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ABSTRACT Local image descriptors play a crucial role in many image processing tasks, such as object
tracking, object recognition, panorama stitching, and image retrieval. In this paper, we focus on learning local
image descriptors in an unsupervised way, using autoencoders and variational autoencoders. We perform
a thorough comparative analysis of these two approaches along with an in-depth analysis of the most
relevant hyperparameters to guide their optimal selection. In addition to this analysis, we give insights
into the difficulties and the importance of selecting right evaluation techniques during the unsupervised
learning of the local image descriptors. We explore the extent to which a simple perceptual metric during
training can predict the performance on tasks such as patch matching, retrieval and verification. Finally,
we propose an improvement to the encoder architecture that yields significant savings inmemory complexity,
especially in single-image tasks. As a proof of concept, we integrate our descriptor into an inpainting
algorithm and illustrate its results when applied to the virtual restoration of master paintings. The source
code required to reproduce the presented results has been made available as a repository on GitHub
(https://github.com/nimpy/local-img-descr-ae).

INDEX TERMS Local image descriptor, autoencoder, variational autoencoder, inpainting, unsupervised
deep learning.

I. INTRODUCTION
Finding a compact representation of a small patch in an
image, i.e., finding a local image descriptor, is a crucial
building block of various image processing tasks. Image
inpainting, denoising, stitching, object tracking, motion esti-
mation, and saliency detection are all examples of tasks where
local image descriptors are used. For example, in object
tracking and motion estimation, local image descriptors
are used to identify corresponding objects in subsequent
frames and to associate those objects between frames. Image
inpainting relies on using parts of an image to fill in areas
that may be missing or corrupted. By identifying the parts
of the image that are the most similar to the parts of the
image bordering the missing or corrupted areas, local image
descriptors can significantly improve the performance of an
inpainting algorithm.

Traditionally, the approach to designing local image
descriptors has involved using hand-crafted features,
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with SIFT [1] and its variants (SURF [2], GLOH [3],
PCA-SIFT [4]) being arguably among the most popular.
Recent advancements in the field of deep learning,
however, have caused a shift from traditional approaches to
learning-based approaches for designing descriptors. Various
learning-based methods have emerged in the past couple of
years [5]–[10] and have demonstrated performance superior
to the hand-crafted descriptors on different benchmarks
[11], [12].

Nonetheless, despite the apparent improved performance
on benchmarks, comparative evaluation studies such as [13]
still suggest that traditional hand-crafted descriptors such as
SIFT can outperform learned descriptors when being part
of large image processing tasks. Reportedly, SIFT is still
predominantly a descriptor of choice in practical applications.
This has been attributed to the fact that the learned descriptors
were trained too generally and thus often underperform on a
specific image processing task compared to the pre-designed
ones [7]. Furthermore, since the majority of learning-based
approaches are supervised, they require labelled data, which
is often unavailable when creating descriptors for specific
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imaging processing tasks. An alternative is to turn to
unsupervised models such as autoencoders (AEs) [14] and
variational autoencoders (VAEs) [15]. Here we take this
approach.

Autoencoders are neural networks where an encoder
and decoder are simultaneously trained to encode data
into and decode data from a compact encoding. Since
recently, there has been a surge of AE-based and VAE-based
architectures in various computer vision tasks [15]–[18].
However, they have been less studied so far for learning local
image descriptors. The work of Chen et al. [19] reported an
AE-based descriptors showing promising results, however,
the methods they used are no longer considered state of
the art. We proposed in our previous work an approach
for learning local image descriptors based on convolutional
autoencoders [20], [21] and variational autoencoders [22].
In our experience, both AEs and VAEs have shown promis-
ing results for learning local image descriptors, however,
a thorough comparative analysis is still missing. On one
hand, VAEs facilitate learning a smoother latent space that
is easy for interpolation – a property that seems useful for
descriptors. VAEs are, however, more complex and more
difficult to work with. They introduce new hyperparameters
(such as β – the weight of the Kullback–Leibler divergence
term in the loss function), take slightly longer on average to
train, and are not deterministic. To the best of our knowledge,
a comprehensive comparison between the two methods
does not exist in the literature. In this article, we compare
the performance of AE-based and VAE-based descriptors
and consider the advantages and disadvantages of the two
approaches. Furthermore, we investigate some novel ways of
optimising the performance of the two descriptor types. For
example, we explore the use of a perceptual loss function and
how different hyperparameters, such as activation functions
and the level of data augmentation, impact the performance
of learned descriptors.

Another issue we encountered during developing a local
image descriptor using a (variational) autoencoder is not
being able to tell how well it will perform as a descriptor
once it is trained. The autoencoder is trained by minimising
the loss function which measures some difference (e.g. mean
squared error or binary cross-entropy) between the input and
the output of the network. However, we have noticed that
having the lowest such difference does not necessarily lead
to the best performing descriptors. It is only after evaluating
the descriptor on a benchmark (such as HPatches [11]), which
takes a very long time (sometimes as long as the training
itself), that we know how good the descriptor is. In this
paper, we try to provide some insights into the descriptor
evaluation process and look at what metrics (that measure
the difference between the input and the output of a (V)AE)
are the best ‘‘proxies’’ for how well the descriptor will
perform.

We also propose modifying the architecture of the autoen-
coder in order to yield a more efficient descriptor design for
applications with many patch comparisons within a single

image. Our specific network architecture produces a special
image representation that we refer to as the intermediate
representation (IR). The IR is a compact way of storing
the descriptors of all the patches of an image because
the descriptors of overlapping patches overlap themselves.
Extracting a descriptor from the IR is done fast using only
one max-pooling operation.

We apply this architectural change to the descriptor that
was yielded as the best from our thorough analysis. We show
that this change does not degrade the performance of the
descriptor as measured by HPatches benchmark, but offers
improvements in terms of computational memory in the
applications with many patch comparisons within a single
image, such as inpainting.

