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Abstract. In this paper, we propose an effi-

cient method for learning a local image descrip-

tor and its inversion function using a modified

version of a variational autoencoder (VAE) - a

β-VAE. We examine different values of β in

the loss function of the β-VAE to find the an

optimal balance between incentivising the sim-

ilarities between input patches to be preserved

in latent space, and ensuring good reconstruc-

tion of the patches from their encodings in la-

tent space. Our proposed descriptor demon-

strates patch retrieval comparable to the ref-

erence autoencoder-based local image descrip-

tor, and also shows improved reconstruction of

patches from their encodings.

1 Introduction

Local image descriptors are an important component of

many image processing tasks, such as object tracking, ob-

ject recognition, image denoising, image stitching, and

image retrieval.

Traditionally, local image descriptors have been de-

signed using hand-crafted features, such as SIFT [13],

HOG [7], GLOH [15], SURF [3], and BRIEF [4]. In re-

cent years, the development of deep learning techniques

has led to a new generation of learned local image de-

scriptors [23, 17, 2, 9], showing excellent results [1].

Most of these learning approaches are supervised meth-

ods, which rely on labelled datasets. However, in many

real-life applications, such datasets are not available. In

contrast to supervised methods, unsupervised methods

such as autoencoders and variational autoencoders, by

definition, do not require labelled data. Autoencoders

have already been used to learn local image descriptors

[5, 20, 24, 21], showing promising results. However, the

fundamental problem with autoencoders is that their la-

tent space may not be continuous or may not allow for

easy interpolation. These issues undermine the descrip-

tors similarity preservation property. Variational autoen-

coders [12] have been created to tackle this problem in

general, but have not been applied to the problem of learn-

ing local image descriptors.

Inverting local image descriptors has been an active

area of research in the past decade, starting with the

prominent work by Weinzaepfel et al. [22] on reconstruct-

ing an image from its SIFT descriptors. The authors used

a database of descriptors and their corresponding patches

to search for the nearest neighbour to the query descriptor,
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and then take the patch connected to the retrieved nearest

neighbour. Further works on inverting other descriptors

followed, including the inversion of binary descriptors [8]

and of HOG [19]. A more recent paper by Mahendran et

al. [14] considers inverting descriptors back into patches

using deep learning.

In this paper, we propose an unsupervised method that

specialises in learning both a descriptor function that

maps image patches to their encodings and an invert-

ing function that decodes these encodings back into the

original image patches. To the best of our knowledge,

we are the first to present a descriptor that is optimised

for inversion. Our method is using β-variational autoen-

coders, which we tweak to achieve an optimal balance be-

tween preserving similarities between patches and achiev-

ing good invertibility. We perform a thorough analysis of

how the β value influences this trade-off. Due to their un-

supervised nature, variational autoencoders do not require

a labelled dataset. Furthermore, their generalisation, β-

VAEs, are intrinsically well-suited for learning both the

encoding function and its inversion, as we will show in

Section 3. The existing autoencoder-based descriptors

[5, 20, 24] do not present inverting results. Our experi-

mental results clearly show a better inversion ability of the

proposed method compared to the reference autoencoder-

based approach [20]. To our knowledge, there are no other

works using variational autoencoders to learn local image

descriptors.

In the following section, we give a brief introduction

to the classical and variational autoencoders. We describe

our method in Section 3 and present the results of our ex-

periments in Section 4 with discussion. Section 5 con-

cludes this paper.

2 Preliminaries

Autoencoders are unsupervised neural networks used for

learning efficient representations of data [11, 18, 6]. An

autoencoder consists of two parts, an encoder and a de-

coder, and is trained by minimising the reconstruction er-

ror between the input and output, while imposing some

constraints (usually dimensionality) on the middle layer.

The application of autoencoders to the problem of de-

scriptor learning was first proposed by Chen et al. [5].

In our previous work [20, 24], we proposed autoencoder-

based patch descriptors designed for applications with

many patch comparisons within a single image. These

approaches, however, have no way of enforcing the conti-

nuity of the latent space and thus, are unable to guarantee

that the learned encodings are useful, i.e., that they posses

the similarity preserving property – a key property for lo-

cal image descriptors.

To tackle the problem of a lack of continuity in the

latent space, Kingma et al. have proposed variational

autoencoders (VAEs) [12]. Similar to classical autoen-

coders, VAEs consist of an encoder and a decoder, with

a middle layer on which a dimensionality constraint is

imposed. In contrast to classical autoencoders, however,

variational autoencoders are probabilistic models that as-

sume a prior distribution of the latent space, giving signif-

icant control over how we want to model the latent distri-

bution. The data x has a likelihood p(x|z) (the decoder

distribution) that is conditioned on latent variables z.

The posterior (typically Gaussian) is approximated with

a family of distributions q(z|x) (the encoder distribution).

