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Abstract—Band selection, which removes irrelevant bands
from hyperspectral images (HSIs) and keeps essential spectral
information contained in a relatively few bands, allows huge
savings in data storage, computation time and imaging hard-
ware. In this paper, we propose a novel structural subspace
clustering (STSC) method for hyperspectral band selection,
which leverages the self-representation property of data and
structural prior information to learn the cluster structure of
bands. Particularly, we propose a general clustering model where
the coarse coefficients matrix derived from a self-representation
model is decomposed as a combination of a desirable coefficients
matrix and a sparse matrix. This strategy adaptively adjusts the
coarse coefficients matrix to learn the intrinsic data structure
in low-dimensional subspaces. To guide this learning process, we
introduce a structural regularization approach which makes use
of the prior information about local and global properties of
spectral bands. Moreover, we incorporate also prior knowledge
about the dictionary, which demonstrates to yield a better clus-
tering performance. We develop an adaptive method to estimate
the number of selected bands by analysing eigenvalue gaps of
Laplacian matrix. To solve the resulting model, an efficient
algorithm based on alternating direction method of multipliers
(ADMM) is developed. Extensive experiments on benchmark
HSIs show that our method outperforms the state-of-the-art.

Index Terms—Band selection, hyperspectral image, remote
sensing, subspace clustering.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) capture spectral sig-
natures of observed objects in hundreds of spectral

bands, enabling thereby to differentiate between materials
that are often indistinguishable in visible and conventional
multispectral images. Hence, HSIs enjoy a great success in nu-
merous emerging domains such as food safety, environmental
monitoring and art investigation. However, their processing
is challenging due to high dimensionality (often hundreds
of bands) and redundant spectral information [1]. Problems
associated with analysis of such high-dimensional data are
referred to as the curse of dimensionality [2].
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Feature extraction and band selection are two common ap-
proaches to reduce the dimensionality of HSIs. Both aim at ex-
tracting relevant information from the data for the subsequent
data analysis, reducing thereby the computational complexity
with the minimum loss of information. Representative feature
extraction methods for HSIs, such as principle component
analysis (PCA) [3, 4], linear discriminant analysis (LDA) [5, 6]
and locality preserving projections (LPP) [7, 8], transform the
initial spectral bands to a new set of features by a learned pro-
jection matrix while keeping relevant information as much as
possible. The resulting features with the projection operation
are derived from a linear combination of the initial spectral
bands. However, this results in an explicit spectral distortion,
and thereby makes the physical interpretation difficult and
obstacles applications with the demand on physical spectral
measures [9].

Band selection removes less relevant (often redundant)
spectral bands and selects a subset of informative ones from
an HSI, preserving well the original spectral information from
sensors. Thus, band selection facilitates data storage, and
enables reduction of the algorithmic complexity as well as sim-
plifying imaging hardware in data acquisition. Band selection
can be carried out in unsupervised [10–13], semi-supervised
[14–18] and supervised [19–22] manner depending on how
labeled samples and unlabeled samples are involved in the
model (see a recent review paper [23] for more details). Since
data annotation is expensive in practice, resulting in scarce
labeled data, in this paper we mainly focus on unsupervised
band selection method. Unsupervised band selection generally
can be categorized into four groups: ranking-based, clustering-
based, searching-based and hybrid methods. Ranking-based
methods select the top-ranked bands according to a given cri-
terion, such as energy maximization [24] and band correlation
minimization [25, 26]. Clustering-based approaches first use
clustering algorithms to decorrelate spectral bands [9, 13, 27–
30]. All spectral bands are consequently assigned into different
groups based on their similarities. Since the spectral bands
in each group typically show high similarity, by selecting the
bands that are closest to the centroids in each cluster, the most
representative bands in HSIs are obtained. Searching based
methods either update all the selected bands iteratively by
using evolutionary searching approach [31, 32] or sequentially
select/remove bands based on previously selected bands until
the desired number of bands is reached [33]. Hybrid methods
combine different types of band selection approaches, such as
clustering-based and ranking-based methods [34, 35], to make
the best use of each of them.
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Recently, self-representation based subspace clustering
(SSC) models have achieved remarkable results in unsuper-
vised band selection [30, 36]. In general, SSC assumes that
each data point can be represented by a linear combination
of a few others from the same subspace [37]. By using the
input data as a dictionary, SSC aims at solving a sparse
coding problem to reveal the affinity structure of data, which is
further applied in spectral clustering to obtain clustering results
[38]. Zhu et al. develop a low-rank representation (LRR)
based band selection model by regularizing the coefficients
matrix to be low rank [12]. The utilized low-rank constraint
captures effectively global data property, which enables a
desirable classification performance with the selected bands.
Sun et al. propose a collaborative representation based band
selection method by using a `2 norm for the coefficients
matrix, which results in a closed-form solution and thereby a
fast band selection method [36]. Zhai et al. take into account
the correlations of neighbouring bands in the LRR model
by adopting a Laplacian-based regularization, leading to an
improved performance than LRR [29]. A recent latent low-
rank subspace clustering method [30] is proposed to solve
the problem of insufficient band samples in LRR model. The
learning model uncovers hidden features in HSIs and achieves
the state-of-the-art performance in the field.

However, there is still an important gap in terms of ex-
ploiting local correlations among the bands, which limits the
current performance. Typically, the existing methods treat each
spectral band independently in the optimization process like
[36] (resulting in sensitive performance to sparse noise) or
adopt a global low-rank constraint as [12, 30] (which does
not capture local correlations among neighbouring bands). The
method in [29] considers local correlations of neighbouring
bands by using a Laplacian-based regularization. This con-
straint imposed on the coefficients matrix cannot ensure the
subspace representations of neighbouring bands from the same
subspace to be similar. Moreover, none of the existing works
exploited the inherent local and global information in the
dictionary itself. We believe this should help to learn better
the intrinsic data cluster structure. However, this aspect was
not explored yet in the literature.