As a proof of concept for this, we integrate this descriptor
into an existing inpainting algorithm [23] to show these
improvements. We hypothesise that the improved inpainting
results come from the fine-tuning of the descriptor on types
of images to be used in the inpainting, made possible due to
the unsupervised nature of our descriptor. To achieve such
fine-tuning with other (supervised) descriptors, it would be
necessary to have a labelled set for the type of images that
need to be inpainted, which is unrealistic in most cases. As a
case study in this paper, we used high-resolution photographs
of the panels of Ghent Altarpiece [24], [25], on which we
fine-tuned the descriptor and tested our improved inpainting
algorithm.

Parts of this work have been accepted for presentation
at conferences [20]–[22], but these only relate to some
aspects of learning descriptors with autoencoders, and do
not compare different methods nor present insights into
their evaluation. The goal of this paper is to provide
a united, thorough analysis of all aspects of learning
local image descriptors using (variational) autoencoders,
implement the proposed IR architectural change on the best
model, and, as a proof of concept, show the descriptor’s
benefits by integrating it into an inpainting algorithm. The
main contributions of the paper can be summarised as
follows:

1) We present a thorough comparison between
autoencoder-based and variational-autoencoder–based
approach for learning local image descriptors and
analysis of hyperparameter importance for obtaining
a successful descriptor. To our knowledge, no compar-
ison between AEs and VAEs in this context has been
carried out.

2) We propose using some new techniques that have not
been used before for learning descriptors. In particular,
we incorporate perceptual loss, which proved to sig-
nificantly increase the performance of the descriptor.
We perform a thorough hyperparameter analysis to
establish which hyperparameters are the most impor-
tant when learning a descriptor using a (variational)
autoencoder.

3) We provide important insights into evaluation metrics
for the learned local image descriptors and propose a
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rapid approximate evaluation method for descriptors
learned with autoencoders that shows high correlation
with the established benchmarks such as HPatches.

4) An important technical novelty is a specific autoen-
coder architecture, which enables the acquirement of
the intermediate representation (IR) structure. This
approach gives the most benefits in the applications
where a single image is used (such as inpainting).

5) As a proof of concept, we incorporate these novelties
into an inpainting algorithm which led to its accelera-
tion and to improved inpainting results.

The rest of this paper is organized as follows. In the
following section, we discuss the related work on local image
descriptors and introduce the preliminaries (autoencoders
and variational autoencoders). In Section III, we compare
the autoencoder-based and variational-autoencoder–based
approach to learning descriptors, and carry out a hyperparam-
eter study for descriptors learned in this way. In Section IVwe
study the evaluation of descriptors and propose an approach
for fast approximate evaluation of the trained models.
We propose a modification to the encoder architecture of
the autoencoders in Section V, and conduct an empirical
comparison of our architecture to the traditional encoder
architectures. In Section VI, we integrate our proposed
descriptor into an inpainting algorithm. We conclude the
work in Section VII.

II. RELATED WORK
A. LOCAL IMAGE DESCRIPTORS
Traditionally, local image descriptors were designed to
use hand-crafted features. The most prominent kind of
hand-crafted descriptors used to be the distribution-based
descriptors, which are using distributions of image properties
such as gradients to represent patches. They are sometimes
referred to as the SIFT-based descriptors [11], after the
paramount work by Lowe [1], one of the most cited papers in
computer science. Other prominent hand-crafted descriptors
include HOG [26], SURF [2], GLOH [3], PCA-SIFT [4],
RSIFT [27] and DAISY [28], to name a few. Some
hand-crafted descriptors produce encodings in Hamming
space – they are most commonly referred to as binary
descriptors. Examples of such descriptors are BRIEF [29],
ORB [30], BRISK [31], FREAK [32] and LDAHash [33].

In recent years, a popular approach to solving many image
processing challenges, including the design of local image
descriptors, has shifted towards the use of deep learning
methods. The first learned local image descriptors arose
from the necessity to find a way of choosing parameters
in the hand-crafted methods that does not involve hand-
tuning [34], [35]. As machine learning, and in particular,
deep learning methods developed further, a growing number
of learning-based descriptors started emerging. Nowadays,
learned descriptors are mostly supervised methods, learning
useful features on pairs of similar and dissimilar patches,
striving for a high correlation between the similarity of the
patches and the similarity of their descriptors. Most recent

methods involve the use of convolutional neural networks [8],
[10], [12], [36], some ofwhich are siamese networks [5], [37],
or triplets [6], [9].

Learned descriptors have been shown to outperform some
hand-crafted ones on benchmarks [11], [12]. However,
despite many advancements in the learning approach and
their superior performance on benchmarks, hand-crafted
descriptors still perform comparably or better than the learned
descriptors in practical context [13]. Partly, this can be
attributed to the selection of the training set (e.g. descriptors
learned on general datasets such as ImageNet may not
necessarily work well on some specific medical imaging
datasets).

Unsupervised learning methods such as autoencoders do
not suffer from dependence on labelled data. Chen et al.
were the first to apply autoencoders to learn local image
descriptors [19]. Their method shows promising results,
however, the techniques they are using are today no longer
modern (e.g. both encoder and decoder of their AE consist of
only one (fully-connected) layer, no convolutional layers are
used).

In our previous works we have proposed using autoen-
coders [20], [21] and variational autoencoders [22] to learn
local image descriptors that can be specifically tailored for
particular applications. Both classical and variational autoen-
coders have shown promising results, however, it remains
unclear which ones are more suitable for learning descriptors.
To the best of our knowledge, a comprehensive comparison
between the two methods does not exist in the literature,
neither specifically for learning local image descriptors,
nor a general study. In this paper, we offer such a thor-
ough comparison between the autoencoders and variational
autoencoders approach for learning local image descriptors.
Furthermore, we examine other aspects of (variational)
autoencoder architecture and provide an analysis of what
are the most important hyperparameters for optimising
descriptors. Encouraged by the recent result from [38], who
demonstrated benefits from using a perceptual loss function
with the autoencoders that learn embeddings for downstream
prediction tasks, we include perceptual loss into our analysis
of AE-based local image descriptors. This proved to lead
to an improved performance of the descriptors. To the best
of our knowledge, we are the first to use a perceptual
loss when training autoencoders to learn a local image
descriptor.

