campaign over Pavia, Northern Italy.
The image size is 512× 217× 103 and there are nine classes.
The false color image is shown in Fig. 3 (b).

3) Kennedy Space Center (KSC): KSC was collected by the
AVIRIS sensor over the Kennedy Space Center, Florida, which
contains 13 classes. The data size is 512 × 614 × 176 after
removing water absorption and low SNR bands. We show the
false color image of KSC in Fig. 3 (c). All three data sets are
accessible by https://rslab.ut.ac.ir/data.

B. Compared Methods

1) Maximum-variance principal component analysis
(MVPCA) [21]: a ranking based band selection method
in the criterion of band variation.

2) E-FDPC [26]: a ranking based method which makes use
of clustering algorithm.

3) Uniform band selection (UBS) [22]: a simple but effi-
cient strategy to select bands uniformly.

4) Optimal clustering framework (OCF) [35]: a clustering
based method which assumes that bands in the same
cluster have contiguous wavelengths.

https://rslab.ut.ac.ir/data


IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

TABLE I
CLASSIFICATION RESULTS WHEN TEN BANDS ARE SELECTED

Datasets Evaluations MVPCA
[21]

E-FDPC
[26]

UBS
[22]

OCF
[35]

LRR
[69]

ISSC
[40]

L2-LRSC
[36]

TLRR
[70]

ETLMSC
[59] TSC

IndianP

SVM (OA) 46.44 56.02 61.88 69.30 70.95 70.62 71.05 68.36 71.01 71.44
SVM (AA) 41.26 50.51 55.02 66.17 62.07 65.43 67.14 62.07 67.09 67.27
SVM (κ) 0.3852 0.4974 0.5633 0.6488 0.6679 0.6640 0.6689 0.6384 0.6685 0.6734

KNN (OA) 45.07 55.83 58.13 62.87 65.34 64.21 65.28 63.64 65.84 65.97
KNN (AA) 37.94 45.39 50.17 56.51 58.55 56.30 57.96 55.00 59.33 59.54
KNN (κ) 0.3704 0.4927 0.5187 0.5744 0.6028 0.5894 0.6022 0.5831 0.6084 0.6101

PaviaU

SVM (OA) 48.36 78.03 80.48 79.77 81.18 81.91 82.79 82.81 83.24 83.90
SVM (AA) 38.21 73.62 76.74 76.34 78.42 78.66 79.82 79.91 79.97 80.83
SVM (κ) 0.2958 0.7052 0.7385 0.7284 0.7477 0.7574 0.7696 0.7697 0.7753 0.7846

KNN (OA) 45.96 77.23 78.21 78.94 79.91 80.83 81.44 81.06 80.65 82.28
KNN (AA) 32.53 69.54 72.40 74.25 75.48 76.11 77.18 76.75 76.19 77.34
KNN (κ) 0.2440 0.6907 0.7033 0.7143 0.7280 0.7400 0.7483 0.7435 0.7378 0.7599

KSC

SVM (OA) 46.85 84.16 81.67 84.28 82.84 84.97 83.97 83.35 84.02 85.91
SVM (AA) 33.49 76.54 73.06 76.20 74.86 77.15 76.03 75.42 76.30 78.49
SVM (κ) 0.4023 0.8234 0.7955 0.8248 0.8087 0.8324 0.8213 0.8143 0.8218 0.8428

KNN (OA) 40.58 82.62 80.79 83.95 81.96 83.66 83.90 82.76 83.37 84.77
KNN (AA) 30.03 74.14 71.78 75.39 73.67 75.04 75.93 74.77 75.43 76.81
KNN (κ) 0.3354 0.8061 0.7855 0.8210 0.7987 0.8176 0.8204 0.8076 0.8145 0.8301

TABLE II
SELECTED TEN BANDS OF DIFFERENT METHODS

Methods IndianP PaviaU KSC
MVPCA [21] 23 24 25 26 27 28 29 30 32 42 87 88 89 90 91 92 93 94 95 96 1 133 160 168 170 171 173 174 175 176
E-FDPC [26] 118 125 128 146 157 163 173 181 189 192 19 29 33 41 48 53 56 61 88 92 6 10 22 42 50 55 58 67 69 74