In this paper, we propose a structural subspace clustering
method (STSC) for hyperspectral band selection. Compared
with the aforementioned SSC models, which impose reg-
ularizations on the coefficients matrix derived from self-
representation model, we propose a more general framework
where self-representation and regularizations are formulated
separately with respect to different variables. Specifically,
we decompose the coarse coefficient matrix from the self-
representation as a sum of a desirable coefficients matrix and a
sparse error matrix. The desirable coefficients matrix is learned
under the guidance of a novel structural regularization. Taking
into account the prior information of bands in terms of local
and global property, we formulate this structural regularization
comprehensively on three aspects. Firstly, we propose a `2,1
norm based joint total variation to capture the local similarity
of adjacent bands in the input data. Secondly, as the input
data is employed as a dictionary, the neighbouring atoms in
the dictionary also show strong correlations. We explore such

structural prior information with a 1-D total variation, which
ensures a consistent response of the neighbouring atoms.
Thirdly, we employ a spectral nuclear norm regularization to
capture the global low-rank property, which admits the fact
that the bands from the same subspaces are distributed glob-
ally. With the proposed structural regularization, our model
learns more comprehensively the cluster structure in the low-
dimensional subspaces, facilitating thereby the performance of
band selection. We also develop an efficient algorithm to solve
the resulting optimization problem. Moreover, we propose an
adaptive method to estimate the number of selected bands by
analysing eigenvalue gaps of Laplacian matrix. Experimental
results on real HSIs demonstrate the superior performance of
our band selection method over the state-of-the-art.

The rest of this paper is organized as follows. Section II
reviews briefly the subspace clustering based band selection
methods for HSIs. Section III presents the proposed structural
subspace clustering method for band selection and develops
an efficient algorithm to solve the resulting optimization
problem. Experiments and analysis on benchmark datasets are
conducted in Section IV. Section V concludes the paper.

II. PRIOR WORKS

In this section, we briefly review the existing unsupervised
band selection methods based on subspace clustering. Let X ∈
RN×B represent the input matrix of a HSI, where N is the
total amount of pixels and B is the number of spectral bands. A
general subspace clustering problem is formulated as follows:

arg min
C

Φ(X−XC) + λΓ(C), s.t. diag(C) = 0 (1)

where C ∈ RB×B is a learned coefficients matrix. Φ(·) is a
data fidelity function, typically the Frobenius norm ‖X‖2F =∑
i,j X

2
ij or the `2,1 norm ‖X‖2,1 =

∑
j

√∑
iX

2
ij . Γ(C) is a

regularization term, which encodes prior information about C.
Common regularization functions include ‖C‖2F [36], ‖C‖1,2
[39, 40] and the nuclear norm [12, 29, 30] ‖C‖∗ =

∑
i σi

with σi being the singular values of C. λ is a regularization
parameter. Observe that the clustering model (1) is formulated
as a self-representation model where the input data X is
utilized as a dictionary. The constraint diag(C) = 0 and the
regularization term Γ(C) prevent trivial solutions.

These regularizations promote different characteristics of
the learned coefficients matrix C. For instance, the `2 norm
based regularization ‖C‖2F promotes a representation associ-
ated with all atoms in the subspace representation. The `1,2
norm ‖C‖1,2 facilitates a joint representation of X by a few
common spectral bands, resulting in a row-sparsity pattern of
C. The nuclear norm regularization ‖C‖∗ favors a low rank
coefficients matrix C.

The learned coefficients matrix C is utilized to construct
a similarity matrix W ∈ RB×B , typically as W = (|C| +
|CT |)/2, where |C| takes the absolute values of C and CT

is the transpose of C. Other methods to build W include
the weighted-square strategy [29] and the correntropy-based
approach [30]. By applying W within the standard spectral
clustering, we obtain the clustering results. Specifically, the
c eigenvectors {vk}ck=1 of the Laplacian matrix LW =



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 3

Diag(W1)−W corresponding to its c smallest eigenvalues are
first calculated and then the clustering results are obtained by
applying the k-means algorithm to the matrix V = [v1, ...,vc],
where c is the number of selected bands. Finally, the bands
that are closest to the centroid bands within each cluster are
selected.

III. STRUCTURAL SUBSPACE CLUSTERING FOR BAND
SELECTION

In this section, we propose a novel structural subspace
clustering method for hyperspectral band selection. We also
present a new method to estimate the number of selected
bands. Moreover, an efficient algorithm is developed to solve
the resulting optimization problem.

A. Structural Subspace Clustering

We build our STSC method on the typical self-
representation model which employs the input data X as the
dictionary, i.e., X ≈ XA. However, due to the effect of noise
and within-cluster variability, the resulting coefficients matrix
A ∈ RB×B often deviates from the optimal solution [41, 42].
Here, we propose to decompose the coarse coefficients matrix
A as a combination of a desirable coefficients matrix L ∈
RB×B and a sparse error matrix S ∈ RB×B , i.e., A = L + S.
The sparse matrix S represents the error between A and L,
and L can be seen as a refined matrix of A. Our STSC model
aims to optimize the following objective function:

arg min
A,L,S

Φ(X−XA) + λΨ(L) + β‖S‖1

s.t. A = L + S, (2)

where λ and β are two regularization parameters and Ψ(L)
is a structural regularization for L which is detailed in the
following subsection. We utilize the Frobenius norm ‖ · ‖2F
for the function Φ(·). The regularization Ψ(L) encodes the
desirable local and global structure of data. Clearly, in (2) the
data fidelity term with respect to A and the regularization term
with respect to L are linked by the constraint A = L + S. The
coarse coefficients matrix A may fit well in the data fidelity
term but may not respect the desirable structure in the low-
dimensional subspaces. This decomposition strategy allows
an adaptive adjustment under the guidance of the structural
regularization. Compared with the common formulation (1),
our model is more general. In particular, when β is sufficiently
large, the high penalty on the sparsity term ‖S‖1 will promote
S to be zero, which leads to A = L and our model reduces
to (1).