B. AUTOENCODERS
Autoencoders (AEs) [14] are unsupervised neural networks
used for learning compact representations of data. An autoen-
coder consists of two parts, an encoder and a decoder,
and is trained by setting the target output values to be
equal to the input values, while imposing constraints on
the middle layer. Formally, an autoencoder consists of an
encoder E and a decoder D which are neural networks
parametrised with their weights wE ,wD and biases bE ,bD,
respectively. The autoencoder is trained to minimise the loss
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FIGURE 1. Architecture of an autoencoder (top) and a variational autoencoder (bottom). The bottleneck layer (which is the patch encoding produced by
the descriptor) is shown in green.

function J w.r.t. wE ,bE ,wD,bD:

min
wE ,bE ,wD,bD

J (P, EwE ,bE ,DwD,bD )

=

∑
p∈P

L(p,DwD,bD (EwE ,bE (p))) (1)

where p ∈ P is a data sample (in our case an image patch)
and L is some loss function, typically binary cross-entropy
LBCE (p,p′) = − 1

N

∑N
i=1 p

′
i log pi + (1 − p′i) log(1 − pi).

Autoencoders working with image data usually consist of
convolutional layers, with an optional fully-connected layer
at the end of the encoder and the beginning of the decoder.

A shortcoming of classical autoencoders is that they have
no way of enforcing the continuity of the latent space and are
thus unable to guarantee that the learned encodings are useful,
i.e., that they possess the similarity preserving property – an
important property for local image descriptors.

C. VARIATIONAL AUTOENCODERS
In contrast to classical autoencoders variational autoencoders
(VAEs) [15] are probabilistic models that assume a prior
distribution of the latent space, giving significant control
over how we want to model the latent distribution. The
data x has a likelihood p(x|z) (the decoder distribution)
that is conditioned on latent variables z. The posterior
(typically Gaussian) is approximated with a family of
distributions q(z|x) (the encoder distribution). Apart from
minimising the reconstruction loss, VAEs also minimise the
Kullback–Leibler (KL) divergence between the true posterior
p(z) and its approximation q(z|x). Given a dataset X =
{x1, x2, . . . , xn}, the goal of a VAE is to minimise the negative
log-likelihood lower bound:

L(θ, φ; x) = −Eqφ (z|x)[log pθ (x|z)]+ DKL[qφ(z|x)||pθ (z)],
(2)

where the encoder and decoder distributions are parametrised
by φ and θ , respectively. The first term promotes a good
reconstruction of the input data samples, while the second
term enforces that the distribution of the latent space is as
close as possible to the multivariate Gaussian distribution.

A generalisation of a variational autoencoder named
β-VAE [17] extends the loss function from (2) with a
weight on the second term, to allow a trade-off between the
reconstruction quality and the smoothness of the latent space:

L(θ, φ; x) = −Eqφ (z|x)[log pθ (x|z)]+ βDKL[qφ(z|x)||pθ (z)].

A smoother latent space results in more meaningful distances
between the encodings, thus increasing their similarity-
preserving property.

In the next section, we will show a comparison between
AE and VAE approach for learning local image descriptors,
discuss the choice of these two types of autoencoders
including their advantages and disadvantages, and discuss
how to select the β parameter.

III. AE VERSUS VAE AND A HYPERPARAMETER STUDY
Here we present an in-depth study on learning local
image descriptors using (variational) autoencoders. First,
we describe the selected hyperparameters (Section III-A),
then the experimental setup (Section III-B) and, finally, the
empirical evaluation (Section III-C).

Why the focus on AEs versus VAEs? Classical autoen-
coders serve as a baseline for compacting the essential
information from the input into a lower-dimensional rep-
resentation. However, their lack of ability to ensure the
continuity of the latent space may be a drawback when
learning local image descriptors. Variational autoencoders
are designed to ensure the smoothness of latent space,
and are therefore a viable alternative to AEs in this
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task. We shall not consider sparse autoencoders as they
are overcomplete, meaning that the encoding is larger in
dimensionality than the input. Encoding patches into higher-
dimensional, albeit sparse, vectors is not a desired property of
a descriptor and would require these encodings to be further
compressed. Denoising autoencoders add artificial noise to
the input and are trained to denoise it, thus also learning
to encode useful properties of data samples. We emulate
this behaviour using data augmentation, which is taken as a
separate hyperparameter, as we discuss later in this section.
Contractive autoencoders have been shown to be related to
the denoising ones [39], therefore, we do not consider them
separately.

A. OVERVIEW OF THE HYPERPARAMETERS
In choosing which hyperparameters to optimise and how,
we need to consider two aspects: (i) howwell the autoencoder
learned its primary task – to encode the input into a
low-dimensional representation and to recover a close replica
of the input from that encoding, and (ii) how well the
generated encoding performs as local image descriptor.

When considering the first objective, the main goal of
hyperparameter search is to adjust the effective capacity
of the neural network to match the complexity of its task
at hand [40]. The way hyperparameters can influence this
is by influencing the actual capacity of the network, the
ability to successfully minimise the cost function, or the
degree of regularisation [40]. The literature on how different
hyperparameters influence these different aspects is plentiful.

