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Member, IEEE

Abstract—Sparse subspace clustering (SSC) has emerged as an
effective approach for the automatic analysis of hyperspectral
images (HSI). Traditional SSC-based approaches employ the
input HSI data as a dictionary of atoms, in terms of which all the
data samples are linearly represented. This leads to highly redun-
dant dictionaries of huge size and the computational complexity
of the resulting optimization problems becomes prohibitive for
large-scale data. In this paper, we propose a scalable subspace
clustering method, which integrates the learning of a concise
dictionary and robust subspace representation in a unified model.
This reduces significantly the size of the involved optimization
problems. We introduce a new adaptive spatial regularization for
the representation coefficients, which incorporates spatial infor-
mation of HSI and improves the robustness of the model to noise.
We derive an effective solver based on alternating minimization
and alternating direction method of multipliers (ADMM) to solve
the resulting optimization problem. Experimental results on four
representative hyperspectral images show the effectiveness of the
proposed method and excellent clustering performance relative
to the state-of-the-art.

Index Terms—Hyperspectral images, clustering, subspace rep-
resentation.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) generated from air-
borne sensors or from satellites measure the objects on

the Earth’s surface with hundreds of spectral bands. With their
rich spectral information, HSIs offer far better discrimination
between different materials than conventional panchromatic
and multispectral images, facilitating a wide range of appli-
cations including precision agriculture [1–3], environmental
monitoring [4], defense and security [5], food safety [6]
and mineralogy [7]. As a fundamental technique in these
applications, clustering aims to group pixels into different
clusters according to the inherent similarity of data points in
an unsupervised way. In contrast to supervised classification,
clustering requires no labelled training samples, which allows
a wider application in practice.
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S. Huang and A. Pižurica are with the Department of Telecom-
munications and Information Processing, TELIN-GAIM, Ghent Univer-
sity, 9000 Ghent, Belgium (e-mail: Shaoguang.Huang@ugent.be; Aleksan-
dra.Pizurica@ugent.be).

H. Zhang is with the State Key Laboratory of Information Engineering in
Surveying, Mapping and Remote Sensing, Collaborative Innovation Center
of Geospatial Technology, Wuhan University, Wuhan 430079, China (e-mail:
zhanghongyan@whu.edu.cn).

In general, existing clustering methods can be roughly
categorized into five groups: centroid-based clustering meth-
ods, density-based clustering methods, biological clustering
methods, spectral-based clustering methods and deep learn-
ing based clustering methods. The centroid-based clustering
methods such as k-means [8] and fuzzy c-means (FCM) [9]
group data points by minimizing their distances to the itera-
tively updated cluster centroids. The density-based clustering
methods, including [10, 11], identify the clusters of data
by locating regions of high density that are separated from
one another by regions of low density. Biological clustering
methods obtain clustering results by mimicking biological
systems [12]. Spectral-based clustering methods unveil cluster
structure of data by making use of the spectrum (eigenvalues)
of similarity matrix of the data to perform dimensionality
reduction before clustering in k-means [13–16]. Deep learning
based clustering methods [17–20] often consist of two steps:
deep features extraction and clustering by applying the learned
features in conventional clustering algorithms. The first step
learns effectively non-linear and discriminative features of
HSI by neural networks such as autoencoder, which leads
to a better clustering performance. In pariticular, spectral-
based clustering methods have been widely applied in various
applications due to their excellent performance [21]. Graph
construction in such clustering methods plays an essential role
in the final clustering accuracy. The commonly used graph,
built by k nearest neighbours (KNN) approach with Euclidean
distance in the origianl data space, is sensitive to noise and
often fails to capture the intrinsic data structure especially
for the data points distributed near the intersection of two
subspaces [22].

Sparse subspace clustering (SSC) method [23] builds a
sparse graph by solving a sparse representation related prob-
lem in a self-representation model (i.e, the input data is
employed as a dictionary), and achieves the state-of-the-art
clustering performance. In general, SSC approach groups data
points into different clusters in two steps: similarity matrix
construction and spectral clustering. Basically, it models a
high-dimensional data space as a union of low-dimensional
subspaces, and estimates the similarity matrix with sparse
coefficients of input data that are optimized in a subspace
representation model. The key insight is that each data point
in the subspace Si can be represented by a linear combination
of a few others from the same subspace Si. Thus, SSC starts
from a self-representation model, i.e., Y = YC, and infers
sparse coefficients C of the input data Y by solving a sparse
coding problem (C 6= I). In particular, the non-zero entry Cij
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indicates explicitly that the data points yi and yj are belonging
to the same subspace. This enables a direct and efficient
construction of similarity matrix W = |C|+ |CT | where |C|
takes the absolute values of C, which is further applied in the
spectral clustering framework to obtain clustering results.

However, SSC model solves separately the coefficients for
each data point. In case of HSI, SSC groups pixels by using
their spectral signatures alone, which means that the spatial
information is not taken into account, resulting in sensitivity
of performance to noise and within-class spectral variability
[24, 25]. It has been widely proved that using spatial informa-
tion together with spectral information can effectively improve
the performance in various HSI processing tasks including
supervised classification [26], denoising [27–29], change de-
tection [30] and super-resolution [31]. Similarly, incorporating
spatial information proves to be beneficial in HSI clustering as
well [24, 32–37]. These methods take into account the spatial
information either by directly introducing spatial regularization
in the clustering models [24, 32, 33, 35–37] or by post-
processing approaches such as Local Bilateral Filtering [34].
Due to the integration of spatial and spectral information,
these methods undoubtedly achieve improved clustering ac-
curacy. However, as they employ the whole input HSI data
as the dictionary, which is typically huge and redundant in
practice, the subspace representation is less efficient and less
informative. Moreover, the resulting optimization problems are
computationally expensive due to the high complexity in the
order of O(q3), where q is the total number of pixels in HSI.
This prohibits their applications on large-scale HSI.

A clear way to mitigate this problem is to replace the
original self-representation dictionary with a more compact,
yet equally expressive dictionary. With a smaller dictionary,
the number of sparse coefficients to be solved decreases as
well, reducing thereby the overall computational complexity.
However, the related research in the literature is rather limited.
A recent sketched SSC model of [38], proposed for the
clustering tasks in computer vision, lowers the computational
complexity by using a sketched dictionary with a random
projection technique. It was shown that applying such method
in HSI clustering directly often yields poor performance [39].
To improve its clustering performance, a spatial regularization
was introduced, achieving a lower computational complexity
and improved clustering accuracy [39]. In [40], graph regu-
larized sparse coding (GRSC) was introduced for general data
representation, which takes into account of global similarities
of data points by a graph Laplacian regularization in repre-
sentation domain and yields improved performance. However,
in case of HSI the important local spatial information is not
considered in GRSC. Also its high computational complexity
limits the applications on large-scale data. The authors in
[41] presented a cascaded clustering model consisting of
sparse dictionary learning and anchored subspace regression
to calculate the sparse coefficients. The sparse dictionary is
obtained by multiplying a fixed wavelet dictionary with a
learned sparse matrix. The underlying fixed wavelet dictionary
poses some limitations in terms of adapting to the actual data
structure. Moreover, the spatial information is not exploited in
the dictionary learning. Also, the cascaded approach to calcu-

late coefficients solves multiple sparse representation related
optimization problems, which results in a higher computational
burden.

In this paper, we propose a novel dictionary learning based
subspace clustering method for HSI with an adaptive joint total
variation spatial regularization. The contributions of this paper
can be summarized from three aspects. First, different from
the traditional SSC-based clustering methods, which use the
whole redundant input HSI data to construct the dictionary, we
utilize a compact dictionary that is adaptively learned from the
input data. The small dictionary reduces the number of sparse
coefficients to be solved, which significantly lowers the overall
computational complexity. Second, we take into account the
spatial information by incorporating a novel adaptive joint total
variation constraint in the subspace clustering model. The joint
total variation (JTV) is formulated by adopting an `1,2 norm
penalty on the difference matrix of coefficients, which encodes
effectively the dependencies of spatially neighbouring pixels
in the low-dimensional subspace and promotes the coefficient
vectors of most neighbouring pixels to be similar. The weights
for the difference matrix in the JTV are updated iteratively
in our optimization algorithm, which enables our model to
treat pixels in homogeneous regions and edges differently.
Third, we develop an efficient optimization algorithm for the
resulting optimization problem using alternating minimization
and alternating direction method of multipliers (ADMM). Ex-
tensive experiments are conducted and the results demonstrate
the superior performance of the proposed method in terms of
both quantitative and visual evaluations.