UBS [22] 1 23 45 67 89 111 133 155 177 200 1 12 23 35 46 57 69 80 91 103 1 20 39 59 78 98 117 137 156 176
OCF [35] 8 28 43 50 67 107 118 128 141 173 4 15 19 33 36 48 53 61 80 88 2 10 22 29 34 39 42 50 69 77
LRR [69] 10 25 47 61 72 99 132 143 161 184 5 13 26 37 44 50 59 72 80 96 3 4 13 35 56 65 80 116 130 152
ISSC [40] 31 41 74 96 115 125 137 163 186 199 6 13 22 31 41 49 62 71 79 99 8 15 22 42 52 73 83 134 136 149

L2-LRSC [36] 14 27 35 51 62 88 98 132 143 174 7 19 29 42 58 73 80 84 93 99 15 27 33 35 36 39 44 47 72 121
TLRR [70] 4 14 31 47 83 93 133 143 155 179 5 17 29 40 52 64 73 87 90 99 4 10 24 33 57 77 94 119 147 158

ETLMSC [59] 10 25 43 53 71 89 99 132 152 174 4 12 20 33 46 58 73 76 88 98 2 16 34 45 58 95 97 114 152 155
TSC 15 25 51 72 98 106 123 137 157 167 12 21 29 38 48 58 66 83 92 101 1 7 17 26 38 51 59 77 97 153

5) Low-rank representation (LRR) [69]: a matrix-based
subspace clustering method with the low-rank constraint.

6) Improved sparse subspace clustering (ISSC) [40]: a com-
putationally efficient matrix-based subspace clustering
method with a collaborative representation.

7) L2-LRSC [36]: a more effective matrix-based subspace
clustering method with a local Laplacian constraint.

8) Tensor low-rank representation (TLRR) [70]: a recent
tensor-based clustering method in computer vision task
using a tensor nuclear norm in the discrete frequency
domain.

9) Essential tensor learning for multi-view spectral clus-
tering (ETLMSC) [59]: a tensor-based model for multi-
view clustering where a tensor singular value decompo-
sition (t-SVD)-based tensor nuclear norm is imposed to
capture principle information from multiple views. To
generate “multiple views” of HSI for band selection, we
divide evenly a HSI X ∈ RI1×I2×I3 into two portions
with each one of size b I12 c × I2 × I3 and consider each
portion as a “view”, where bxc takes the maximum
integer that is not larger than x.

C. Experimental Results
We report the classification performances of different meth-

ods in Table I when ten bands are selected. In the following
experiments, we select five percent of samples in each class
to train the classifiers, and the rest are used for testing. We
conduct all the experiments ten times and report the results

in average. The parameters of all methods are tuned to yield
the optimal results in terms of OA. In our TSC method, in
order to reduce the burden of searching optimal parameters,
we simply set α1 = α2 = α. We set empirically α = 10, α3 =
0.25, β = 0.1 for IndianP, α = 0.01, α3 = 0.75, β = 0.01 for
PaviaU and α = 0.01, α3 = 0.5, β = 1 for KSC. We set
λ = 0.01, R1 = R2 = 20 in all the data sets. The parameter
study is provided in the subsequent section.

The results in Table I show that TSC yields the best clas-
sification performance in both classifiers, which demonstrates
that our selected bands offer more discriminative features than
other methods. The ranking-based method MVPCA yields
poor results on three data sets due to the highly redundant
information in the selected bands. Another ranking-based
method E-FDPC performs much better than MVPCA because
of the decorrelation of bands by using clustering algorithm.
It is surprised that the simplest method UBS outperforms
MVPCA and E-FDPC on the data sets IndianP and PaviaU,
which confirms the effectiveness of uniform band selection.
Compared to E-FDPC, OCF achieves improved performance
in terms of OA and κ on the three data sets, which benefits
from the assumption that the bands belonging to the same clus-
ter are adjacent. It is noticed that most of representation-based
methods, including LRR, ISSC, L2-LRSC, TLRR, ETLMSC
and TSC, show often better classification performance than
others, demonstrating their superiority in capturing complex
data structure in low-dimensional subspaces. L2-LRSC yields
improved performance on three data sets compared to LRR,
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Fig. 4. The influence of the number of selected bands on the classification performance in classifiers SVM and KNN on the dataset IndianP. (a) OA in SVM,
(b) AA in SVM, (c) κ in SVM, (d) OA in KNN, (e) AA in KNN and (f) κ in KNN.

which can be mainly attributed to the exploitation of local
Laplacian constraint. The tensor-based method TLRR shows
improved performance compared to the matrix-based method
LRR on the data sets PaviaU and KSC, which validates the
effectiveness of high-order model in dealing with tensor data.
Although TLRR utilizes an elaborate nuclear norm in the
discrete frequency domain, which avoids destroying the multi-
mode structure of HSI, the important spatial information of
HSI and local correlation of bands are not taken into account,
resulting in inferior performance to TSC on the three data sets
as shown in Table I. ETLMSC incorporates information from
“multi-view” of HSI to learn the cluster structure of bands and
yields better performance than TLRR but it performs worse
than TSC. The selected ten bands of different methods are
shown in Table II.