The second objective is more elusive and less explored.
While it is straightforward how to optimise and evaluate
autoencoders’ performance on reconstructing the input
(which is what they are trained to do), it is less straightforward
how to optimise the objective ‘‘learn the best possible
descriptor’’. For example, data augmentation may lead
to worse reconstruction performance due to sometimes
outputting blurred patches, but may in fact result in a better
performance as a descriptor. There exists no literature on
which hyperparameters influence the performance of (V)AEs
as local image descriptors. This is what we explore in this
section.

Table 1 lists the hyperparameters that we address, with
the concrete choices that we include in our analysis and the
main empirical findings. Here we explain briefly the analysed
hyperparameters and the empirical findings will be detailed
in the next section.

An important parameter that we consider is the loss
function used to calculate the differences between the input
images and the output (reconstructed) images. The choice
of loss function has been shown to strongly influence the
performance of neural networks, be it an autoencoder [38],
or other types of neural networks [41]. The default choice
for the loss function of AEs (and the default for the
reconstruction term in VAEs) is the binary cross-entropy,
BCE(x, y) = −

∑N
i=1

∑N
j=1 yij log xij + (1− yij) log(1− xij),

where x and y are two images of size N × N . Recently,

a perceptual loss, multiscale structural similarity (MS-SSIM),
has been shown to give significant improvements when
training autoencoders [38], but has not been used before for
learning descriptors. MS-SSIM is a multiscale version of the
SSIM, which is defined as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ 2

x + σ
2
y + c2)

,

where x and y are two windows, µx and µy are the average
and σ 2

x and σ 2
y are the variance of x and y, respectively, σxy is

the covariance between x and y, and c1 and c2 are the variables
to stabilize the division with weak denominator. For more
details on MS-SSIM, refer to [42].

The activation function, in our experience, has a signif-
icant influence on the training and overall performance of
the autoencoder. The Exponential Linear Unit (ELU) and
Rectified Linear Unit (ReLU) have shown to be the best-
performing ones, which is why we include these two in the
analysis. Exponential Linear Unit is defined as follows:

ELU(x) =

{
x if x ≥ 0
α(ex − 1)) if x < 0

and Rectified Linear Unit as ReLU(x) = max(0, x). We do
not change the activation of the last layer, where we use
sigmoid function as it is common when the output is in image
format [40].

Data augmentation acts as a form of regularisation in the
context of learning descriptors. If we add some geometrical
noise to the input, e.g. rotation by 10◦, and expect the output
to be the original image, then the autoencoder will learn to
ignore these minor variations in the rotation. It is similar for
other types of geometric noise (translation, scaling, shearing)
which we want our descriptor to be (to an extent) invariant to.
We empirically explore this hypothesis in Section III-C.

Beta parameter is a parameter specific to VAEs (i.e. to their
generalisation, β-VAEs) and is used in the loss function to
regulate the trade-off between the reconstruction term and
the term that enforces the latent space distribution to be
as close as possible to the prior distribution. It is a very
important parameter, as it influences the trade-off between
VAE learning to reconstruct well and its latent space having
a distribution close to the prior distribution. The correct
choice of β has been shown to induce disentanglement of
facial features on the datasets of images of faces [17], while
also resulting in blurred reconstructions of those images.
We hypothesise that better disentanglement is related to the
descriptor producing more informative encodings, and in this
work we perform an analysis of the influences of β parameter
on the descriptor’s performance.

We do not study the optimisation of the learning
rate – the studies on it are plentiful. As it controls the first
objective – effective capacity of the network, and there are
many algorithms that automatically optimise it (such as
RMSProp, Adam, Adadelta), its tuning is beyond the scope
of this work. We adopt one of the standard optimisation
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TABLE 1. Summary of the analysed hyperparameters and our findings regarding their influence on the quality of local image descriptors learned
with (variational) autoencoders.

algorithms (Adam) with default settings. Same holds for the
weight decay coefficient.

Similarly, hyperparameters such as the number of hidden
units in the layers and the number of layers in the network,
have been researched elsewhere since they optimise the
effective capacity of the network. Ultimately, they depend
on the size of input patches. Standard regularisations such
as dropout have also been explored in a general sense, they
also optimise the first objective and are not specific to our
problem, therefore, we do not explore them either.

We use grid search over the selected parameters – the
reason for this approach (as opposed to a more heuristic-
based search) is that we can get more insights into how they
interact with each other when we have the results for the grid
than if we had it randomly distributed.

B. THE EXPERIMENTAL SETUP
Our neural network models are built using PyTorch library
for deep learning. We perform grid search for our hyperpa-
rameters using Weights & Biases Python library.

We use standard autoencoder architecture in these exper-
iments. The encoder consists of three convolutional layers
with zero padding and kernel size 3 × 3, each followed
by a max-pooling layer. The last layer of the encoder is
a fully-connected layer. The decoder mirrors the encoder,
with a fully-connected layer followed by three transposed
convolutional layers with stride 2 and kernel size 2× 2.

The architecture of the variational autoencoder is the same
as that of the classical autoencoder, except that one fully
connected layer at the end of the encoder is replaced by two
parallel ones (having the same input) – for the mean and
variance of the Gaussian distribution. Using the mean and
variance, we can sample from the Gaussian distribution in

order to obtain the bottleneck layer – the encoding of our
descriptor.

All the convolutional layers in the models have 32 filter
maps as input and output 32 filter maps, except for the first
and the last one – the first one has 1 filter map as input
(because the input is a one-channel (grayscale) image), and
the last one outputs 1 filter map in order to match the input of
the model. The autoencoders are trained on grayscale patches
so that they can be assessed with HPatches benchmark, but
they can be easily extended to RGB patches by changing the
number of input and output layers to 3.