The rest of this paper is organized as follows. Section II
briefly introduces the clustering of HSIs with the SSC model.
Section III describes the proposed model and the resulting
optimization problem. Section IV presents the experimental
results on the real hyperspectral data sets and the comparisons
with other methods. Section V concludes the paper.

II. HSI CLUSTERING WITH THE SSC MODEL

We denote by Y ∈ RB×MN the flattened 2-D matrix from
the original 3-D HSI data cube with a size of M × N × B,
where M and N represent the height and the width of the
HSI, respectively, and B denotes the number of bands. Each
vector yi ∈ RB represents the spectral signature of each
pixel in HSI. We assume that there are t classes in the
data. SSC partitions the high-dimensional data space into a
union of lower dimensional subspaces. The pixels belonging
to one class constitute a subspace. The key idea is that among
infinitely many possibilities to represent a data point yi in
terms of other points, a sparse representation will select a few
points that belong to the same subspace as yi. This is known as
the subspace preserving property [23]. Thus, SSC starts from
a self-representation model where the input data matrix Y is
employed as a dictionary: Y = YC and infers the coefficient
matrix C ∈ RMN×MN by solving the following optimization
problems:

arg min
C

‖C‖1 +
β

2
‖Y −YC‖2F

s.t. diag(C) = 0, 1TC = 1T , (1)
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where ‖C‖1 =
∑
i

∑
j |Cij |; 1 is an all-one vector; diag(C) is

a vector with its i-th element being Cii; 0 is an all-zero vector
and β is a parameter, which controls the balance between
the data fidelity and the sparsity of the coefficient matrix.
The first constraint is introduced to avoid the trivial solution
of representing a sample by itself and the second constraint
ensures that each data point is an affine combination of other
data points when the data lie in a union of affine subspaces.

The model in (1) can be solved by the ADMM algorithm
[42]. The coefficients matrix C yields directly the correlation
structure among the pixels, i.e. a non-zero entry Cij indicates
that the samples yi and yj are in the same class. This leads
to the construction of similarity matrix W ∈ RMN×MN by
W = |C|+|CT |. Clustering results are obtained by employing
the similarity matrix W within the spectral clustering [43].
Specifically, the Laplacian matrix L ∈ RMN×MN is first
formed by

L := Dw −W (2)

where Dw ∈ RMN×MN is a diagonal matrix with Dwii =∑
jWij [44]. Afterwards, the t eigenvectors {vk}tk=1 of L

corresponding to the t smallest eigenvalues of L are calcu-
lated via singular-value decomposition (SVD). Finally, the
clustering result is obtained by applying the matrix V =
[v1, ...,vt] ∈ RMN×t to the k-means clustering method.

III. DICTIONARY LEARNING BASED SUBSPACE
CLUSTERING METHOD WITH AN ADAPTIVE JOINT TOTAL

VARIATION REGULARIZATION

In this section, a novel subspace clustering model is pro-
posed for HSI. The proposed method employs a dictionary
learning strategy to model the underlying data subspaces.
Moreover, a novel adaptively weighted joint total variation
regularization is integrated into our model to improve the
homogeneity of a clustering map. Finally, we develop an
efficient optimization algorithm for the resulting model based
on alternating minimization and ADMM.

A. Dictionary learning based subspace clustering

Most of the current SSC methods rely on a self-
representation model, where the whole HSI data is employed
as the dictionary to model the low-dimensional subspaces of
data. HSIs usually have a rather small number of classes,
and the spectral signatures within one class show very high
similarity, which suggests that a HSI contains tremendous re-
dundant information [45]. Thus using the whole HSI input data
to model the data subspaces results in a poor representation
ability and high computational complexity. Moreover, SSC-
based methods represent a data point by a linear combination
of a few other data points. When the data points are noisy,
each data point is represented by other noisy data. Therefore,
the obtained similarity matrix W is deteriorated, leading to
a degraded clustering performance in the subsequent spec-
tral clustering. It is thus of interest to construct efficiently
compact dictionaries to model the underlying low-dimensional
subspaces of a HSI. It has been demonstrated that learning a
dictionary from data instead of using a predefined one can

effectively improve the performance of data analysis [46–52].
This motivates us to learn a compact dictionary to model the
low-dimensional subspaces of HSIs in our subspace clustering
method.

The objective function with respect to the dictionary D ∈
RB×n and sparse matrix A ∈ Rn×MN can be formulated as
follows:

arg min
D,A

1

2
‖Y −DA‖2F + λ‖A‖1, s.t. D ≥ 0, (3)

where λ is a penalty parameter to control the sparsity of A.
The constraint on dictionary, D ≥ 0, requires that the atoms
are nonnegative in agreement with the positive spectral inten-
sities. Sparse coefficients matrix A indicates the contribution
of atoms to the input data in the subspace representation.

The optimization problem in (3) is efficiently solved by
alternating minimization switching between sparse coding and
dictionary learning steps. As similar data points often yield
similar representation coefficients and dissimilar data points
often yield different coefficients, we can view matrix A as
extracted features of input data Y. After the sparse matrix A is
obtained, we particularly employ it for the construction of sim-
ilarity matrix. A sparse graph often yields better performance
than a fully-connected graph as sparse graphs have much less
spurious connections between the points belonging to different
classes [53]. Hence, we construct the similarity matrix by
using a KNN graph. For each aaai being the i-th column of A,
we find the first k nearest neighbours in Euclidean distance,
denoted as Nk(aaai). Then the similarity matrix W is calculated
as

Wij =

{
wij aaai ∈ Nk(aaaj) or aaaj ∈ Nk(aaai)

0 otherwise
(4)

where wij is obtained by using a Gaussian kernel function
with parameter σ:

wij = e
−‖aaai−aaaj‖

2
2

2σ2 . (5)

Finally, the obtained sparse similarity matrix W is fed into
the spectral clustering method to produce clustering results.
We refer to our initialized method as the dictionary learning
based subspace clustering method (DLSC).

B. Subspace clustering model with AJTV regularization

The optimization problem in (3) boils down to calculating
the sparse coefficients vector of each data point separately and
independently. This process is sensitive to noise and better
results can be expected when incorporating prior knowledge
about the spatial dependencies among the neighbouring pixels
and their respective coefficient vectors.

Spatially adjacent pixels in a HSI are likely to belong to
the same cluster characterized by a given type of spectral
responses. Thus they will also be well represented by the same
set of prototype responses (atoms) and in similar proportions.

In sparse coding formulation, this means that pixels within
a local region are likely to be well represented as linear
combinations of the same few atoms from a dictionary. Each
row of A, aaai ∈ R1×MN , is the vector of responses of all the
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Fig. 1. A motivation of the introduction of JTV regularization. As similar
data points have similar response to the atoms, coefficient matrices should be
piece-wise smooth in spatial dimensions and have similar edges to the original
HSI, which becomes apparent after reshaping them to a 3-D cube.

data points Y to an atom di. For the purpose of visualization,
let us reshape aaai into a 2-D matrix A(:, :, i) ∈ RM×N as
shown in Fig. 1. Its (m,n)-th entry shows the contribution
of the atom di in representing the (m,n)-th pixel in the
underlying HSI, i.e., A(:, :, i) is an activation map for di.
Observe that these activation maps are locally smooth with
sharp transitions among neighbouring regions, we encode this
property by introducing an adaptive joint total variation spatial
regularization.