D. Performance with Varying Number of Bands

We show the influence of the number of selected bands, n,
on the classification performance of SVM and KNN in Figs. 4-
6. We here include the classification performance when using
all the bands, which is referred as “ALL”. Generally, Almost all
the methods obtain improved classification performance with
increasing number of bands. MVPCA does not perform well
when only a few bands (n < 30) are selected. But it shows
sharp performance improvements in the ranges of n ∈ [5, 20]
in IndianP, n ∈ [5, 30] in PaviaU and n ∈ [5, 50] in KSC.
When n = 50, MVPCA achieves comparable or even better

performance than some of the reference methods such as E-
FDPC in Fig. 5. It is observed that the proposed TSC method
outperforms all the compared methods (“ALL” is excluded) in
most cases on the three data sets. Compared with the results
using all the bands, most of representation-based methods
show comparable or even better classification performances
with only a few bands, especially on the data set KSC. This
indicates the high redundancy of spectral bands in HSI and
confirms the significance of band selection in the classification
task. UBS shows poor classification performance when n = 5,
but its performance gets improved significantly in the range
of 10 ≤ n ≤ 25. The saturated accuracy of UBS in Fig.
6 shows that the simplest method UBS is able to yield a
better classification result than that using all the bands. The
performance of OCF is less stable on the data set IndianP
in Fig. 4, where the significant fluctuations of performance
around n = 35 can be observed.

The representation-based methods show a similar evolution
curve as shown in Figs. 4-6 and often perform better than the
others. For the sake of discussion, we report the average results
of Figs. 4-6 in Table III, where each value represents the mean
of the classification results with varying n. Table III shows
that TSC yields mostly the best classification performance
except for the classifier KNN on the data set KSC. However,
the accuracy and κ of KNN for our method in the KSC are
comparable to the best result yielded by OCF. In addition,
Fig. 6 (c) and (d) show that our method performs much
better than OCF when only a few bands are utilized such as
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Fig. 5. The influence of the number of selected bands on the classification performance in classifiers SVM and KNN on the dataset PaviaU. (a) OA in SVM,
(b) AA in SVM, (c) κ in SVM, (d) OA in KNN, (e) AA in KNN and (f) κ in KNN.
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Fig. 6. The influence of the number of selected bands on the classification performance in classifiers SVM and KNN on the dataset KSC. (a) OA in SVM,
(b) AA in SVM, (c) κ in SVM, (d) OA in KNN, (e) AA in KNN and (f) κ in KNN.
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TABLE III
THE AVERAGE CLASSIFICATION RESULTS WITH DIFFERENT BAND SUBSETS

Datasets Evaluations MVPCA
[21]

E-FDPC
[26]

UBS
[22]

OCF
[35]

LRR
[69]

ISSC
[40]

L2-LRSC
[36]

TLRR
[70]

ETLMSC
[59] TSC

IndianP

SVM (OA) 56.60 63.44 66.48 67.52 71.11 70.42 71.34 70.78 71.92 72.75
SVM (AA) 50.56 56.16 60.45 63.12 65.70 65.23 66.58 65.70 67.53 68.09
SVM (κ) 0.5018 0.5816 0.6164 0.6283 0.6699 0.6618 0.6722 0.6661 0.6790 0.6886

KNN (OA) 52.42 59.90 59.76 61.50 65.04 64.33 64.93 64.70 65.55 66.76
KNN (AA) 43.96 48.30 51.31 54.64 57.34 56.49 56.63 56.60 57.96 59.22
KNN (κ) 0.4547 0.5389 0.5379 0.5585 0.5994 0.5910 0.5981 0.5954 0.6051 0.6193

PaviaU

SVM (OA) 72.88 81.23 85.06 84.45 85.52 86.03 86.35 86.27 86.42 87.14
SVM (AA) 66.71 77.39 82.08 81.35 82.58 83.10 83.42 83.38 83.57 84.29
SVM (κ) 0.6337 0.7479 0.7997 0.7916 0.8060 0.8130 0.8173 0.8160 0.8180 0.8279