For a data augmentation level a (where a ∈ {0, 1, 2, 3}),
we perform the following transforms on the input patch to
the (variational) autoencoder:
• rotation by ar degrees, where ar ∼ U(−10a, 10a)
• translation by at% of the input patch size, where
at ∼ U(−10a, 10a)

• scaling of the input patch to asc% of the original, where
asc ∼ U(100− 10a, 100+ 10a)

• shearing transform where the new y axis forms an angle
of asc to the original yaxis, where asc ∼ U(−10a, 10a)

We use Adam optimiser for all neural networks in this
paper. The networks are trained on a dataset of 125k
65 × 65 patches that were extracted from the images
from ImageNet [43], KonIQ [44] and Visual Genome [45]
datasets. The patches were extracted using FAST (Features
from Accelerated Segment Test) algorithm for feature
detection [46]. The patch size has been chosen because
HPatches benchmark expects this patch size. The size of the
encodings is 32. The ratio between training, validation and
test set is 8 : 1 : 1.

For the hyperparameter search we have created a full
pipeline that allows training the models and their subsequent
evaluation on HPatches (as well as using other metrics

226 VOLUME 10, 2022



N. Žižakić, A. Pižurica: Efficient Local Image Descriptors Learned With Autoencoders

FIGURE 2. HPatches performance (normalised), showing the effect of different hyperparameter choices. β value differs across the graphs, increasing from
left to right, in the left-most graph showing classical AE (essentially a deterministic VAE with β = 0), and the other three graphs VAEs with β values 1e-05,
1e-04, 1e-03, respectively. Data augmentation level is shown on x-axis of the graphs. The choice of activation function is indicated in different colours
(ReLU, ELU) and the loss function with different markers (× MS-SSIM, • BCE).

between the input and the output of the test set images). It was,
therefore, enough to start one script in order to execute the
whole hyperparameter grid search and evaluation. The code
for the experiments in this paper is open-source and can be
found in our GitHub repository.

C. EMPIRICAL RESULTS FOR HYPERPARAMETER
SELECTION
We now evaluate the performance of descriptors learned
with (variational) autoencoders, analysing jointly the influ-
ence of the selected hyperparameters. For each set of
hyperparameters, we evaluated the learned descriptor on
HPatches benchmark [11] for all three tasks: matching,
retrieval and verification. Since the performance on each
of these tasks can yield different conclusions regarding the
optimal values of the hyperparameters, we also create one
general metric. This ‘overall’ performance metric is the
average of the normalised (between 0 and 1) outputs from
the three provided tasks.

The results can be found in Figure 2 (overall performance)
and Figure 3 (performance on the three individual tasks).
These results allow us to draw important conclusions about
the choice of hyperparameters and the choice between AEs
and VAEs. Table 1 presents the summary of the findings,
which we discuss in more detail in the following paragraphs.

Figures 2 and 3 show that the perceptual loss (MS-SSIM
loss) yields better results than non-perceptual loss (BCE)
on all tasks. This can be explained by the fact that BCE
is a pixel-wise loss function which implies (1) that it does
not consider the relations between different pixels in the
patch, leading to an encoding that is unable to capture spatial
structures and (2) that it weighs all pixels equally, even though

some groups of pixels may bemore discriminative.MS-SSIM
loss is a perception-based loss that alleviates these issues
by considering the differences in structural information of
an image patch (i.e. the inter-dependencies between pixels),
as well as the perceptual aspects: luminance and contrast.
It is important to note that the increased performance of
descriptors trained using MS-SSIM loss comes at the cost
of increased training time of an autoencoder. We accept this
trade-off since the incurred cost only impacts the training
time – the inference time (i.e. time it takes to calculate the
descriptor) is not affected by the loss function.

We highlight this impact of using perceptual loss on
descriptors’ performance in Figures 4 and 5, where we
show a comparison of perceptual loss (MS-SSIM) with
non-perceptual loss (BCE), both when using a classical
autoencoder
(Figure 4) and a variational autoencoder (Figure 5). In both
cases, we use ReLU activation functions. The two loss
functions compare similarly for the ELU activation function
and for other values of β, both when looking at the overall
HPatches performance and performance by tasks, as can be
seen in Figures 2 and 3, respectively.

Further on, the MS-SSIM loss function together with
the ReLU activation yields the best descriptors in terms
of performance on all tasks and for both autoencoders
and variational autoencoders, and, in case of VAEs, this
holds for different values of β parameter. Interestingly, this
performance is best with little to no data augmentation.

Comparison between VAEs and AEs leads to interesting
insights. For all the three tasks as well as overall, the best
performing descriptors are always trained using variational
autoencoders. However, the descriptors trained with classical
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FIGURE 3. Performance by HPatches tasks: matching (top), retrieval (middle) and verification (bottom), showing the effect of
different hyperparameter choices. For each task, β value differs across the graphs, increasing from left to right, in the left-most
graphs showing classical AEs (essentially a deterministic VAEs with β = 0), and the other three graphs VAEs with β values 1e-05,
1e-04, 1e-03, respectively. Data augmentation level is shown on x-axis of the graphs. The choice of activation function is indicated
in different colours (ReLU, ELU) and the loss function with different markers (× MS-SSIM, • BCE).
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FIGURE 4. The effect of perceptual loss (MS-SSIM), versus BCE loss,
on the performance of descriptors learned using an autoencoder and
ReLU activation function.

FIGURE 5. The effect of perceptual loss (MS-SSIM), versus BCE loss,
on the performance of descriptors learned using a variational
autoencoder (β = 1e-04) and ReLU activation function.

autoencoders are usually performing only slightly worse. Fur-
thermore, we have also observed that the worst performing
descriptors also come from variational autoencoders (when
β value is too high). Therefore, rather modest improvements
that VAEs offer over AEs in these tasks come at a price
of additional training (tuning the β parameter), requiring
additional computational resources.

Regarding the choice of the loss function, we observe
that working with BCE favours small amount of data
augmentation, while MS-SSIM sometimes works best with
no data augmentation at all. We hypothesise that BCE needs
more data augmentation in order to ‘‘nudge’’ the network
into preserving similarities between patches – otherwise it
may learn to reconstruct very well, but also be very sensitive
to small perturbations of the patches, which is undesirable.
Surprisingly, moderate to high levels of data augmentation
are negatively impacting the performance, regardless of other
parameters and for all the tasks.