Let us first apply the anisotropic total variation (TV) norm
[54] to each layer A(:, :, i):

‖A(:, :, i)‖TV =

M∑
m=1

N∑
n=1

|A(m+ 1, n, i)−A(m,n, i)|

+|A(m,n+ 1, i)−A(m,n, i)| (6)

assuming periodic boundary conditions: A(M + 1, n, i) =
A(1, n, i) (1 ≤ n ≤ N ) and A(m,N + 1, i) = A(m, 1, i)
(1 ≤ m ≤ M ). For the sake of more compact notation, let
us rewrite the two terms in the expression above using finite
difference operators that act on a reshaped image (in a raster
scanning way) of size MN × 1. In our notation,

‖A(:, :, i)‖TV = ‖aaai
T

‖TV = ‖Hxaaa
iT ‖1 + ‖Hyaaa

iT ‖1, (7)

where Hx and Hy are the forward finite-difference operators
in the horizontal and vertical directions, respectively, which
correspond to the two terms from (6) when applied to the
reshaped 1-D image data aaai

T

.
We apply the TV norm in (7) to each layer aaai, and aggregate

these to what we denote the TV norm of A:

‖A‖TV =

n∑
i=1

‖A(:, :, i)‖TV

=

n∑
i=1

‖aaai
T

‖TV

=

n∑
i=1

‖Hxaaa
iT ‖1 + ‖Hyaaa

iT ‖1

= ‖HxA
T ‖1 + ‖HyA

T ‖1. (8)

We model this way spatial dependencies in the activation
maps aaai for each atom and aggregate them over all. What we
still did not take into account is that the coefficients vectors
aaai ∈ Rn and aaaj ∈ Rn of two neighbouring pixels yi and
yj should be similar as well. We require that the vector aaaj
comprising activations of all atoms dk, k ∈ {1, ..., n} at
spatial location j is close (in the Euclidean sense) to aaai when
i and j are spatially adjacent. We incorporate this constraint
by replacing the `1 norm in (7) with the `1,2 norm defined
as ‖X‖1,2 =

∑
i

√∑
j X

2
ij . The resulting expression that we

refer to as the joint TV (JTV) norm of A is:

‖A‖JTV = ‖HxA
T ‖1,2 + ‖HyA

T ‖1,2. (9)

We next explain how the JTV norm promotes neighbouring
pixels to yield similar representations. Let {yj}j∈Ni be the
spatially adjacent pixels of yi, yi = Daaai and {yj =
Daaaj}j∈Ni , where Ni is the index set comprising the spatial
neighbours of yi in horizontal and vertical directions. The
spatial constraint (9) can be reformulated as

‖A‖JTV =

MN∑
i=1

∑
j∈Ni

‖aaai − aaaj‖2

=

MN∑
i=1

∑
j∈Ni

rij

= ‖R‖1, (10)

where rij = ‖aaai − aaaj‖2 and is the (i, j)-th entry of R. It is
clear that the sparsity of R leads to most of rij to be zeros,
which indicates that aaai and its spatial neighbours {aaaj}j∈Ni
are often the same. This facilitates the construction of a better
similarity matrix in (4), improving thereby the performance in
spectral clustering.

Note that the JTV norm in (9) treats all the pixels equally
with the same weight 1. It would be more reasonable to pro-
mote the spatial continuity more in the homogeneous regions
than in the edge areas. To allow this, we generalize the JTV
term by introducing two diagonal matrices (for the horizontal
and vertical directions), which contain weight coefficients for
each pixel. We refer to the resulting expression as the adaptive
joint total variation:

‖A‖AJTV = ‖WxHxA
T ‖1,2 + ‖WyHyA

T ‖1,2, (11)

Wx and Wy are two diagonal matrices where the diagonal
elements are the weights corresponding to each pixel. We
integrate this novel AJTV norm with our DLSC model in (3)
and derive the final model, termed IDLSC, as follows.

arg min
D,A

1

2
‖Y −DA‖2F + λ‖A‖1 + λtv(‖WxHxA

T ‖1,2

+‖WyHyA
T ‖1,2), s.t. D ≥ 0, (12)
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Fig. 2. Examples of similarity matrices in real data obtained by SSC (left), our DLSC in (3) (middle) and our final IDLSC clustering model in (15) (right).
There are four clusters and 100 samples per cluster are randomly selected from Indian Pines image. The selected data is sequentially arranged by class.

where λtv is a penalty parameter for the AJTV regularization
term. Here, we update Wx and Wy iteratively according to
the gradient information of A:

W(r+1)
xii =

1

1 + ug
(r)
xi

(13)

W(r+1)
yii =

1

1 + ug
(r)
yi

, (i = 1, 2, ...,MN) (14)

where r is the iteration number; g(r)xi = ‖(HxA
(r)T )i‖2,

g
(r)
yi = ‖(HyA

(r)T )i‖2; u is a constant parameter with u ≥ 0.
Thereby, the value of weight is in the range of [0, 1]. When
r = 0, we set Wx and Wy to identity matrices.

From (13) and (14) we can see that when the difference of
sparse vectors between neighbouring pixels is small, i.e. the
values of gxi and gyi are small, the corresponding weights
Wxii and Wyii are relatively large, which increases the
penalties on the i-th rows of HxA

T and HyA
T in next

iteration. Compared with the coefficients matrix in model
(3), it becomes more discriminative now in (12) due to the
incorporation of the weighted JTV constraint. The benefit
derived from such AJTV norm is consequently indicated in
the structure of the resulting similarity matrix. In Fig. 2,
we show the similarity matrices of SSC model, our DLSC
model in (3) and our final IDLSC model in (12). There are 4
clusters and each has 100 pixels extracted from the common
benchmark dataset Indian Pines. All the pixels are sequentially
arranged according to their labels. In Fig. 2, we can see that the
similarity matrix of the proposed IDLSC shows a more clear
block-diagonal structure and much less incorrect connections
compared to both SSC (left) and our original model (middle).
It is known that the ideal similarity matrix should be block-
diagonal, connecting only the data points from the same class
[23]. The IDLSC model proves to perform better in this aspect
than other methods.

Denote by H = [Hx;Hy] the combined TV operator and by
Wh = Diag([diag(Wx); diag(Wy)]) a new diagonal matrix.
We obtain a simplified formulation of the IDLSC model from
(12):

arg min
D≥0,A

1

2
‖Y −DA‖2F + λ‖A‖1 + λtv‖WhHAT ‖1,2,

(15)

where diag(·) represents a vector whose entries are the di-
agonal elements of a matrix and Diag(·) denotes a diagonal
matrix with diagonal entries from a vector.

C. Optimization algorithm

In this section, we develop an efficient optimization method
for our resulting model (15) using the alternating minimiza-
tion. In general, it consists of two main updating steps: sparse
coding and dictionary learning.

1) Sparse coding step: Firstly, we solve the following
sparse coding problem with respect to A when dictionary D
is fixed.

arg min
A

1

2
‖Y −DA‖2F + λ‖A‖1 + λtv‖WhHAT ‖1,2

(16)

Directly solving this sparse coding problem is difficult and
there is no closed-form solution in the literature. To solve
the problem in (16), we introduce three auxiliary variables
B,Z ∈ Rn×MN and V ∈ R2MN×n and reformulate model
(16) equivalently to

arg min
A,B,Z,V

1

2
‖Y −DB‖2F + λ‖Z‖1 + λtv‖WhV‖1,2

s.t. A = B,A = Z,HAT = V (17)

Then we can solve the constrained problem (17) based on the
ADMM algorithm [42]. The augmented Lagrangian function
of (17) is derived as
1

2
‖Y −DB‖2F + λ‖Z‖1 + λtv‖WhV‖1,2 +

µ

2
‖A−B+

Y1

µ
‖2F

+
µ

2
‖A− Z+

Y2

µ
‖2F +

µ

2
‖HAT −V +

Y3

µ
‖2F , (18)

where Y1,Y2 and Y3 are multipliers and µ is a weighting pa-
rameter. ADMM calculates each of the variables {A,B,Z,V}
iteratively by solving one while fixing others, and the resulting
sub-problems often can be solved easily.

The objective function with respect to A is given by

Ar+1 = arg min
A

1

2
‖A−Br +

Yr
1

µ
‖2F

+
1

2
‖A− Zr +

Yr
2

µ
‖2F +

1

2
‖HAT −Vr +

Yr
3

µ
‖2F (19)
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By setting the first-order derivative to zero, we can obtain

A(HTH + 2I) = Zr + Br − Yr
1

µ
− Yr

2

µ

+(VrT − YrT

3

µ
)H. (20)

Matrix A can be efficiently calculated by using the fast Fourier
transform (FFT) method:

Ar+1 = F−1
[

G

2 + (F(Hx))2 + (F(Hy))2

]
(21)

where G = F(Zr+Br−Yr
1/µ−Yr

2/µ+(VrT −YrT

3 /µ)H),
and F(·) and F−1(·) denote the FFT and the inverse FFT,
respectively.

By fixing A,Z and V, we can obtain B by solving the
following sub-problem:

Br+1 = arg min
B

1

2
‖Y −DB‖2F +

µ

2
‖Ar+1 −Br +

Yr
1

µ
‖2F .