Apart from minimising the reconstruction loss, VAEs also

minimise the Kullback–Leibler (KL) divergence between

the true posterior p(z) and its approximation q(z|x).
Given a dataset X = {x(1), x(2), ..., x(n)}, the goal of

a VAE is to minimise the negative log-likelihood lower

bound:

L(θ, φ;x(i)) =

−Eqφ(z|x(i))[log pθ(x
(i)|z)]+DKL[qφ(z|x(i))||pθ(z)],

(1)



Image Processing & Communication, vol. 24,no. 1, pp.1-0 3

where the encoder and decoder distributions are

parametrised by φ and θ, respectively.

The first term promotes a good reconstruction of the

input data samples, while the second term enforces that

the distribution of the latent space is as close as possible

to the multivariate Gaussian distribution.

Higgins et al. [10] have proposed a variant of a

variational autoencoder named β-VAE. In a β-VAE, the

loss function from Equation (1) is modified to add more

weight on the second term, sacrificing the reconstruction

capabilities of the VAE in order to make the latent space

smoother and to allow for its better disentanglement:

L(θ, φ;x(i)) =

−Eqφ(z|x(i))[log pθ(x
(i)|z)]+βDKL[qφ(z|x(i))||pθ(z)],

In the next section, we describe how we use β-VAEs to

learn invertible local image descriptors.

3 β-VAEs for local image
descriptors

We propose using a β-variational autoencoder for simul-

taneous learning of local image descriptors and their re-

construction back into image patches. Due to the nature

of their architecture, both classical and variational autoen-

coders are ideal for the simultaneous learning of the de-

scriptor function (the encoder part of the autoencoder)

and the reconstruction function (the decoder part). How-

ever, unlike classical autoencoders, VAEs include addi-

tional regularisation that allows modelling the latent space

to be continuous and to be easy to interpolate across,

ensuring that similar input data samples (patches) get

mapped to similar points in the latent space (encoding),

and vice versa. This similarity-preserving property is a

property of paramount importance for local image de-

scriptors. We also hypothesise that the additional regu-

larisation of VAEs will allow for learning sharper recon-

  sample

Fig. 1: Architecture of the variational autoencoder we
used for learning local image descriptors.

structions in comparison to methods based on classic au-

toencoders, which we will show empirically in the next

section.

In β-VAE, a generalisation of the loss function of VAEs

is achieved by adding the β weight to the KL term. In

this way, we can control the trade-off between learning

to faithfully reconstruct the input patches and preserving

patch similarities in the latent space. By setting the right

value of β we can increase the influence of the reconstruc-

tion term to ensure good invertibility of the descriptor. In

contrast to descriptors based on classical autoencoders,

however, the KL term in the VAE loss function ensures

the continuity of the latent space which could not be guar-

anteed when using the classical autoencoders.

Once we trained the β-VAE, the encoder part of it is

our descriptor, and the decoder part is the inversion func-

tion that maps the patch encodings back to the original

patches.

Figure 1 illustrates the architecture of the variational

autoencoder used in this paper. The encoder con-

sists of three convolutional layers followed by the fully-

connected layers for the means and variances of Gaussian

distributions. From these layers, we sample a vector that

is the encoding of the input patch. We set the dimension-

ality of the latent space M (and therefore, the mean, vari-

ance, and the sampling layers) to be 128. The decoder ar-

chitecture mirrors that of the encoder – at the beginning,

there is one layer fully-connected to the sample (encod-

ing), followed by three transposed convolutional layers.

The dimensions of the output patch of our VAE are the

same as the dimensions of the input.
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Following the notation from [10], we use βnorm as the

main hyperparameter that we vary. βnorm is defined as

follows:

βnorm =
βM

N
,

whereM is the size of latent space andN is the input size.

By normalising the β value, the analysis that we present

in the following section can be applied to datasets of dif-

ferent patch size and different desired encoding sizes. We

vary the βnorm values over several orders of magnitude

– from 10−5 to 102. In the following section, we show

how the βnorm value influences the patch retrieval of the

descriptor and its invertibility.

We use rectified linear unit (ReLU) activation functions

after all layers, except the last layer, where we use the sig-

moid activation function instead. We use Adam optimiser

to learn the weights of the VAE, which is trained on a

dataset of 80k 56 × 56 patches that were extracted from

the images from the ImageNet dataset using FAST (Fea-

tures from Accelerated Segment Test) algorithm for fea-

ture detection [16]. The ratio between training, validation,

and test set is 8 : 1 : 1.

4 Experimental results

In this section, we show how the value of βnorm influ-

ences the proposed β-VAE–based local image descriptor

and its performance with respect to patch retrieval (the

main task for which local image descriptors are designed)

and patch inversion from the patches’ encodings.

We also evaluate both the retrieval and inversion ca-

pabilities of the proposed approach in comparison with a

reference autoencoder-based descriptor. We compare our

method only to this autoencoder-based descriptor, since

non-autoencoder-based descriptors have no straightfor-

ward way of being inverted and thus give us no way of

comparing their invertibility.