After solving (2), we construct the similarity matrix as W =
(|L| + |L|T )/2 and apply it in the spectral clustering [43]
to obtain the clustering results of spectral bands. Finally, the
bands that are closest to the centroids within each cluster are
selected as the representatives.

B. Structural Regularizations

Neighbouring bands in a HSI tend to be highly similar. This
is the inherent local property of hyperspectral bands. Some
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Fig. 1. Correlations of spectral bands in three typical HSIs: Indian Pines
(left), Pavia University (middle) and Salinas (right).

bands that are not adjacent may also show high similarity due
to the analogous spectral response of objects in the corre-
sponding spectrum. This is a global property of hyperspectral
bands. We take three typical HSIs as examples to show these
properties: Indian Pines, Pavia University and Salinas. Let
Wij denote the similarity between i-th and j-th bands, which
is calculated by Wij = e−‖xi−xj‖

2
2/σ

2

where xi is the i-th
spectral band. The similarity matrix shown in Fig. 1 reveals
that high similarities of bands occur mostly in the diagonal
regions which correspond to neighbouring bands in a narrow
range of wavelength. Besides, high similarities also appear in
the regions that are far way from the diagonal. This reveals
the global property of bands where some non-adjacent bands
have strong correlations.

Observing these properties, we propose a structural regular-
ization Ψ(L), which incorporates the local and global informa-
tion simultaneously, to guide the learning of the coefficients
matrix L. Previous works [12, 29, 30, 44–49] demonstrate
the effectiveness of using low-rank regularization in capturing
the global property of data. Here, we adopt a nuclear norm
based low-rank regularization ‖L‖∗ as one component of the
structural regularization, with the goal of seeking a represen-
tation of the input data which is low rank. This promotes the
participations of non-adjacent bands from the same subspace
in the approximation of a query band [29], facilitating the
preservation of global property of data.

Regarding the local correlations of bands, we take into
account this prior information from two points of view. Firstly,
since the neighbouring bands in the input matrix X are often
similar, their coefficients vectors in the subspace representation
ideally should be close, by which the original geometric data
structure can be well preserved in the low-dimensional sub-
spaces without distortions. This results in the local smoothness
of coefficients matrix in the horizontal direction. It should
be noted that not all the neighbouring bands are similar as
shown in Fig. 1. The coefficients vectors of these significantly
different bands should be dissimilar, resulting in thereby
huge differences (edges) in the ideal coefficients matrix along
samples direction. As only a few adjacent bands pronounce
such huge dissimilarities, the edges are sparse. To this end,
we propose a `2,1 norm based joint total variation to account
for the prior information of local property in the input data:

‖∇xL‖2,1 =
∑
j

√∑
i

(∇xLi,j)2, (3)

where ∇xL is the first-order forward difference matrix of L
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in horizontal direction with each entry ∇xLi,j = Li,j+1 −
Li,j . We take a periodical operation for the matrix boundaries.
The joint total variation regularization in (3) promotes column
sparsity of the difference matrix ∇xL, which leads to only a
few columns of ∇xL to be non-zero and most columns to be
zero. This guarantees that most of the neighbouring columns
in L are close.

We observe that data properties are also reflected in the
dictionary (which is equal to the input data). Hence, neigh-
bouring atoms are highly correlated. We want to exploit this
local structure in the dictionary to improve the clustering.
Ideally, atoms in the dictionary shall act in a consistent
way in the representation-related problems, which means that
the similar atoms shall response similarly in the subspace
representation while dissimilar atoms yield different responses.
Coefficients values measure the responses of atoms in the
subspace representation, indicating the contributions of atoms.
For instance, let Li,j represent the desirable response of
atom xi to input data xj . Assume the neighbouring atom
xi+1 is close to xi, we infer that its response to input
data xj , i.e., Li+1,j , is similar to Li,j . This results in the
smoothness of coefficients matrix in vertical direction. While a
few neighbouring atoms are significantly different as discussed
before, the associated coefficients, e.g., Li,j and Li,j+1, are
considerably dissimilar, resulting in large differences (edges)
in the desirable coefficients matrix. In consideration of the
local property of dictionary, we adopt a 1-D total variation as
one component of the structural regularization:

‖∇yL‖1 =
∑
j

∑
i

|∇yLi,j |, (4)

where ∇yL is the first-order forward difference matrix of L
in vertical direction with each entry ∇yLi,j = Li+1,j − Li,j .
The regularization (4) results in a sparse solution for each
column of ∇yL, where most of the elements are zero or near
zero. As ∇yL is the first-order difference matrix, most of
the neighbouring entries for each column of L, i.e., Li,j and
Li+1,j , will be close.

Finally, we obtain the proposed structural regularization
Ψ(L) as follows:

Ψ(L) = λ1‖∇xL‖2,1 + λ2‖∇yL‖1 + λ3‖L‖∗, (5)

where λ1, λ2 and λ3 are three regularization parameters. Then,
we formulate completely the proposed structural subspace
clustering model as follows:

arg min
A,L,S

1

2
‖X−XA‖2F + λ1‖∇xL‖2,1 + λ2‖∇yL‖1

+ λ3‖L‖∗ + β‖S‖1, s.t. A = L + S. (6)

C. Estimation of the Number of Selected Bands

In this section, we propose a new method to estimate
the number of selected bands by making use of eigenvalue
gaps of graph Laplacian. The ideal similarity matrix has a
block-diagonal structure because only the bands that are from
the same cluster are connected. The number of connected
components in the similarity matrix is associated with the

spectral property of the Laplacian matrix LW according to
the following Theorem:

Theorem 1. [43] Let W be an undirected graph with non-
negative weights. Then the multiplicity c of the eigenvalue 0
of LW equals the number of connected components (blocks)
in the graph.