(22)

The solution can be obtained by setting the first-order deriva-
tive to zero:

Br+1 = (DTD + µI)−1(DTY + µAr+1 + Yr
1). (23)

Next, matrix Z is updated by solving following sub-
problem:

Zr+1 = arg min
Z

λ‖Z‖1 +
µ

2
‖Ar+1 − Z+

Yr
2

µ
‖2F . (24)

By introducing the following soft-thresholding operator:

R4(x) =

{
sgn(x)(|x| − 4) |x| ≥ 4
0 otherwise

(25)

the problem in (24) can be solved by [55–58]

Zr+1 = Rλ
µ

(Ar+1 +
Yr

2

µ
). (26)

The objective function with respect to V is given by

Vr+1 = arg min
V

λtv‖WhV‖1,2 +
µ

2
‖HA(r+1)T −V +

Yr
3

µ
‖2F ,

(27)

Denote by vi the i-th row of V and ui the i-th row of
HA(r+1)T +

Yr
3

µ , the problem (27) can be solved in a row-wise
manner as follows.

vr+1
i = arg min

vi

wiiλtv‖vi‖2 +
µ

2
‖ui − vi‖22. (28)

Then vr+1
i can be updated by

vr+1
i = (1− wiiλtv/µ/‖ui‖2)+ui, (29)

where (x)+ is an operator defined as (x)+ = max(x, 0). Then
we update the weighting matrices Wx and Wy by (13) and
(14), and the multipliers Y1,Y2 and Y3 by

Yr+1
1 = Yr

1 + µ(Ar+1 −Br+1)

Yr+1
2 = Yr

2 + µ(Ar+1 − Zr+1)

Yr+1
3 = Yr

3 + µ(HA(r+1)T −Vr+1). (30)

These steps are updated iteratively until stop criterion is
satisfied.

Algorithm 1 The proposed IDLSC method
1: Input: A HSI data Y, λ, λtv, t, n, k, u;
2: Initialize D, B,Z, V and Wh;
3: while not converged do
4: Sparse coding:
5: while not converged do
6: Update A by (21)
7: Update B by (23)
8: Update Z by (26)
9: Update V by (29)

10: Update Y1,Y2,Y3 by (30)
11: Update Wh by (13) and (14)
12: end while
13: Dictionary update:
14: while not converged do
15: Update D by (35)
16: Update S by (36)
17: Update Y4 by (34)
18: end while
19: end while
20: Construct similarity matrix W by (4).
21: Apply W into spectral clustering.
22: Output: A clustering result of the HSI Y.

2) Dictionary learning step: When A is fixed, the objective
function respect to dictionary D is given by

D = arg min
D

1

2
‖Y −DA‖2F , s.t. D ≥ 0. (31)

We first introduce an auxiliary matrix S and let D = S, then
we obtain an equivalent problem of (31):

arg min
D,S

1

2
‖Y −DA‖2F , s.t. S ≥ 0,D = S, (32)

The augmented Lagrangian function of (32) is derived as
follows

arg min
D,S

1

2
‖Y −DA‖2F +

µ1

2
‖D− S +

Y4

µ1
‖2F + ι+(S),

(33)

where ι+(S) =
∑B
i=1

∑n
j=1 ι+(Sij) is the indicator function

and ι+(s) is zero if s belongs to the nonnegative orthant and
+∞ otherwise.

We obtain the optimal solution of (33) based on ADMM
algorithm by iteratively updating D,S and Y4 as follows.

Dr+1 = arg min
D

1
2‖Y −DA‖2F + µ1

2 ‖D− Sr +
Yr

4

µ1
‖2F

Sr+1 = arg min
S

µ1

2 ‖D
r+1 − S +

Yr
4

µ1
‖2F + ι+(S)

Yr+1
4 = Yr

4 + µ1(Dr+1 − Sr+1).
(34)

Dr+1 can be obtained by setting the first-order derivative to
zero:

Dr+1 = (YAT + µ1S
r −Yr

4)(AAT + µ1I)
−1. (35)

Matrix S can be updated by

Sr+1 = (Dr+1 +
Yr

4

µ1
)+. (36)
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The two steps of sparse coding and dictionary learning are
updated iteratively until |Dr+1 − Dr|∞ < ε. The complete
clustering method is summarized in Algorithm 1.

Remark 1: Computing the inverse in (23) and (35) can be
expensive when the involved matrices are big. The matrix size
of D̄ = DTD + µI in (23) and Ā = AAT + µ1I in (35)
is n × n. Note that D̄ and Ā are symmetric and positive
definite. Therefore, one can efficiently solve D̄B = F by
“B=linsolve(D̄,F,opts)” in MATLAB. When n is small, we can
also efficiently solve D̄B = F by “B=D̄\F” in MATLAB. In
our implementation, we use “B=D̄\F” to solve the problem
D̄B = F as n is often small as indicated in Fig. 18. Similarly,
we solve DĀ = F by “D=F/Ā”.

Next, we analyse the computational complexity of the
proposed optimization algorithm. In each iteration of sparse
coding, the time complexity is O(MNn log(MN)) for up-
dating A, O(MMn2) for updating B, O(2MNn) for up-
dating V and O(2MNn) for updating W. Z is updated by
the thresholding operator in (26) whose time complexity is
negligible. Since log(MN) < n in most cases, the sparse
coding has a time complexity of O(I1MNn2), where I1 is
the number of iterations in sparse coding. The update of D
in (35) is O(MNBn + MNn2 + n3). The complexity to
update S by (36) is neglectable. As n � MN and n is
smaller than B in most cases, the time complexity for updating
D is O(MNBn). Thus, the time complexity for dictionary
update step in Algorithm 1 is O(I2MNBn), where I2 is the
number of iterations in (34). Finally, we obtain the overall time
complexity, O(max(I1MNn2, I2MNBn)), of Algorithm 1
in each iteration of the outer loop.

IV. EXPERIMENTS

To evaluate the performance of the proposed method, we
compare it with two classical clustering methods FCM [9]
and k-means [8], the powerful density-based clustering method
CFSFDP [11], the original SSC method [23], the state-of-
the-art spatial-spectral clustering methods L2-SSC [35] and
JSSC [24] and four recently proposed Sketch-SSC [38], SS-
SDAR methods [41], Hx-NMF [59] and DS3C [18]. Hx-
NMF integrates graph learning and subspace clustering in a
unified non-negative matrix factorization (NMF) framework,
which does not rely on external clustering algorithms. DS3C
is an end-to-end deep subspace clustering method in which
multi-scale auto-encoder is designed to extract spatial-spectral
features at different scales and self-representation layers are
integrated with multi-scale auto-encoder to learn subspace
representation in the deep feature domain. Compared to the
SSC, L2-SSC and JSSC, which employ the whole input data
as dictionary, Sketch-SSC, SS-SDAR and our method IDLSC
utilize compact dictionaries in the subspace clustering models.
In addition, the results of our initial DLSC model are also
reported.

We evaluate all the methods on three well-known HSIs,
including Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) Indian Pines image, Hyperspectral Digital Imagery
Collection Experiment (HYDICE) Urban image and National
Center for Airborne Laser Mapping (NCALM) University of

Houston image. The clustering performance is measured by
the metrics: overall accuracy (OA), averaged precision rate
(APR) and the running time. Also visual clustering results
are reported. To calculate the OA and APR from confusion
matrix, we first find the best match between the clustering
results and ground truth by an optimal mapping function
obtained by the Kuhn-Munkres algorithm [60]. Note that the
label information is used only for the purpose of evaluating
clustering performance and not used in the clustering methods.
All clustering methods are unsupervised methods. Let ni,j be
the number of pixels in class i that are labeled as class j and
pi the precision rate for the i-th class pi = ni,i/

∑
j nj,i [61].

Then, APR is given by
∑
pi/t. We set the number of clusters,

t, to the number of classes in the ground truth. All the methods
except SS-SDAR (partly written with C code) and DS3C were
implemented in MATLAB on a computer with an Intel c© core-
i7 3930K CPU with 64 GB of RAM. The DS3C method was
implemented in TensorFlow and was run in Google Colab with
a Tesla P100 GPU with 25 GB of RAM.