KNN (OA) 69.48 79.51 80.72 80.25 81.52 82.74 82.02 82.04 82.11 83.66
KNN (AA) 60.53 73.06 76.19 75.42 77.14 78.45 77.64 77.82 78.05 79.66
KNN (κ) 0.5792 0.7217 0.7378 0.7315 0.7491 0.7660 0.7560 0.7564 0.7573 0.7787

KSC

SVM (OA) 57.09 85.71 82.97 86.15 84.38 84.32 85.85 83.18 84.98 86.54
SVM (AA) 44.69 78.58 74.71 78.99 76.58 76.61 78.71 74.95 77.69 79.63
SVM (κ) 0.5177 0.8407 0.8100 0.8456 0.8258 0.8251 0.8423 0.8124 0.8325 0.8499

KNN (OA) 47.64 83.38 81.52 85.00 83.33 83.12 84.93 82.17 83.96 84.78
KNN (AA) 38.12 75.05 72.75 77.20 74.99 74.75 77.21 73.53 76.20 77.64
KNN (κ) 0.4154 0.8146 0.7937 0.8327 0.8140 0.8116 0.8319 0.8009 0.8210 0.8301

(a) (b) (c) (d)

Fig. 7. The classification accuracies of SVM with respect to parameters (a) α, (b) α3, (c) β and (d) λ. The x-axes of (a), (c) and (d) are in log10.

Fig. 8. The comparison between MSC and TSC, where MSC is the reduced
version of TSC. (a) OA in SVM and (b) OA in KNN.

n = 5 and n = 10. L2-LRSC outperforms other matrix-based
methods LRR and ISSC in most cases, which demonstrates
the importance of local band correlation. Compared to the
matrix-based methods, our tensor-based approach TSC often
achieves improved performance in both classifiers, showing
the efficiency of multi-way representation for HSI. In compari-
son with other tensor-based methods TLRR and ETLMSC, we
obtain consistently better performance on all three data sets.

E. Discussion and Analysis

1) The analysis of parameters: We show in Fig. 7 the
influence of parameters α, α3, β and λ on the band selection
performance on the three data sets. Basically, the parameters
α and α3 are associated with the local constraints and β

Fig. 9. The influence of projected data on band selection. (a) OA in SVM
and (b) OA in KNN.

is related to the global low-rank constraint. Ten bands are
selected by TSC and then fed into the classifier SVM. Fig.
7 shows that the performance of TSC is rather stable in a
certain range with respect to each parameter. Specifically,
when α ∈ [0.01, 0.1], α3 ∈ [0.25, 0.75], β ∈ [0.01, 1] and
λ ∈ [0.01, 0.1], our method yields relatively stable results and
is able to achieve near optimal performance on the three data
sets. It is observed that in Fig. 7 (a) the results on the data
set KSC outperform “ALL” (see Fig. 6 (a)) in most cases.
Compared to β, the performance of TSC is more sensitive to
α and α3, especially on the data set PaviaU, demonstrating
the importance of local constraints. In the data set IndianP,
our method yields stable performance with respect to α and
it is noted that the accuracies of our model in IndianP with
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TABLE IV
TIME COMPLEXITY AND RUNNING TIME (IN SECONDS) OF DIFFERENT BAND SELECTION METHODS

Methods MVPCA E-FDPC OCF LRR ISSC L2-LRSC TLRR ETLMSC TSC

Time complexity O(I1I2I3) O(I1I2I
2
3 ) O(I1I2I

2
3 ) O(RrI1I2I3) O(I1I2I

2
3 )
O(RI33+
I1I2I

2
3 )

O(RrX I1(I2I3+
(I2 +

I3)log(I1)))

O(I33 +
2RI23 (2 +
log(I3)))

O(RI1I2I
2
3 )

Running time
IndianP 0.01 0.07 0.99 18.68 0.07 1.08 223.60 2.19 81.15
PaviaU 0.04 0.23 0.65 80.23 0.06 0.79 441.46 1.37 130.52
KSC 0.14 0.73 1.85 230.68 0.90 1.49 2041.90 2.95 320.88

α ∈ [10−3, 10] are higher than that of all compared methods
in Table I.