Let σi(LW) be the eigenvalues of LW in the decreasing
order. We define the eigenvalue gaps di as the absolute
difference of two adjacent values of σi(LW), i.e., di =
|σi+1(LW)−σi(LW)|. According to Theorem 1, σi(LW) > 0
for i = 1, ..., B − c and σi(LW) = 0 for i = B − c+ 1, ..., B
in the ideal case. Thus, there is a relatively big eigenvalue gap
between σc(LW) and σc+1(LW), resulting in a larger value of
dc. To find the number c such that all σ1(LW), ..., σB−c(LW)
are large, but σB−c+1(LW) is relatively small, we estimate c
by making use of the first-order difference of eigenvalues, i.e.,
di, as follows:

c = B − k + 1 (7)

where k is the smallest index which satisfies that dnk =
dk/σk(LW) is no less than a threshold value δ. dni is a
normalized value of di in the range of [0, 1] for the purpose
of setting adaptively the number of bands with a proper δ
regardless of the types of hyperspectral images. The benefit
of normalization will be shown in the experiments. According
to (7), we can see our method provides a computationally
efficient solution for the estimation of the number of selected
bands.

D. Optimization

To solve the resulting optimization problem (6), we de-
velop an efficient algorithm based on the alternating direction
method of multipliers (ADMM) [50]. First, we introduce three
auxiliary variables V1 = ∇xL, V2 = ∇yL and V3 = L to
split the difficult optimization problem (6) into several sub-
problems which can be solved separately. The problem (6) is
reformulated equivalently by:

arg min
A,L,S,V1,V2,V3

1

2
‖X−XA‖2F + λ1‖V1‖2,1 + λ2‖V2‖1

+ λ3‖V3‖∗ + β‖S‖1,
s.t. A = L + S, ∇xL = V1, ∇yL = V2, L = V3. (8)

We derive the augmented Lagrangian function of (8) as
follows:

L =
1

2
‖X−XA‖2F + λ1‖V1‖2,1 + λ2‖V2‖1

+ λ3‖V3‖∗ + β‖S‖1 + 〈Y1,A− L− S〉
+ 〈Y2,∇xL−V1〉+ 〈Y3,∇yL−V2〉+ 〈Y4,L−V3〉

+
µ

2
(‖A− L− S‖2F + ‖∇xL−V1‖2F

+ ‖∇yL−V2‖2F + ‖L−V3‖2F ), (9)

where Y1,Y2,Y3 and Y4 are Lagrange multipliers and µ is
a penalty parameter.
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We then solve all the unknown variables iteratively by up-
dating one while fixing others. The sub-problem with respect
to A is formulated by:

arg min
A

1

2
‖X−XA‖2F +

µ

2
‖A− L− S +

Y1

µ
‖2F . (10)

By setting the derivative of (10) with respect to A to zero, we
update A as follows:

A = (XTX + µI)−1(XTX + µ(L + S− Y1

µ
)). (11)

The sub-problem with respect to L is to minimize the follow-
ing objective function:

arg min
L

1

2
(‖A− L− S +

Y1

µ
‖2F + ‖∇xL−V1 +

Y2

µ
‖2F

+‖∇yL−V2+
Y3

µ
‖2F + ‖L−V3 +

Y4

µ
‖2F ). (12)

Denote by Hx and Hy the difference operators in horizontal
and vertical directions, we reformulate the difference matrices
∇xL and ∇yL as vector forms by HxL(:) and HyL(:),
respectively, where L(:) represents a reshaped vector from the
matrix L. We derive the equivalent problem of (12) as follows:

arg min
L(:)

1

2
(‖A(:)− L(:)− S(:) +

Y1(:)

µ
‖2F

+ ‖HxL(:)−V1(:) +
Y2(:)

µ
‖2F

+ ‖HyL(:)−V2(:) +
Y3(:)

µ
‖2F

+ ‖L(:)−V3(:) +
Y4(:)

µ
‖2F ). (13)

We set the derivative of (13) to zero and obtain

(HT
xHx + HT

y Hy + 2I)L(:)

=A(:)− S(:) +
Y1(:)

µ
+ HT

x (V1(:)− Y2(:)

µ
)

+HT
y (V2(:)− Y3(:)

µ
) + V3(:)− Y4(:)

µ
. (14)

As Hx and Hy are two convolutions, the above problem can
be solved by using the fast Fourier transform (FFT) method:

L(:) = F−1
[

P

2 + F(Hx)2 + F(Hy)2

]
, (15)

where P = F(A(:)−S(:)+Y1(:)/µ+HT
x (V1(:)−Y2(:)/µ)

+ HT
y (V2(:)−Y3(:)/µ) + V3(:)−Y4(:)/µ), and F(·) and

F−1(·) are the operators of the FFT and the inverse FFT,
respectively.