The parameters of compared methods are tuned to
achieve their best performance in terms of OA. Specif-
ically, we tune the parameter of SSC αz in the range
of {100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800}. In
L2-SSC, the parameter α is set to 10−3 and β is tuned
in the range of {100, 200, 400, 600, 800, 1000, 1200, 1400,
1600, 1800}. The number of super-pixels in JSSC is set
in the range of {10, 20, 40, 80} and λ is tuned in the
range of {1, 10, 100, 1000}. In Sketch-SSC, we tune the
parameter α in the range of {10, 100, 1000, 10000, 100000}.
The parameter K in SS-SDAR is searched within the set
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50} and λ2 is set to 0.1 as
suggested by [41]. In Hx-NMF, we vary parameters α and
β in the range of {10−4, 10−3, 10−2, 10−1}, respectively. In
DS3C, the architecture of auto-encoder and parameters α, β
are the same as that in [18], and we set the number of epochs
to 500.

A. AVIRIS Data Set: Indian Pines Image
This image was captured by the AVIRIS sensor over the

Indian Pines region in North-western Indiana on June 12,
1992, with 20-m spatial resolution per pixel and 10-nm
spectral resolution per band in the range between 100 nm
and 2500 nm. Indian Pines image contains 220 bands and
each band has a spatial size of 145 × 145. During the test,
20 spectral bands in 104-108, 150-163 and 200 are removed
due to water absorption. This image consists of 16 classes. We
select four classes from the image and the test image has a
total number of 85×70 pixels [32]. The four classes in the test
hyperspectral data are shown in Table I. The corresponding
false-color composite image and ground truth are shown in
Fig. 3 (a) and (b), respectively. It is known that supervised
classification on this data is very difficult due to the spectral
noise and the high similarity of data points belonging to
different classes (e.g., class 1, 3 and 4), which can be seen
in Fig. 4. Unsupervised clustering methods do not use any
labelled training samples, so the accessed prior information is
more limited than the supervised classification, which makes
the clustering on this data even more challenging.
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TABLE I
QUANTITATIVE EVALUATION OF DIFFERENT CLUSTERING METHODS ON PART OF INDIAN PINES

No. Class name FCM k-means CFSFDP SSC L2-SSC JSSC Sketch-
SSC

SS-
SDAR

Hx-
NMF DS3C1 DLSC IDLSC

1 Corn-notill 62.39 69.85 28.46 60.00 61.09 74.03 62.19 69.25 50.65 48.36 57.61 88.18
2 Grass-trees 94.66 53.84 100 98.36 99.32 100 100 90.96 91.51 100 99.97 100
3 Soybean-notill 44.13 0 82.38 76.91 79.37 86.20 68.80 62.02 41.94 60.25 62.09 100
4 Soybean-mintill 63.83 57.59 50.73 50.68 54.89 87.79 58.87 91.37 88.10 90.90 68.91 94.84

OA(%) 65.34 50.17 59.10 65.11 67.78 86.40 68.12 81.35 72.40 77.57 70.35 95.04
APR(%) 65.8 44.61 73.01 72.40 74.63 86.51 72.64 82.04 77.19 79.97 74.05 95.48

Time(in seconds) 6 3 9 543 624 270 3 29 78 874 30 164

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 3. The part of Indian Pines. (a) False color image, (b) Ground truth, and Clustering maps of (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC,
(h) JSSC, (i) Sketch-SSC, (j) SS-SDAR, (k) Hx-NMF, (l) DS3C, (m) DLSC and (n) IDLSC.

Fig. 4. Randomly selected spectral curves (ten per class) in Indian Pines
image.

The clustering results of different clustering methods are
reported in Table I with quantitative evaluations mentioned
above. The clustering maps are shown in Fig. 3. The best
result in Table I is marked in bold and the second best result
is underlined. We set λ and λtv in our method as 5 × 10−6

and 5× 10−2 for this data set, respectively. Other parameters
are set as n = 70, k = 30 and u = 0.5 for the experiments in
all the data sets. In general, Fig. 3 and Table I indicate that
our IDLSC method outperforms other clustering methods in
terms of overall accuracy. There are several observations to be
made here.

Firstly, representation-based clustering methods SSC, L2-
SSC, JSSC, Sketch-SSC, SS-SDAR, Hx-NMF, DLSC and
IDLSC often achieve higher clustering accuracy than the clas-
sical clustering methods FCM, k-means and CFSFDP, which
demonstrates the effectiveness of representation-based cluster-
ing for HSI. The superior performance mainly comes from the
fact that the similarity matrix obtained in representation-based
methods can capture well the nonlinear and low dimensional
manifold structure of the input data, which is further exploited
in the spectral clustering.

Secondly, the spatial-spectral clustering methods achieve
higher accuracy than spectral-based methods. Specifically, L2-
SSC, JSSC, SS-SDAR and IDLSC perform better than SSC in
terms of clustering accuracy and especially our method IDLSC
yields the best result with 29.83% improvement over SSC. The
reason for the lower accuracy of SSC is that the sparse coding

1The whole data including unlabelled pixels is fed into DS3C model rather
than only the labelled pixels as in [18], which leads to a different result from
the published work [18].
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in SSC is computed independently which ignores the spatial
dependencies of pixels. In contrast, spatial-spectral clustering
methods incorporate spatial information in the clustering mod-
els, resulting in improved clustering accuracy. The improved
performance of IDLSC over DLSC also demonstrates the im-
portance of the spatial information. It is observed that the deep
subspace clustering model DS3C outperforms the spectral-
based methods SSC, Sketch-SSC, Hx-NMF and DLSC. The
improvement can be mainly attributed to the discriminative
deep features extracted by encoder. Note that a query data
point of DS3C is a data cube, including the central pixel and
its neighbouring pixels in a square window, which means that
DS3C also incorporates spatial information to a certain degree.
However, the self-representation layer placed after encoder
computes coefficients vectors independently, which neglects
the spatial connection of data points, leading to inferior
performance to other spatial-spectral methods JSSC, SS-SDAR
and IDLSC. The clustering results in Fig. 3 show that the
spatial-spectral methods often produce smoother clustering
maps than spectral-based methods, indicating the superior
ability to preserve the homogeneity of results. It is obvious
that our result in Fig. 3 (n) exhibits the best consistency in
local region and best agreement with the ground truth, which
is clearly verified in Table I. For example, the accuracies for
both class 2 and class 3 reach up to 100%, and the accuracies
for class 1 and 4 are 88.18% and 94.84%, respectively, which
are much higher than that in other state-of-the-art methods.

Thirdly, the representation-based methods usually take
longer time than the classical methods FCM, k-means and
CFSFDP, especially the traditional SSC-based methods SSC,
L2-SSC and JSSC. Their long running time is due to the
huge size of optimization problems, involving large self-
representation dictionaries. Compared with SSC, L2-SSC and
JSSC, other representation-based methods including Sketch-
SSC, SS-SDAR, DLSC and IDLSC consume less running
time because of the employed compact dictionaries. As the
dictionary size is much smaller than the self-representation
dictionary, the number of variables to be optimized is signifi-
cantly reduced (up to hundreds times), decreasing thereby the
overall complexity. This clearly shows the benefit of using
compact dictionaries in subspace clustering. DS3C uses more
running time than other methods, which is mainly caused by
the employed two self-representation layers which contains
huge amount of variables to be optimized.

Lastly, observe that our IDLSC shows a notable improve-
ment over Sketch-SSC and SS-SDAR, both of which utilize
compact dictionaries in the subspace clustering models. The
clustering accuracy of Sketch-SSC on the Indian Pines data
set was only about 68%, which is clearly insufficient for any
practical use. This poor performance is mainly due to the noise
and spectral variability. Similarly, Hx-NMF, which does not
make use of spatial information, does not obtain satisfactory
clustering performance here as well. The accuracy obtained by
SS-SDAR although better (around 81%) is still unsatisfactory.
This can be partly attributed to the weaker representation
ability of a fixed wavelet dictionary. In contrast, our method
yields an accuracy of above 95%. The superior performance
confirms the advantages of using the adaptive dictionary and

the novel AJTV spatial regularization.