2) Comparison with the corresponding matrix-based model:
We here compare our TSC model with its corresponding
matrix-based model by setting U1 = I, U2 = I and G = X
in (21). We refer to the matrix-based model as MSC, which is
a special case of TSC. The number of bands is set to ten.
The results shown in Fig. 8 reveal that TSC yields better
classification performance in the classifiers SVM and KNN
on the three data sets, which demonstrates that tensor-based
model can deal with high-order data more effectively than
matrix-based model. Moreover, it is observed that compared
to the results in Table I, the reduced model MSC yields mostly
better results in terms of OA and κ.

3) Band selection in the projected data space: An interesting
study here will be whether the existing band selection methods
in the projected data space, which is derived by the projections
of factor matrices UT

1 and UT
2 , can obtain improved results

compared to band selection in the original domain. We conduct
experiments on IndianP using three methods MVPCA, E-
FDPC and OCF for this analysis as they are parameter-
free approaches except the parameter n, i.e., the number of
selected bands. Specifically, we vary n in the same way as
in Fig. 4 and feed the original data X and the projected data
Xp = X ×1 UT

1 ×2 UT
2 respectively into the band selection

methods, where U1 and U2 are obtained by Algorithm 2. The
averaged classification results of SVM and KNN with varying
n are shown in Fig. 9. The results show that the selected
bands using MVPCA, E-FDPC and OCF in the projected
data space yield consistently better classification performance
in SVM and KNN than the results in the original domain.
In the classifier KNN, E-FCPC achieves a significant OA
improvement of 6%. This confirms the superiority of band
selection in the projected data space. Moreover, as Xp often
has a much smaller data size than X , it is more efficient to
extract representative bands in the projected data space.

4) Computational complexity and running time: The time
complexity and running time of different band selection meth-
ods are shown in Table IV. All methods are implemented
in MATLAB on a laptop with Intel core-i7 6700HQ CPU
with 16GB of RAM. We set the number of selected bands
to ten for all the methods when running time is reported.
In Table IV, I1 and I2 are spatial dimensions of HSI; I3
represents spectral dimension of HSI; R is the number of
iterations in optimization algorithms; r is the rank of X(3)

and rX is the tensor tubal rank of X (see Definition 3 of
[70]). The complexity of UBS is not shown in Table IV
but it is the fastest method with complexity O(1) because

UBS selects bands uniformly without using any learning
algorithms. The results in Table IV show that MVPCA ob-
tains a lower time complexity of O(I1I2I3) than others. E-
FDPC, OCF and ISSC yield the same time complexity of
O(I1I2I

2
3 ). For the time complexities of other methods, we

observe that L2-LRSC<ETLMSC<LRR<TSC<TLRR. Com-
pared with matrix-based models ISSC, LRR and L2-LRSC,
tensor-based models TSC and TLRR have higher time com-
plexities. Among tensor-based models, the time complexity
of ETLMSC is lowest due to the adopted efficient strategy of
tensor rotation. TSC yields a time complexity of O(RI1I2I

2
3 ).

In general, the running time of different methods is consistent
with the time complexity on three data sets. MVPCA is
the most efficient algorithm and E-FDPC, OCF and ISSC
yield comparable running time. Among representation-based
models, ISSC is the fastest approach. Tensor-based models
TLRR and TSC use more running time than matrix-based
models ISSC, LRR and L2-LRSC. Our TSC algorithm is much
faster than TLRR but slower than ETLMSC.

V. CONCLUSION

In this paper, we propose a tensor-based subspace clustering
model for hyperspectral band selection. To the best of our
knowledge, this is the first attempt of using a tensor-based
model in the task of band selection. Compared to the existing
matrix-based models, our TSC model treats the 3-D HSI as
a whole by the product of three factor matrices and a core
tensor without using any data flattening operator, preserving
thus effectively the spatial structure of HSI. This renders TSC
more flexible than matrix-based approaches. Under certain
conditions, our TSC model reduces to the traditional matrix-
based models. By taking into account the prior information
of HSI in terms of the local and global properties of data
along three dimensions, we propose well-motivated hetero-
geneous constraints on the factor matrices, which improves
the encoding of multi-mode correlations of data. Our TSC
model naturally learns the cluster structure of bands in a
low-dimensional latent feature space derived by the factor
matrices in the spatial dimension, which is more efficient
than the learning in the original domain. We propose an
efficient algorithm based on ADMM to solve the resulting
optimization problem. Experimental results on benchmark data
sets show that our method outperforms the state-of-the-art in
this domain.
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