The objective function with respect to S is formulated by

arg min
S

β‖S‖1 +
µ

2
‖A− L− S +

Y1

µ
‖2F (16)

We introduce the following soft-thresholding operator:

R4(x) =

{
sgn(x)(|x| − 4) |x| ≥ 4
0 otherwise,

(17)

then we derive the solution of (16) as [51–54]

S = R β
µ

(A− L +
Y1

µ
). (18)

The sub-problem with respect to V1 is obtained by the
following formula:

arg min
V1

λ1‖V1‖2,1 +
µ

2
‖∇xL−V1 +

Y2

µ
‖2F . (19)

Denote by vi1 the i-th column of V1 and qi the i-th column
of ∇xL + Y2/µ, we solve (19) in a column-wise manner as
follows:

arg min
vi1

λ1‖vi1‖2 +
µ

2
‖qi − vi1‖2F . (20)

The optimal solution to (20) is formulated by

vi1 = (1− λ1/µ/‖qi‖2)+qi, (21)

where (x)+ is an operator defined by (x)+ = max(xi, 0).
We update the variable V2 by minimizing the following

objective function:

arg min
V2

λ2‖V2‖1 +
µ

2
‖∇yL−V2 +

Y3

µ
‖2F . (22)

The solution of (22) is derived as follows:

V2 = Rλ2
µ

(∇yL +
Y3

µ
). (23)

The sub-problem with respect to V3 is shown by

arg min
V3

λ3‖V3‖∗ +
µ

2
‖L−V3 +

Y4

µ
‖2F . (24)

To solve this problem, we first introduce a soft-thresholding
operator Dδ(X). Let UΣVT be the singular value decompo-
sition (SVD) of a matrix X, i.e., X = UΣVT where U and
V are the left and right singular vectors, respectively, and Σ
is a diagonal matrix containing the singular values σi. The
operator Dδ(X) is defined as follows:

Dδ(X) := UDδ(Σ)VT , (25)

where Dδ(Σ) = diag(max((σi − δ), 0)).
Then we obtain the following solution of (24) by

V3 = Dλ3
µ

(L +
Y4

µ
). (26)

We update other variables as follows, respectively:

Y1 = Y1 + µ(A− L− S)

Y2 = Y2 + µ(∇xL−V1)

Y3 = Y3 + µ(∇yL−V2)

Y4 = Y4 + µ(L−V3). (27)

Let e = max(e1, e2, e3, e4) with e1 = ‖A− L− S‖∞, e2 =
‖∇xL−V1‖∞, e3 = ‖∇yL−V2‖∞ and e4 = ‖L−V3‖∞.
The above steps are iteratively updated until the stop criterion
is satisfied, that is, e < ε or the number of iterations exceeds
a predefined value, i.e., the maximum number of iterations
MaxIter. We set ε = 1e−6 and MaxIter = 100. Algorithm
1 summarizes the complete process to solve the optimization
problem (6).
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Algorithm 1 The solver to the proposed model in (6)
1: Input: X, λ1, λ2, λ3, β
2: Initialize L,S, {Vi}3i=1, {Yi}4i=1 as 0 and µ = 1
3: while not converged do
4: Update A by (11)
5: Update L by (15)
6: Update S by (18)
7: Update V1 by (21)
8: Update V2 by (23)
9: Update V3 by (26)

10: Update other variables by (27)
11: end while
12: Output: Matrix L

Next, we analyse the computational complexity of Algo-
rithm 1. The updates of A and L have time complexity of
O(B3) and O(B2log(B2)), respectively. The time complexity
is O(B2) for updating V1 and O(B3) for updating V3. The
computational complexity for updating S, V2 and {Yi}4i=1 is
neglectable. Thus, the overall time complexity of Algorithm
1 is O(J(B3 + B2log(B2))), where J is the number of
iterations.

IV. EXPERIMENTS

The performance of band selection is often evaluated in clas-
sification task [23], where the selected bands are fed into clas-
sifiers. In our experiments, SVM [55] and K-nearest-neighbors
(KNN) [56] are two employed classifiers. The benchmark
methods for comparison consist of one ranking-based method
maximum-variance principal component analysis (MVPCA)
[24], one hybrid-based method FDPC [35], the saliency-based
band selection method (SBSS) [57] and five clustering-based
methods optimal clustering framework (OCF) [13], adaptive
subspace partition stragety (ASPS) [58], ISSC [36], L2-LRSC
[29] and FLLRSC [30]. Among the clustering-based methods,
ISSC, L2-LRSC and FLLRSC select bands based on subspace
clustering and have achieved the state-of-the-art performance.
We utilize overall accuracy (OA), average accuracy (AA) and
Kappa coefficient (κ) as quantitative assessments. Ten percent
of labeled samples per class are randomly selected as training
data and the rest are employed for testing. We repeat all
experiments ten times and average results are reported. We
implement the SVM with radial basis function kernel and the
KNN by using the optimization toolbox in MATLAB 2016b.
The number of neighbors of KNN is set to 3 as in [9, 58].

A. Datasets

1) Indian Pines: The Indian Pines (IndianP) was ac-
quired by the Airborne/Visible Infrared Imaging Spectrometer
(AVIRIS) sensor over the Indian Pines region in North-western
Indiana on June 12, 1992, with 20-m spatial resolution per
pixel. The image of size 145× 145× 220 contains 16 classes
and 10249 pixels are labeled as shown in Table I. In the
experiment, we remove 20 spectral bands in 104-108, 150-163
and 200 due to water absorption. The false-color composite
image and ground truth are shown in Fig. 2.

Fig. 2. False color image (top) and ground truth (bottom) of Indian Pines.

Fig. 3. False color image (left) and ground truth (right) of Pavia University.

Fig. 4. False color image (left) and ground truth (right) of Salinas.

2) Pavia University: The Pavia University (PaviaU) was
captured by the Reflected Optics System Imaging Spectrom-
eter (ROSIS) during a flight campaign over Pavia, Northern
Italy. The image size is 512 × 217 × 103 and there are nine
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TABLE I
CLASS NAME AND THE AMOUNT OF LABELED SAMPLES IN IndianP (TEN
PERCENT OF LABELLED SAMPLES PER CLASS ARE USED FOR TRAINING).