Fig. 2: Patch retrieval examples. Large patch is the query
patch. Top rows: AE-based descriptor from [20]; bottom
rows: proposed VAE-based descriptor.

4.1 Evaluation on patch retrieval

Patch retrieval evaluation is performed as follows. We se-

lect a set of query patches within a test dataset of patches.

For each query patch, we retrieve the most similar patches

by comparing their encodings as calculated by the de-

scriptors. We show some examples of patches retrieved

in such a way in Figure 2. The quality of patch retrieval is

then evaluated based on two metrics (peak signal-to-noise
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Fig. 3: Comparison of patch retrieval performance for dif-
ferent βnorm values.

ratio (PSNR) and structural similarity index (SSIM)) be-

tween the query patches and patches deemed most similar

to the queries based on the encodings computed with de-

scriptors.

We first examine the patch retrieval capabilities of the

proposed β-VAE–based descriptor for different βnorm
values. In Figure 3, we see that, according to the PSNR

metric, the patch retrieval seems to be the best when the

βnorm value is the lowest, i.e., when the KL divergence

term of the loss function is the closest to 0. However,

when using a metric that better mimics human’s percep-

tion of differences between images, SSIM, we see that

adding a KL term is beneficial, as the patch retrieval in

terms of SSIM shows a peak at βnorm value of 10−4. In

our case, this translates to β value of 0.0032.

Secondly, we compare the patch retrieval capabilities to

an existing autoencoder-based descriptor [20]. We present

our results in Table 1. We observe that the descriptor pro-

posed in this paper is outperformed by the descriptor from

[20] in terms of PSNR, however, in terms of SSIM, the

proposed β-VAE–based descriptor shows slightly better

performance. These results are consistent with the βnorm
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Fig. 4: Comparison of patch reconstruction performance
for different βnorm values.

value analysis, since setting the βnorm to 0 would corre-

spond to using a regular autoencoder.

Tab. 1: Patch retrieval performance comparison
PSNR [dB] SSIM

AE-based descriptor [20] 26.0 0.23
Proposed VAE-based descriptor 24.6 0.25

According to these experiments, we can claim that

the proposed descriptor shows promising results in the

main task for which descriptors are designed: retrieving

patches.

4.2 Evaluation of invertibility

Now we evaluate the extent to which a descriptor can re-

construct the original patch from its encoding. For a test

set of patches, we measure the difference between the

original patch, and the patch reconstructed from the en-

coding via the descriptor.

We again first show the analysis for different βnorm
values (Figure 4). Here we see the best performance

(in terms of both PSNR and SSIM) for the βnorm value

of 10−4. We conclude that the KL divergence (albeit
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Fig. 5: Examples of patch reconstruction based on the descriptor’s encoding. Top row: original patches; middle
row: reconstructed patches using AE-based descriptor from [20]; bottom row: reconstructed patches using proposed
VAE-based descriptor.

weighted very lightly) has a positive influence on the in-

vertibility of the descriptor. Therefore, using β-VAE for

invertible local image descriptor indeed makes sense – we

can benefit from the regularisation by the KL divergence

term and also adjust the extent to which it is taken into

account.

We also compare our descriptor to the autoencoder-

based descriptor from [20] (Table 2). The proposed de-

scriptor shows better results than the descriptor from [20]

across both metrics: PSNR and SSIM. In Figure 5, we

show some examples of patches reconstructed with the

proposed VAE-based descriptor. We can observe that

the proposed descriptor outperforms the reference method

and is able to reconstruct the patches with significant im-

provements in fidelity.

Tab. 2: Patch reconstruction performance comparison
PSNR [dB] SSIM

AE-based descriptor [20] 16.0 0.10
Proposed VAE-based descriptor 20.2 0.51

5 Conclusion

In this paper, we presented a novel approach based on β-

variational autoencoders that combines the learning of a

local image descriptor with the learning of its inversion.

We showed that β-VAE is an excellent fit for this appli-

cation, as it (being a VAE) introduces a KL divergence

term to the loss function that acts as a regulariser and

ensures smooth latent space, but at the same time, a β-

VAE is more powerful than a general VAE since it allows

slightly reducing this KL term and in this way optimising

for the patch reconstruction from its encoding. We per-

formed a thorough analysis of how the βnorm value influ-

ences the performance of the descriptor in patch retrieval

and patch reconstruction from its encodings. We observed

that setting βnorm to 10−4 gives the best performance on

these tasks. Furthermore, we evaluated the proposed de-

scriptor’s patch retrieval abilities in comparison to a previ-

ous autoencoder-based method. Our VAE-based method

showed improvements in terms of SSIM metric while ap-

pearing to perform slightly worse in terms of PSNR. Fi-

nally, we compared the invertibility of these two descrip-

tors and showed that the proposed descriptor outperforms

the reference descriptor from [20] in the two metrics that

were assessed.
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