B. HYDICE Data Set: Urban Image

The second data set that we use for evaluation is HYDICE
Urban image, which was captured by the HYDICE sensor
during a flight campaign over Copperas Cove, near Fort Hood,
TX, USA. This data has a spatial size of 307×307 and contains
210 bands corresponding to the wavelengths ranging from 400
nm to 2500 nm. After removing the bands 1-4, 76, 87, 101-
111, 136-153 and 198-210, which are seriously polluted by
the atmosphere and water absorption, the remaining 162 bands
are used in the experiments. For computational efficiency, a
typical subset of data with a size 150×160×162 is used as the
test data, which includes seven land-cover objects as shown in
Table II. The false-color image and ground truth are shown in
Fig. 5 (a) and (b), respectively. Fig. 6 presents the randomly
selected spectral curves in each class, where we can learn that
this dataset has more complicated land-covers. In particular,
class 3, 4 and 5 have large spectral variations within class and
also share very high spectral similarity cross classes.

We report the clustering performance of all the methods ex-
cept DS3C in Table II and Fig. 5, where quantitative and visual
evaluations are presented, respectively. Due to out of memory,
DS3C cannot be run in our available computing devices. In
this data, we set λ = 6 × 10−3 and λtv = 10−3 and other
parameters the same to the first data set. Generally, from Table
II and Fig. 5, we can learn the similar observations to that
in the previous experiment. Our method IDLSC consistently
achieve the best clustering performance in terms of OA and
APR, which demonstrates the effectiveness and superiority
of our approach. We observe that on some classes such as
“parking lot”, “trees”, “sparse vegetation” and “concrete road”
other methods yield better classification accuracy. However,
the accuracies that our method yields on these classes are com-
parable to the corresponding best results. Classical methods k-
means and CFSFDP obtain very poor results especially in the
classes “tree” and “asphalt road”. In contrast, the remaining
representation-based methods mostly yield much higher over-
all accuracies and cluster the classes “tree” and “asphalt road”
very well, indicting the superior ability of representation-
based methods to capture the complicated data structure.
The accuracy of SSC is not acceptable as it only consider
spectral information. The spatial-spectral clustering methods
L2-SSC and JSSC incorporate spatial information to improve
the accuracy to a certain degree. But their high computational
complexities caused by the large self-representation dictionary
dramatically increase the running time, which is less attractive
in practice. Sketch-SSC method proposed for computer vision
task uses a sketched dictionary by random projection to reduce
the overall complexity, but the clustering accuracy in HSI is
very poor due to the effect of noise and spectral variability.
SS-SDAR obtains a comparatively higher accuracy of 83.01%
with the sparse dictionary and post filtering technique, but the
representation ability of dictionary is not optimal because of
the fixed wavelets dictionary, which leaves room for a better
performance. Compared with SS-SDAR, our method achieves
a significant improvement in terms of OA, with the completely
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TABLE II
QUANTITATIVE EVALUATION OF DIFFERENT CLUSTERING METHODS ON THE HYDICE URBAN (“OOM” MEANS “OUT OF MEMORY”)

No. Class name FCM k-means CFSFDP SSC L2-SSC JSSC Sketch-
SSC

SS-
SDAR

Hx-
NMF DS3C DLSC IDLSC

1 Roof 88.22 90.20 94.74 96.24 96.48 89.48 97.72 87.64 88.95 OOM 99.42 99.41
2 Parking lot 93.52 96.63 98.98 93.82 95.75 93.33 88.15 99.96 95.49 — 67.88 92.75
3 Grass 48.49 43.56 41.71 73.55 75.17 72.62 70.46 83.64 63.46 — 68.45 84.29
4 Trees 1.24 37.68 9.01 92.65 90.27 92.13 90.41 74.02 92.65 — 83.85 84.43
5 Sparse vegetation 77.25 85.18 99.26 40.83 77.56 56.91 71.74 63.16 92.12 — 60.38 95.84
6 Asphalt road 69.03 2.71 0 71.26 46.58 72.13 48.93 71.37 13.99 — 90.62 93.08
7 Concrete road 74.39 70.18 52.55 53.10 98.78 97.89 46.83 96.90 94.46 — 93.24 90.22

OA(%) 71.02 65.04 64.26 76.37 82.32 80.95 75.76 83.01 76.47 OOM 78.86 92.37
APR(%) 65.64 59.53 67.28 77.05 83.20 81.18 75.22 82.95 78.54 — 79.32 92.47

Time(in seconds) 39 17 158 31047 20111 10907 24 480 968 — 173 1100

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Fig. 5. HYDICE Urban image. (a) False color image, (b) Ground truth, and Clustering maps of (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC,
(h) JSSC, (i) Sketch-SSC, (j) SS-SDAR, (k) Hx-NMF, (l) DLSC and (m) IDLSC.

Fig. 6. Randomly selected spectral curves (three per class) in HYDICE Urban
image.

learned dictionary and adaptive joint TV constraint, which
collaboratively promote the discriminability and consistency
in subspace representation. Hx-NMF yields an OA of 76.47%,
which is comparable to SSC. Our method spends slightly
more running time than Sketch-SSC and SS-SDAR (partly
implemented by C code), but it is admissible in consideration
of the improved accuracy. Notably, in comparison with the
SSC, L2-SSC and JSSC, our method achieves a remarkable

improvement both in accuracy and running time. Also our
clustering map in Fig. 5 (m) presents the best visual result
where the detailed and smooth regions are mostly consistent
with the false-color image and ground truth.

C. NCALM Data Set: University of Houston
The third dataset we use for evaluation is University of

Houston image, which was gathered by the NCALM sensor
during a flight over the University of Houston campuse,
Texas, USA, in June 2012. This dataset has been used in
the 2013 IEEE GRSS Data Fusion Contest (DFC) [62].
The hyperspectral image has a spatial size of 349 × 1905,
comprising 144 spectral bands from the 380 nm to 1050 nm.
We are interested in a 130× 130× 144 subset of this image,
captured over Robertson stadium on the Houston Campus and
its surroundings. Fig. 7 (a) and (b) show the false-color image
and corresponding ground truth. In total there are seven classes
in the test dataset as shown in Table III. The spectral curves
shown in Fig. 8 indicates the challenge of clustering on this
data due to the large spectral variations within class and high
similarity between several classes.

Table III and Fig. 7 present the clustering performance on
this data with quantitative evaluations and visual clustering
maps, respectively. The result of DS3C is not shown because
of out of memory. We set λ = 0.1 and λtv = 0.05 and
other parameters the same as that in previous experiments. The
results in Table III show that our method continually outper-
forms other state-of-the-art clustering methods with the highest
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TABLE III
QUANTITATIVE EVALUATION OF DIFFERENT CLUSTERING METHODS ON THE NCALM UNIVERSITY OF HOUSTON (“OOM” MEANS “OUT OF MEMORY”)

No. Class name FCM k-means CFSFDP SSC L2-SSC JSSC Sketch-
SSC

SS-
SDAR

Hx-
NMF DS3C DLSC IDLSC

1 Concrete 80.40 80.77 46.50 40.54 46.50 46.50 48.66 46.87 87.11 OOM 53.28 93.98
2 Grass-1 99.88 99.54 100 99.88 99.30 100 100 100 98.61 — 90.85 99.91
3 Grass-2 0 0 0 36.20 58.06 70.43 0.07 48.57 70.07 — 76.52 98.85
4 Parking lot 63.31 62.91 99.70 97.60 99.10 98.55 95.41 99.75 89.72 — 95.16 98.20
5 Roof 88.46 92.31 53.08 95.38 100 100 100 95.38 99.23 — 100 100
6 Trees 52.30 69.98 84.26 89.83 83.05 82.57 1.4 62.95 24.70 — 0 0.68
7 Asphalt 82.52 85.03 0.13 51.32 30.19 68.68 29.66 59.62 1.13 — 64.78 85.43

OA(%) 68.74 70.25 63.93 73.17 73.77 79.80 62.24 75.67 72.87 OOM 73.35 89.35
APR(%) 55.85 58.54 60.60 79.59 73.21 82.58 58.05 77.31 66.31 — 71.79 85.75

Time(in seconds) 21 10 66 11502 11859 3958 12 260 469 — 112 383

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Fig. 7. NCALM University of Houston image. (a) False color image, (b) Ground truth, and Clustering maps of (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC,
(g) L2-SSC, (h) JSSC, (i) Sketch-SSC, (j) SS-SDAR, (k) Hx-NMF, (l) DLSC and (m) IDLSC.