No. Class name Train Test Total
1 Alfalfa 5 41 46
2 Corn-notill 143 1285 1428
3 Corn-mintill 83 747 830
4 Corn 24 213 237
5 Grass-pasture 49 434 483
6 Grass-trees 73 657 730
7 Grass-pasture-mowed 3 25 28
8 Hay-windrowed 48 430 478
9 Oats 2 18 20
10 Soybean-notill 98 874 972
11 Soybean-mintill 246 2209 2455
12 Soybean-clean 60 533 593
13 Wheat 21 184 205
14 Woods 127 1138 1265
15 Bldgs-grass-trees-drives 39 347 386
16 Stone-steel-towers 10 83 93

Total 1031 9218 10249

TABLE II
CLASS NAME AND THE AMOUNT OF LABELED SAMPLES IN PaviaU (TEN
PERCENT OF LABELLED SAMPLES PER CLASS ARE USED FOR TRAINING).

No. Class name Train Test Total
1 Asphalt 664 5967 6631
2 Meadows 1865 16784 18649
3 Gravel 210 1889 2099
4 Trees 307 2757 3064
5 Painted Metal Sheets 135 1210 1345
6 Bare Soil 503 4526 5029
7 Bitumen 133 1197 1330
8 Self-Blocking Bricks 369 3313 3682
9 Shadows 95 852 947

Total 4281 38495 42776

classes and 42776 labeled samples as shown in Table II. Fig.
3 shows the false color image and ground truth.

3) Salinas: The Salinas was collected by the AVIRIS
sensor over the Salinas Valley, CA, USA. The geometric
resolution is 3.7 m per pixel. The image of size 512×217×224
contains 16 ground-truth classes with in total 54129 labeled
pixels as shown in Table III. Twenty bands in 108-112, 154-
167 and 224 are removed due to water absorption. We show
the false color image and ground truth for the dataset Salinas in
Fig. 4. All three data sets are accessible by http://www.ehu.eus/
ccwintco/index.php/Hyperspectral Remote Sensing Scenes.

B. Comparisons With the State-of-the-Art

We vary the number of selected bands c in the range of
[5,50] with a step size of 5, and report the classification
results of SVM and KNN in Figs. 5-7. We also report the
classification results when using all the spectral bands for
reference. Since SBSS selects automatically the spectral bands
based on local extrema points of a Hessian matrix of HSI,
the chosen bands are fixed. We do not include its results in
Figs. 5-7 but in the following experiments. For STSC, We set
λ1 = 0.1, λ2 = 10−6, λ3 = 5× 10−4, β = 10−6 for IndianP,

TABLE III
CLASS NAME AND THE AMOUNT OF LABELED SAMPLES IN Salinas (TEN
PERCENT OF LABELLED SAMPLES PER CLASS ARE USED FOR TRAINING).

No. Class name Train Test Total
1 Brocoli-green-weeds-1 201 1808 2009
2 Brocoli-green-weeds-2 373 3353 3726
3 Fallow 198 1778 1976
4 Fallow-rough-plow 140 1254 1394
5 Fallow-smooth 268 2410 2678
6 Stubble 396 3563 3959
7 Celery 358 3221 3579
8 Grapes-untrained 1128 10143 11271
9 Soil-vinyard-develop 621 5582 6203
10 Corn-senesced-green-weeds 328 2950 3278
11 Lettuce-romaine-4wk 107 961 1068
12 Lettuce-romaine-5wk 193 1734 1927
13 Lettuce-romaine-6wk 92 824 916
14 Lettuce-romaine-7wk 107 963 1070
15 Vinyard-untrained 727 6541 7268
16 Vinyard-vertical-trellis 1181 1626 1807

Total 5418 48711 54129

λ1 = 10−5, λ2 = 0.1, λ3 = 10−4, β = 10−6 for PaviaU and
λ1 = 10−6, λ2 = 10−3, λ3 = 10−3, β = 10−6 for Salinas.
Figs. 5-7 reveal the following important observations.
1) Our method STSC outperforms other methods in most
cases in terms of OA, AA and κ for both SVM and KNN
classifiers. The diagrams show that the performance evolutions
of SVM in terms of OA, AA and κ are in consistence with
that of KNN for all the methods, but SVM always yields
higher accuracies and κ compared to KNN. Generally, for
all the methods the classification performances of the two
classifiers increase when more selected band are utilized. This
is intuitively reasonable as the spectral signatures of ground
objects often become more distinguishable while more spectral
bands are adopted. Rare cases are also observed such as
OCF in the dataset IndianP (Fig. 5) where the OA decreases
from 75.2% to 71.8% with the increasing amount of bands
from c = 30 to c = 35. This can be attributed to the
suboptimal bands clustering, resulting in the highly redundant
selected bands. In Figs. 5-7, we can observe that for most
of the methods the performance increases dramatically at the
beginning, i.e., c ≤ 20, and then saturates to a stable point
when the number of bands is sufficiently large. Noticeably, the
saturated points normally locate the areas where c � B and
often reach comparable or even better performances compared
to that using all bands. Our method outperforms the “ALL
bands” in terms of OA in SVM when c ≥ 25 on the dataset
IndianP, c ≥ 30 on the dataset PaviaU and c ≥ 35 on the
dataset Salinas. This demonstrates the effectiveness of our
band selection method.
2) The ranking-based method MVPCA in most cases perform
worse than others, especially when only a few bands are
selected such as c < 25. MVPCA selects representative bands
based on the ranking score from high to low in the criterion
of variance of bands, which results in the selection of bands
with larger variance in particular. It is true that bands with
large variance sometimes are more informative than those
with smaller variance. However, noisy bands normally show