Similarly, a too high β value (when using VAEs) is
detrimental to the performance of the learned descriptors.
High β values mean more weight on the KLD term of the
loss function – which is essentially a form of regularisation.

However, same as with the data augmentation regularisation,
having some KLD regularisation is better than having none.

It is also interesting to see that when using MS-SSIM,
ReLU activation function works better than ELU for all the
tasks, but when using BCE, there is not a single best activation
function – ReLU works better than ELU for verification task,
but ELU outperforms ReLU for the matching and retrieval
tasks.

Looking at different tasks (Figure 3), we found that
hyperparameters influence each other in the same way for
matching and retrieval tasks, i.e. descriptors’ performance on
them is almost perfectly correlated (0.97). Verification, too,
is highly correlated with the other two tasks (with matching
0.91 and with retrieval 0.94), but the best performing
hyperparameter combinations are not always the same
between verification and either of the two tasks.Most notably,
with matching and retrieval, MS-SSIM always outperforms
BCE. However, with verification task, this is not always the
case (nonetheless, the models that are performing the best on
this task do use MS-SSIM, and the ones performing the worst
use BCE).

We also notice that for MS-SSIM, ReLU performs
consistently better than ELU, but for BCE it is not clear which
activation function is better.

IV. EVALUATING LOCAL IMAGE DESCRIPTORS
In this section, we research metrics for evaluation of
autoencoder-learned and variational-autoencoder–learned
local image descriptors. We first give an overview of the
literature on evaluating descriptors in Section IV-A, and then
we present our study and results in Section IV-B.

A. HOW TO EVALUATE LEARNED DESCRIPTORS?
Evaluation of local image descriptors plays a crucial role
in their design. The learning-based descriptors rely on the
evaluation at different stages to make the decisions, both
during the training of a neural network, and the optimisation
of the hyperparameters. For a long time (up until 2017), the
most widely-adopted benchmark for evaluating local image
descriptors was the Oxford matching dataset [3] (from 2005),
consisting of only 48 images. Other early datasets include
DTU Robots dataset [47], Hanover dataset [48], Generated
Matching dataset [12], WxBs dataset [49]. Most of them
also contain a small amount of images, or do not support
evaluation of different tasks that local image descriptors
perform.

In 2017, Balntas et al. published now widely adopted,
comprehensive HPatches dataset [11]. It enables evaluation
of local image descriptors’ performance on three different
tasks (patch retrieval, image matching, and patch verifi-
cation), each with varying difficulty levels (‘easy’, ‘hard’
and ‘tough’ – referring to the amount of geometric noise,
as defined in [11]). The patch retrieval task tests how well
a descriptor can match a query patch to a pool of patches
extracted frommany images, including many distractors. The
image matching task tests to what extent a descriptor can
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FIGURE 6. Correlation between performance of a descriptor learned
using an autoencoder on HPatches benchmark, and the distance in terms
of MSE and SSIM metric between the input and output patches of that
autoencoder. The range of the correlation values is [−1,1]. These results
indicate that SSIM distance between input and output patches of an
autoencoder is a good predictor of how well will the descriptor based on
that autoencoder perform.

correctly identify correspondences in two images based on
a pair of patches – one patch from each of the images. The
patch verification task measures the ability of a descriptor
to classify whether two patches match, i.e., whether they
are extracted from the same measurement, as defined in the
benchmark.

While this allows a comprehensive evaluation of a descrip-
tor, the evaluation itself is very computationally expensive.
It is, therefore, not viable to use this benchmark to quickly
evaluate the learned descriptor after every training (or, better
yet, every epoch in the training), in order to be able to get
insights into which aspects of the network work best, and
thus be able to make informed decisions about how to select
hyperparameters, architecture of the neural network, etc. For
supervised learning, such an evaluation can be performed
using the labels provided in the dataset, but in unsupervised
learning, we have no labelled data and thus we need some
effective way to predict descriptor’s performance. In the case
of autoencoders, one can evaluate the similarity between the
input and the output image patch (that is learned to be as close
as possible to the input one). It is expected that evaluating this
similarity by the mean squared error (MSE) cannot predict
well the performance on standard patch retrieval tasks as
MSE can be heavily influenced even by a small pixel shift.
Thus using this metric during training is likely to result in
very different encodings of structurally similar, but somewhat
shifted or otherwise slightly deformed patches. We shall,
therefore, explore incorporating a perceptual metric (SSIM)
and analyse how it can predict the performance of local image
descriptors on standard tasks.

B. EMPIRICAL RESULTS FOR EVALUATION METRICS
We now investigate and describe how to evaluate the
performance of a local image descriptor learned with an
autoencoder, based on how the autoencoder reconstructs
patches. The goal is to find an evaluation metric that allows
descriptor evaluation during the training, which is currently

not possible with HPatches due to its high computational
time and memory. We look at average distance using
different metrics calculated between input and output patches
of autoencoders, and its correlation with the HPatches
performance of a descriptor learned using that autoencoder.
The patches are taken from a test set (containing 12.5k
patches), which the autoencoder has not seen during training.

Figure 6 shows these correlations for mean squared
error (MSE) and Structural Similarity Index (SSIM) metrics.
As expected, MSE does not correlate well with the overall
performance on HPatches benchmark. The SSIM metric
yields rather good correlation especially on matching (0.87)
and retrieval tasks (0.83). We conclude that using SSIM as
a quick method of evaluation will give meaningful insights
to how well the descriptor will perform. Such evaluation is
fast enough that it can be performed not only at the end of
the training of the model, but even after every epoch of the
training.

The high correlation between descriptor’s performance and
SSIM also explains why MS-SSIM loss function shows good
results in learning patch descriptors.