Fig. 8. Randomly selected spectral curves (ten per class) in NCALM
University of Houston image.

overall accuracy. We also achieve the highest accuracies in
the classes “concrete”, “grass-2”, “roof” and “asphalt”, and
comparable accuracies in the classes “grass-1” and “parking
lot”. The accuracy of “trees” is very low. The reason mainly
attributes to the failure of IDLSC in discrimination between
“grass-2” and “trees”, which results in that most of “trees”
are clustered into the group of “grass-2” as shown in Fig. 7

(m). A possible solution to alleviate this problem is to use a
different set of parameters. But the risk is a degraded overall
accuracy. It is noticed again in Table III that representation-
based methods yield better performance than FCM, k-means
and CFSFDP in terms of accuracy. We can also find that
k-means algorithm is the most efficient clustering method,
which takes the least running time in all the three datasets.
Compared with the spectral-based SSC method, the spatial-
spectral methods L2-SSC and JSSC obtain improved clustering
accuracy. In comparison with SSC, L2-SSC and JSSC, Sketch-
SSC, SS-SDAR, Hx-NMF, DLSC and IDLSC take much less
running time due to the employed compact dictionary. Our
IDLSC method yields a notable improvement over SSC, L2-
SSC and JSSC in terms of accuracy and speed. Compared with
SS-SDAR method, our method achieves a significant accuracy
improvement with the comparable running time. The results
in Fig. 7 reveal that the clustering map of our method in Fig.
7 (m) is more congruous with the ground-truth than others
especially for the classes “concrete” and “asphalt”. Overall,
the results in this experiment verifies again the advantages of
our approach.

D. Discussion and Analysis

1) The Analysis of Similarity Matrices: As most of the
representation-based methods apply the same spectral clus-
tering to obtain clustering results with their corresponding
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Similarity matrices obtained by (a) SSC, (b) L2-SSC, (c) JSSC, (d) Sketch-SSC, (e) SS-SDAR, (f) DS3C, (g) DLSC and (h) IDLSC in the Indian
Pines image.

Fig. 10. Comparisons between the coefficients obtained by SSC (first row),
DLSC (second row) and IDLSC (third row). Five layers of coefficients cube
A are shown.

similarity matrices, it is very interesting to visualize and com-
pare the resulting similarity matrices in different methods. For
simplification, we assume all the data points are sequentially
arranged by class. The similarity matrices obtained by different
methods are shown in Fig. 9, which are corresponding to
the randomly selected pixels (200 per class) in the Indian
Pines image. Clearly, our similarity matrix in Fig. 9 (g)
resembles more block-diagonal structure than others, which
means it imposes less wrong connections between the data
points belonging to different classes. In contrast, the similarity
matrices of other methods have many incorrect links between
different classes, e.g., classes (1,4) and (3,4). This observation
is consistent with the results in Table I, where the accuracies
on the classes 1, 3 and 4 are much lower than class 2 in most
of the clustering methods.

Band 10 Band 20 Band 30 Band 40 Band 50

0.08 0.14

Fig. 11. Comparisons between the original HSI (first row) and the recon-
structed data by using the coefficients from SSC (second row), DLSC (third
row) and IDLSC (last row). Five bands are shown.

2) Visualization of the Learned Features: We show in
Fig. 10 the coefficients of SSC, DLSC and IDLSC on the
data set Indian Pines. The coefficient maps of SSC (first row)
are much more sparse compared with DLSC (second row) and
IDLSC (third row). This is because SSC uses the highly redun-
dant self-representation dictionary while DLSC and IDLSC
use compact dictionary that is learned from the input data. The
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(a) (b)

(c) (d)

Fig. 12. Feature visualization by applying (a) raw data, (b) coefficients of
SSC, (c) coefficients of DLSC and (d) coefficients of IDLSC in the dimension
reduction algorithm t-SNE. The dimension of data is reduced to two.

atoms in the learned dictionary are often more discriminative
than those of SSC. This results in denser coefficients in
each A(:, :, i) for the methods DLSC and IDLSC. Compared
with SSC, the coefficients of DLSC and IDLSC show much
stronger spatial correlations in local regions as shown in Fig.
10. This is important for the subsequent construction of KNN
graph in our method as the neighbours searched in the feature
domain mostly belong to the same cluster. Due to the use
of spatial regularization, the coefficient maps of IDLSC are
much smoother than DLSC as shown in Fig. 10, which means
that the coefficients of most neighbouring pixels are similar,
reducing thereby the within-cluster variance of features.

We obtain reconstructed data by Ŷ = DA. The recon-
structed data Ŷ is reshaped to 3-D hyperspectral data and five
bands are shown in Fig. 11. Generally, all three methods show
good approximations to the input data. SSC (second row) and
DLSC (third row) yield closer data reconstructions to the raw
data (first row) compared with IDLSC (last row). The bands
of the reconstructed data in IDLSC are smoother than the raw
data Y and the data approximations obtained by SSC and
DLSC. This is reasonable because of the smoothness of the
coefficients in IDLSC. However, the coefficients resulting in
better data reconstructions do not necessary perform better in
the clustering task.

We apply the learned coefficients in the dimension reduc-
tion algorithm: t-distributed stochastic neighbor embedding
(t-SNE) [63] and show the results in Fig. 12, where the
dimension of coefficients vector is reduced to two and the
data points belonging to different clusters are annotated by
different colors. The results show that compared to the raw
data in Fig. 12 (a), the coefficients learned by SSC, DLSC
and IDLSC show improved separability. IDLSC yields the best
result where four clusters are almost perfectly separated. The
significantly improved separability with IDLSC facilitates the
subsequent construction of a more block-diagonal similarity
matrix of KNN graph as most of the neighbours defined

TABLE IV
DIFFERENT NOISE ADDED INTO INDIAN PINES FOR ROBUST ANALYSIS

Schemes Noise Noise level
GN1 Gaussian noise SNR varying between 30 and 40 dB in each band
GN2 Gaussian noise SNR varying between 20 and 30 dB in each band
GN3 Gaussian noise SNR varying between 10 and 20 dB in each band
IN1 Impulse noise 20% corrupted pixels in bands 30-40
IN2 Impulse noise 40% corrupted pixels in bands 30-40
IN3 Impulse noise 60% corrupted pixels in bands 30-40

MN1 Mixed noise GN3+IN1
MN2 Mixed noise GN3+IN2
MN3 Mixed noise GN3+IN3

in Euclidean distance in the feature domain are from the
same cluster. This improves thereby the accuracy in spectral
clustering.

3) The Influence of Noise: We show the influence of noise
on the clustering accuracies of different methods on the
data set Indian Pines in Fig. 13. Three kinds of noise are
considered: Gaussian noise, impulse noise and a mixture of
the former two. We add different levels of noise in the data
as shown in Table IV. For instance, in scheme GN1 we add
Gaussian noise such that signal-to-noise ratio (SNR) varies
between 30 and 40 dB in each band, and in scheme IN1 we
introduce impulse noise with 20% of corrupted pixels in bands
30-40. ”Raw” in Fig. 13 is the case using the raw HSI.

Generally, the accuracies of all the methods decrease after
adding the noise. The mixed noise tends to deteriorate the
performance most severely, and impulse noise has more in-
fluence on the clustering performance than Gaussian noise.
It is observed that in all schemes our method IDLSC yields
consistently the highest accuracies. With Gaussian noise, the
performance of representation-based methods SSC, L2-SSC,
Sketch-SSC, SS-SDAR, HX-NMF, DLSC and IDLSC is more
stable than conventional FCM, k-means and CFSFDP, which
yield significantly decreased accuracies when high-level of
Gaussian noise is added, i.e., the scheme GN3. With im-
pulse noise, spectral-based methods, such as FCM, k-means,
CFSFDP, Sketch-SSC, Hx-NMF, DS3C and DLSC, yield poor
clustering results compared with “Raw”. This is mainly caused
by the significantly increased within-cluster variability from
the added impulse noise. While due to the adopted spatial
constraints in spatial-spectral clustering methods JSSC, SS-
SDAR and IDLSC, they are able to yield more smoothing
features in spatial dimensions and thereby reduce the within-
cluster variance in feature domain, leading to significantly
improved accuracy compared with the spectral-based methods.
It is observed that L2-SSC, SS-SDAR and IDLSC yield
comparable performance to “Raw” in MN1, but in MN2 and
MN3 their accuracies are dropped sharply. The deep learning
based model DS3C performs well on low levels of Gaussian
noise such as GN1 and GN2 but worse in other schemes. The
proposed IDLSC yields comparable accuracies to “Raw” in
the schemes of GN1-GN3, IN1 and MN1, but performs worse
on high-levels of impulse noise and mixed noise in IN2, IN3,
MN2 and MN3.