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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Fig. 5. The influence of band selection on the classification performance in classifiers SVM and KNN on the dataset IndianP. (a) OA in SVM, (b) AA in
SVM, (c) κ in SVM, (d) OA in KNN, (e) AA in KNN and (f) κ in KNN.
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Fig. 6. The influence of band selection on the classification performance in classifiers SVM and KNN on the dataset PaviaU. (a) OA in SVM, (b) AA in
SVM, (c) κ in SVM, (d) OA in KNN, (e) AA in KNN and (f) κ in KNN.
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Fig. 7. The influence of band selection on the classification performance in classifiers SVM and KNN on the dataset Salinas. (a) OA in SVM, (b) AA in
SVM, (c) κ in SVM, (d) OA in KNN, (e) AA in KNN and (f) κ in KNN.

big variance and might be viewed as representative bands
based on this ranking criterion, which results in the sensitive
performance of MVPCA to noise. Moreover, this method
neglects the correlations of bands and thus leads to the selected
bands to be highly redundant. This deteriorates thereby the
classification performance of classifiers significantly especially
when c is very small. For instance, when c = 5, the OAs
of SVM are 31.7%, 37.8% and 52.2% on the datasets Indi-
anP, PaviaU and Salinas, respectively, which are very poor
compared to other methods. FDPC is a hybrid-based band
selection method which integrates a density-based clustering
algorithm with ranking approach. Results show that FDPC
outperforms MVPCA in most cases of c in the three datasets,
which benefits from the decorrelations of bands by measuring
the local density and intracluster distance of bands. Compared
with MVPCA, it is observed that clustering-based methods
including OCF, ASPS, ISSC, L2-LRSC, FLLRSC and STSC
perform better mostly in terms of OA, AA and κ in the three
datasets.
3) Subspace clustering based methods, i.e., ISSC, L2-LRSC,
FLLRSC and STSC, outperform another clustering based
method OCF most of the time. OCF learns the cluster struc-
ture of bands by optimizing an objective function under the
assumption that bands in the same cluster have contiguous
wavelengths. This results in a contiguous bands division,
which is conflict with the fact that non-adjacent bands can
be in the same cluster. Consequently, the bands from dif-
ferent clusters might be of high similarity, leading to the
high redundancy of the selected bands. This deteriorates the

classification performance of classifiers as shown in Fig. 5
where the performance decreases in terms of OA and κ when
c ≥ 35. Subspace clustering based methods recovery the
cluster structure by optimizing representation-based problems
with the core idea that each band can be represented as a
linear combination of others in the same subspace to the
query band. By incorporating prior information of the data
with effective constraints, subspace clustering based methods
offer a better capability to uncover the cluster structure of
data in a more efficient and flexible way than OCF. ASPS
segments the spectral bands into several continuous groups
with a coarse-to-fine strategy and selects high-quality bands
containing minimum noise in each refined group as repre-
sentatives. Generally, it performs comparable to the subspace
clustering based methods when a large number of bands are
selected (for example c = 50). However, its performance is
poor when c is small as shown in Figs. 6 and 7.
4) Among the subspace clustering based methods, STSC
achieves the best results in terms of OA almost for each c
in the SVM and KNN classifiers on the three datasets. The
improvements can be mainly attributed to the incorporation of
the local and global information in the data, which provides
a comprehensive analysis of spectral bands and enables our
model to learn better the cluster structure. Other methods
such as ISSC, L2-LRSC and FLLRSC make use of the local
and global prior information partially and thus yield sub-
optimal band selection solutions, resulting thereby in worse
classification performances in the classifiers. The results in
Fig. 5 show that the performance improvement of STSC
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TABLE IV
QUANTITATIVE EVALUATION MEASURED BY CLASSIFICATION FOR DIFFERENT BAND SELECTION METHODS (κ IN %)

Datasets Evaluations MVPCA FDPC SBSS OCF ASPS ISSC L2-LRSC FLLRSC STSC ALL

IndianP

SVM (OA) 65.90±0.79 69.85±0.50 77.16±0.68 75.15±0.50 78.53±0.38 74.62±0.56 77.76±0.52 79.09±0.48 80.58±0.51 79.25±0.34
SVM (AA) 61.23±1.61 63.09±1.54 73.16±1.50 71.78±1.46 76.69±1.23 70.48±1.50 73.56±1.13 75.34±2.09 77.82±0.89 74.91±1.65
SVM (κ) 60.87±0.86 65.51±0.59 73.90±0.77 71.58±0.59 75.47±0.43 70.95±0.64 74.59±0.57 76.11±0.54 77.80±0.55 76.28±0.40

KNN (OA) 59.85±0.81 64.83±0.69 70.15±0.74 69.19±0.50 73.29±0.56 70.89±0.62 71.62±0.58 72.11±0.44 74.06±0.65 68.53±0.63
KNN (AA) 51.86±1.17 53.25±1.01 61.65±1.66 62.83±1.80 68.84±2.41 63.57±2.15 62.31±2.49 64.93±2.39 68.81±2.16 62.85±1.81
KNN (κ) 53.93±0.90 59.56±0.81 65.79±0.84 64.67±0.58 69.46±0.63 66.61±0.67 67.50±0.65 68.02±0.48 70.28±0.74 63.95±0.72

PaviaU

SVM (OA) 84.46±0.19 83.31±0.21 89.71±0.16 88.18±0.35 89.09±0.25 88.58±0.19 88.85±0.24 88.35±0.17 90.78±0.20 90.71±0.15
SVM (AA) 80.25±0.24 79.87±0.44 87.55±0.29 85.61±0.38 86.87±0.36 86.06±0.29 86.23±0.33 85.85±0.40 88.29±0.24 88.53±0.33
SVM (κ) 79.27±0.25 77.62±0.29 86.28±0.21 84.22±0.47 85.44±0.34 84.75±0.25 85.11±0.32 84.46±0.23 87.71±0.27 87.60±0.20