V. REDUCING COMPUTATIONAL MEMORY USING
INTERMEDIATE REPRESENTATION
After optimising the AE-based and VAE-based architectures
for learning local image descriptors, here we introduce an
architectural change to improve further their efficacy in image
processing tasks. We introduce a structure in the encoder part
of the autoencoder that we call intermediate representation.
The key idea is to enable extracting an encoding of a single
patch within the image with minimal computation, while
having a representation that is not memory intensive.

A. INTERMEDIATE REPRESENTATION (IR)
Let I := I (0,:) be the input image. We define the intermediate
representation IR(I ) as:

IR(I ) = I (L,:), (3)

I (L,c) = A(ClL (A . . . (Cl1 (I
(0,:))))). (4)

where L is the number of convolutional layers in the encoder
E , I (li,c) is the c-th channel of the output of the li-th layer, A
is some activation function, and Cli is the li-th convolutional
layer.

From the intermediate representation of an image IR(I ),
we obtain the descriptor for a patch I(i+u)(j+v), with u, v ∈
[0, p], where p is the patch size, as follows

E(I(i+u)(j+v)) =MP(IR(I )(i+u)(j+v)). (5)

We discard all themax-pooling layers in the encoder except
for the last one. Using max-pooling is usually motivated
by its advantages – adding non-linearity, playing the role
of dimensionality reduction, and with that reducing the
number of parameters to be trained and hence the training
time. However, it has been shown that (max-)pooling is not
necessary for a successful neural network, and other methods
have been proposed to replace it [50].
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FIGURE 7. Exploiting the proposed intermediate representation (IR) of an image in algorithms that require many patch comparisons. The IR is calculated
once from the original image through the convolutional layers of the encoder. In algorithms that need to compare patches (e.g. inpainting), the
descriptors are extracted from the IR using the fast max-pooling operation, and then compared.

FIGURE 8. Top: traditional encoder architecture in autoencoders, with
max-pooling layers after all convolutional layers. Bottom: proposed
encoder architecture, which omits max-pooling layers after all the
convolutional layers but the last one, in order to obtain an intermediate
representation (IR) of image that preserves the spatial information in the
height-width plane.

Indeed, non-linearity between layers is already achieved
with non-linear activation functions. Dimensionality reduc-
tion is a crucial property of autoencoders and thus we do
leave one max-pooling layer with large spatial extent at the
end of the encoder to reduce the dimension of the code layer.
The longer training time due to removing other max-pooling
layers is a trade-off for decreasing the computational time and
memory while using the descriptor.

The proposed approach is beneficial in image processing
problems that requiremany patch comparisonswithin a single
image. IR is obtained by propagating the complete image
(containing patches of interest) through the convolutional
layers in the encoder, but not the max-pooling. This is done
only once and before the actual processing starts. During the
particular image processing task, the descriptors are extracted
from the stored IR using the fastmax-pooling operation on the
corresponding section of the IR. Figure 7 shows this process
visually and Figure 8 shows the architecture of our network
and the IR.

Thememory reduction is achieved due to it being sufficient
to store only the IR of the whole image and to get the
descriptors on demand using the fast max-pooling in contrast

FIGURE 9. Comparison of performance on HPatches tasks (matching,
retrieval and verification) between descriptors learned with VAE and AE
(both non-IR and IR variants), a different autoencoder-based descriptor
from Chen et al. [19], hand-crafted descriptor SIFT [1] and a
supervised-learning–based descriptor DeepDesc [37] which achieves
state-of-the-art performance [11].

FIGURE 10. Memory needed for storing patch encodings with descriptors
that do not incorporate IR architecture (Chen et al. descriptor, descriptors
trained with regular (convolutional) AEs and VAEs) for all patches in an
image compared to the memory for storing the intermediate
representation of the image (showing versions where encodings are of
length 32 and 128, respectively), from which a descriptor for a single
patch can be obtained with minimal computation.

to storing an encoding for a patch at each possible location
in an image (Figure 7). It is not necessary to separately store
IRs of all the patches because the IRs of overlapping patches
are overlapping themselves. Conversely, this is generally not
the case for the encodings of other descriptors – even for two
patches shifted by one pixel in an image, their two encodings
may be arbitrarily different and one would therefore need to
store them both in memory. IR thus results in a tremendous
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FIGURE 11. Patch retrieval examples. Large patch is the query patch. Rows (top to bottom): AE-based descriptor, VAE-based descriptor, AE-based
descriptor with IR, VAE-based descriptor with IR.

decrease in memory usage for applications on single image,
as shown in Figure 10. This decrease could make some
algorithms that use many patch comparisons feasible for use
on large images.

To summarise, the idea of intermediate representation
is to allow (variational-)autoencoder-based descriptors to
save memory (with respect to non-IR descriptors) while
keeping their performance on the same level. The memory
saving is possible due to the fact that IRs of overlapping
patches are overlapping themselves, which is not the case
with classical convolutional and variational autoencoders
that do not implement IR architecture. In the next section,
we show both the memory savings and the performance of IR
descriptors that is comparable to that of non-IR descriptors.

B. EVALUATING THE PROPOSED IR ARCHITECTURE
In this section, we examine the performance of descriptors
that incorporate our proposed IR method and compare their
performance with their non-IR counterparts, as well as with
the only other AE-based descriptor reported so far, from
Chen et al. [19]. To put the results of these unsupervised
methods into perspective, we also compare them with a state-
of-the-art supervised descriptor DeepDesc [37] and with an
established hand-crafted descriptor SIFT [1]. The goals of
this evaluation are (1) to show comparison between AE-based
and VAE-based descriptors, (2) to show comparison between
IR-based and non-IR–based descriptors, (3) to show how
our (V)AE-based descriptors compare to the only other
AE-based descriptor (from Chen et al. [19]), and (4) to

show how unsupervised-learning–based descriptors compare
to the state-of-the-art supervised descriptors and hand-
crafted descriptors. We report both performance evaluated on
HPatches benchmark and performance in terms of memory
requirements while using these descriptors as part of an image
processing algorithm on a single image.