4) The Analysis of Parameters: The parameters in our
approach include two regularization parameters λ and λtv ,
the number of neighbours in KNN graph k, the parameter of
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Fig. 13. The influence of noise on the clustering accuracy of different methods on part of Indian Pines.

Fig. 14. The overall accuracies with respect to λ in three datasets: Indian
Pines (left), HYDICE Urban (middle) and University of Houston (right).

Fig. 15. The overall accuracies with respect to λtv in three datasets: Indian
Pines (left), HYDICE Urban (middle) and University of Houston (right).

Fig. 16. The overall accuracies with respect to k in three datasets: Indian
Pines (left), HYDICE Urban (middle) and University of Houston (right).

weights u and the dictionary size n. We conduct experiments
to analyse the parameters on three data sets: Indian Pines,
HYDICE Urban and University of Houston, and report the
corresponding results in Figs. 14 – 18, showing the curves of
overall accuracy with respect to the parameters.

The regularization parameters λ and λtv in (15) control
the balance between three terms, i.e. data fidelity, sparsity of
coefficients and consistency of coefficients. The experimental
results in Fig. 14 and 15 show a stable performance of our
method over a relatively wide ranges of these parameters. On
HYDICE Urban and University of Houston the performance
is very stable with respect to both parameters. In Indian
Pines, the parameters with larger λtv and smaller λ often
performs better, indicating the importance of incorporating
spatial information in this data. The results in HYDICE Urban

Fig. 17. The overall accuracies with respect to u in three datasets: Indian
Pines (left), HYDICE Urban (middle) and University of Houston (right).

Fig. 18. The overall accuracies with respect to n in three datasets: Indian
Pines (left), HYDICE Urban (middle) and University of Houston (right).

and University of Houston show that the parameter λ has
slightly more effect on the clustering performance than λtv . It
is also noticed that in most cases our method performs better
than the original SSC method with higher accuracy.

We also present the clustering results with respect to other
parameters including k, u and n in Figs. 16 – 18. The optimal
settings of these three parameters are less dependent on the
particular data sets, which implies that we can fix them for all
the data sets, achieving satisfactory clustering performance.
Fig. 16 indicates that the accuracies increase dramatically
at the beginning when k is small, and then reach to the
peak at 30 ≤ k ≤ 50 before the following decrease at
k > 50. Hence, we set k = 30 in our experiments for all the
tested data sets, which is also the reason why the similarity
matrix in our method is often sparser than that in SSC, JSSC
and L2-SSC, as indicated in Fig. 2. Such sparse similarity
matrix is particularly beneficial for big data because of the
reduced memory requirement. The results in Fig. 17 show that
u = 0.5 is a reasonable choice for all the three data sets. In
Fig. 18, we can notice that a larger dictionary often yields
better accuracy. The clustering accuracy gradually increases
along with increasing n, and then saturates. Notably, when
the dictionary size is very small (e.g., n = 10), our method
still outperforms the original SSC method on the three data
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Fig. 19. Performance comparisons between the models with `1 norm based
TV constraint and `1,2 norm based TV constraint on three data sets.

sets, which demonstrates the great potential of using compact
dictionary in subspace clustering. According to the parameter
study, we suggest to set λ = 10−3, λtv = 5 × 10−2, n =
70, k = 30 and u = 0.5, which yields reasonably good
clustering performance in different data sets.

5) Ablation Study: To validate the benefit of `1,2 norm
based AJTV, we compare our method with its modified version
where ‖WHAT ‖1,2 in the proposed model (15) is replaced
with the `1 norm based regularization ‖WHAT ‖1. The results
in Fig. 19 reveal that the model with `1,2 norm based TV
regularization yields consistently better clustering performance
in terms of OA than the `1 norm regularized model on the three
data sets. Especially on the data set University of Houston, the
OA improvement is remarkable: more than 8%. We observe
that even with `1 norm, our method outperforms the reference
methods in Tables I – III on the three data sets.

6) Performance on Unbalanced Data Set: The experimen-
tal results on the data set Indian Pines with 16 classes are
shown in Table V. The 16 classes in the Indian Pines are
known to be unbalanced [61]. For instance, the class “oats”
has only 20 samples while the class “soybean-mintill” has
a total number of 2455 samples. The results in Table V
show that clustering on this data set is difficult: most of
the tested clustering methods yield the OA even below 40%.
IDLSC yields the best clustering performance in terms of OA
and APR. Compared with JSSC, which achieves the second
best result, our method obtains a significant OA improvement
of more than 12%. SS-SDAR obtains a comparable APR
but shows a much worse OA and a lower running speed
in comparison with IDLSC. Compared with Hx-NMF, our
method shows better OA, APR and running time. Hx-NMF
is less efficient on large-scale data sets where it needs to
update huge similarity matrices. Compared to SSC, L2-SSC
and JSSC, IDLSC shows a significant speed improvement due
to the learned compact dictionary. Sketch-SSC and k-means
are the fastest methods but their results are inferior to most
others in terms of the accuracy.

7) Convergence Study: We show in Fig. 20 the evolution
of objective function of the proposed model with respect to
the number of iterations on the three data sets. The results
reveal that the objective function monotonically decreases to

TABLE V
CLUSTERING RESULTS ON UNBALANCED DATA SET: INDIAN PINES WITH

16 CLASSES (“OOM” MEANS “OUT OF MEMORY”)

Methods OA(%) APR(%) Time
(in seconds)

FCM 31.57 31.71 65
k-means 37.41 37.36 10
CFSFDP 35.99 14.96 131

SSC 34.80 34.87 16906
L2-SSC 42.10 39.20 20769

JSSC 50.90 44.38 18326
Sketch-SSC 36.93 20.04 7
SS-SDAR 43.12 51.53 516
Hx-NMF 41.02 26.14 734

DS3C OOM OOM OOM
DLSC 40.68 39.61 103
IDLSC 63.45 52.30 306

Fig. 20. The evolution of loss of the proposed model with respect to the
number of iterations on three data sets: Indian Pines (left), HYDICE Urban
(middle) and NCALM University of Houston (right).

a stable level on the three HSIs. Roughly, our proposed model
converges within 20 iterations. In the data sets Indian Pines
and NCALM University of Houston, the objective function
drops sharply in the first several iterations and then saturates,
demonstrating the fast convergence of our algorithm.

V. CONCLUSION

In this paper, we propose a novel subspace clustering
method for hyperspectral remote sensing images by using
dictionary learning technique with an adaptive joint total
variation regularization. In particular, we employ a compact
dictionary learned from the data to model the low-dimensional
subspaces of data, which enables a more efficient subspace
clustering method. To capture the important local geometric
data structure, a joint total variation with a `1,2 norm is
incorporated in our model. To discriminate the data points in
different regions, the joint TV is adaptively weighted accord-
ing to the coefficients matrix. Consequently, the consistency
and discriminability of the coefficients get improved in the
subspace representation, which increases the robustness of
model to noise and spectral variability, facilitating simultane-
ously the construction of a desired similarity matrix. Further-
more, we develop an effective solver to obtain the solution
for the resulting optimization problem based on alternating
minimization and alternating direction method of multipliers.
The experiments on real HSIs show the effectiveness of our
algorithm and its superiority over the state-of-the-art.
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Prof. Pižurica received the scientific prize “de Boelpaepe” for 2013–2014
awarded by the Royal Academy of Science, Letters and Fine Arts of Belgium
for her contributions to statistical image modeling and applications to digital
painting analysis. The work of her team has been awarded twice the Best Paper
Award of the IEEE Geoscience and Remote Sensing Society Data Fusion
contest, in 2013 and 2014. She has served as an Associate Editor for the
IEEE TRANSACTIONS ON IMAGE PROCESSING (2012 – 2016), Senior
Area Editor for the IEEE TRANSACTIONS ON IMAGE PROCESSING
(2016 – 2019) and an Associate Editor for the IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY (2016 – 2020).
She was a Lead Guest Editor for the EURASIP Journal on Advances in Signal
Processing Special Issue “Advanced Statistical Tools for Enhanced Quality
Digital Imaging with Realistic Capture Models” in 2013.