We have selected the best performing models based on
the analysis of hyperparameters in Section III (for both
models we choose ReLU activation function, no data aug-
mentation, MS-SSIM loss function and for the VAE β value
of 0.0001).

Figure 9 shows descriptors’ performance evaluated on all
three tasks of HPatches benchmark. We can conclude that
incorporating IR architecture into a (V)AE-based descriptor
does not significantly impact its performance – AE-IR ver-
sion slightly outperforms AEwhile VAE slightly outperforms
VAE-IR. All four models’ performance is very similar,
with VAE and AE-IR exhibiting the best performance. The
similarities between these methods can be seen in Figure 11,
which shows examples of the retrieved patches that are the
most similar to a query patch for all our methods.

We also observe that all our four models outperform
the other descriptor trained with autoencoders from [19].
However, it is clear from the Figure 9 that there is still a
gap in performance between these unsupervised models on
one hand and supervised and hand-crafted models on the
other hand. This is to be expected given that the supervised
models can leverage labels that show semantic similarities
between patches without these patches being very similar in
terms of their pixel values. These results also suggest that
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FIGURE 12. Image inpainting results. Left: original; middle: paint loss areas to be inpainted; right: inpainted with a patch-based
method using the proposed local image descriptors. Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb; photo courtesy of
KIK-IRPA, Brussels.

FIGURE 13. Image inpainting results. Left: original image detail containing paint-loss (showing as light brown); middle: inpainted
with a patch-based method using the proposed local image descriptor; right: Inpainted without using the descriptors. Image
copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb; photo courtesy of KIK-IRPA, Brussels.

there is further room for improvement and innovation in
the (V)AE-based descriptors in order to bridge the pefor-
mance gap with the hand-crafted ones.

When it comes to the memory requirements for applica-
tions within a single image, however, descriptors that use
IR (both AE-based and VAE-based) show a clear advantage
over those that do not use IR, such as the descriptor from
Chen et al. [19], SIFT [1], DeepDesc [37], and descriptors
trained with regular AEs and VAEs (Figure 10). This is
because our method takes advantage of the fact IRs of
overlapping patches are overlapping themselves, so it is
enough to simply store IR of the whole image and then
extract from it descriptors using max pooling. Therefore,
we can confidently say that IR architectural change is
beneficial in image processing tasks on a single image
because it shows a significant reduction in memory usage
while keeping the descriptor’s performance on the same
level.

VI. INPAINTING–PROOF OF CONCEPT FOR THE
PROPOSED ARCHITECTURE
We illustrate the use of the above described local image
descriptors in image inpainting. The goal is to reconstruct
the missing region of an image in a visually plausible
way using the information from the surrounding regions
of the image. Exemplar-based (sometimes called patch-
based) inpainting methods fill in the missing region by
sampling and copying the patches from the undamaged
part of the image. These methods require many patch
comparisons in order to find appropriate patches to be used
to fill in the missing area. The patch size normally used
is between 10 and 20 pixels depending on the image size
(with [51] arguing larger patches tend to produce better
results), and as the image dimensions are growing nowadays
(with some of the bleeding-edge mobile phones having
100-megapixel cameras), these inpainting algorithms are
becoming infeasible. This presents a window of opportunity
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for the local image descriptors to speed up these algorithms
and make them usable in the high-definition context of the
images that we have today.

Patch-based inpainting algorithms including [23],
[52]–[56] search for well-matching candidate patches within
some search window or within image segments with given
textural and colour characteristics. We search instead well-
matching patches using our learned patch descriptor and we
incorporate this patch search into the inpainting algorithm
from [23].

We test the resultingmethod in virtual restoration of master
paintings. As a case study, we use images from the panels of
the Ghent Altarpiece [24], [25]. The paint-loss areas to be
inpainted are detected with the algorithm from [57].

Figure 12 shows the inpainting on a part of the panel
the Prophet Zachary. On this particular panel, the paint-loss
areas are showing as light brown. Figure 13 shows the
zoomed detail. We have also used the inpainting algorithm
without the descriptors, however, we were not able to obtain
the inpainting results on the whole panel without using the
descriptor due to the memory error on our computer.

The inpainting results are very promising and show that
our descriptor was both able to improve visually the inpainted
images as well as the computational aspect of the inpainting.

VII. CONCLUSION
In this paper, we performed a thorough comparison between
autoencoders and variational autoencoders approach for
learning local image descriptors. We show that VAE-based
descriptors produce marginally better results than AE-based
descriptors on HPatches benchmark, but due to other
difficulties that come with VAEs (extra hyperparameters to
tune being the most prominent one), classical autoencoders
are most likely a better choice for learning a descriptor.

In addition, we carried out an analysis of the hyper-
parameters’ influence on the performance of the descrip-
tor. We observed that autoencoders using MS-SSIM loss
function, ReLU activation functions, and little to no data
augmentation are producing the best descriptors in terms of
performance on all HPatches tasks and for both classical and
variational autoencoders.

We also investigated which metrics are the best for rapid
evaluation of autoencoder-learned descriptors, and found
SSIM distance between input and output patches of the
autoencoder to show the highest correlation with the descrip-
tors’ performance on HPatches benchmark. We therefore
propose using this metric for rapid approximate evaluation
of local image descriptors learned with autoencoders.

Furthermore, we proposed an improvement to the encoder
architecture which produces descriptors that perform equally
as good but save memory in comparison to existing methods
when used for patch search and matching within a single
image. As a proof of concept, we have integrated this
improved descriptor into an inpainting algorithm that resulted
in visual improvements over the inpainted images and the
ability to handle higher resolution images.
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