KNN (OA) 84.46±0.26 80.87±0.26 85.14±0.27 82.08±0.24 84.96±0.27 84.38±0.21 82.54±0.34 84.06±0.29 87.29±0.16 84.72±0.23
KNN (AA) 73.95±0.52 75.06±0.48 81.83±0.31 77.92±0.43 81.52±0.39 80.81±0.33 78.49±0.52 80.27±0.38 83.91±0.34 81.32±0.27
KNN (κ) 73.63±0.36 74.04±0.35 79.89±0.37 75.67±0.33 79.67±0.37 78.86±0.30 76.30±0.46 78.42±0.39 82.87±0.22 79.30±0.31

Salinas

SVM (OA) 87.96±0.26 91.59±0.19 92.11±0.13 92.59±0.17 92.15±0.19 92.67±0.10 92.17±0.20 92.71±0.14 92.99±0.17 93.08±0.20
SVM (AA) 92.60±0.27 95.65±0.10 95.91±0.10 96.26±0.15 95.93±0.16 96.19±0.08 96.10±0.12 96.36±0.10 96.56±0.13 96.57±0.15
SVM (κ) 86.59±0.29 90.63±0.21 91.21±0.15 91.74±0.19 91.26±0.21 91.84±0.11 91.27±0.22 91.88±0.16 92.19±0.19 92.29±0.22

KNN (OA) 85.00±0.20 89.92±0.15 89.97±0.18 89.40±0.13 89.80±0.22 89.89±0.15 89.07±0.15 90.08±0.13 90.11±0.13 90.47±0.15
KNN (AA) 89.67±0.22 94.58±0.10 94.63±0.14 94.36±0.11 94.46±0.18 94.53±0.11 94.10±0.16 94.62±0.11 94.67±0.10 94.99±0.12
KNN (κ) 83.29±0.22 88.77±0.17 88.83±0.20 88.20±0.14 88.64±0.24 88.74±0.17 87.82±0.17 88.96±0.14 88.98±0.14 89.39±0.17

is more significant when c is smaller. For instance, when
c = 50, the OA improvements of STSC in SVM are below
2% compared to ISSC, L2-LRSC and FLLRSC. While for the
case of c = 5, the OA improvements are 12% for ISSC, 8% for
L2-LRSC and 13% for FLLRSC. We can observe the similar
results for the KNN classifier.

We report the results from Figs. 5-7 in the case of c = 30
in Table IV for a better presentation and discussion. The
selected bands are shown in Tables V-VII. The results of
SBSS are included where the number of selected bands is
60 on the dataset IndianP, 34 on the dataset PaviaU and 62
on the dataset Salinas. We also show the results of “ALL”
that employs all the spectral bands for reference in Table IV.
The best results (“ALL” is excluded) are marked in bold and
suboptimal results are underlined. The results in Table IV show
that STSC performs the best in most cases in terms of OA, AA
and κ in the SVM and KNN classifiers. Compared with the
results using all the bands, our method yields higher accuracies
on the datasets IndianP and Salinas and comparable results
on the dataset Salinas with 30 bands. This reveals the highly
redundant information in HSIs and also demonstrates the
advantages of band selection. Ranking-based method MVPCA
produces the lowest accuracy and κ in IndianP and Salinas,
which can be attributed to the high redundancy of selected
bands as evidenced by the selected adjacent bands in Tables V
and VII. FDPC also selects a number of adjacent bands, result-
ing in high redundancy of data and thereby a low classification
accuracy in Table IV. OCF and ASPS perform analogously
on the three datasets and fall behind mostly the subspace
clustering based methods. Compared with ISSC, L2-LRSC and
FLLRSC take into account respectively the local correlations
of bands and hidden features in HSI, which results in often
improved performances than ISSC as shown in Table IV. Com-
pared with ISSC and L2-LRSC, our model is formulated in
a more general model. The proposed structural regularization
incorporates comprehensively the local and global property of
data in the low-dimensional subspaces, which enables a better
uncovery of the cluster structure. The results in Tables V-VII
show that compared with other methods, the selected bands
of STSC contain less neighbouring bands which are often

redundant, resulting in a better classification performance.
SBSS is a parameter-free band selection method and views
saliency bands as representative bands based on local extrema
points of the Hessian matrix of HSI. SBSS selects 60, 34
and 62 bands as representative bands in IndianP, PaviaU and
Salinas, respectively. In Table IV, we can see that our method
even in the case of c = 30 still outperforms SBSS in terms of
OA, AA and κ in the classifiers SVM and KNN.

C. The Effect of Different Training Data Sizes

We vary the amount of training data per class, p, in SVM
and KNN within the set {1%, 5%, 10%, 20%, 30%, 40%, 50%}
and report the results in Fig. 8 in the case of c = 30. The
results show that our method STSC consistently outperforms
all the reference methods on the three datasets regardless of
the value of p. Most of the OA curves in each dataset evolve
nearly in parallel, and we can conclude the same remarks
present in Section IV-B. Unsurprisingly, all the classification
performances in Fig. 8 get enhanced when using more training
samples. Specifically, the OAs of all the methods increase
rapidly at the beginning when 1% ≤ p ≤ 10% and then climb
at a lower speed when p > 10%. This experiment validates
that the training data size in classifiers has little influence on
the comparisons of band selection methods.

D. Parameter Study

To analyse the effect of the parameters in our model on
the classification performance, we conduct experiments on
the three datasets with SVM classifier by varying the values
of λ1, λ2, λ3 and β. In the experiments, we analyse each
parameter by fixing others according to the parameter settings
in Section IV-B. The amount of training data per class is set
to 10% and c = 30. The results in Fig. 9 show that the
performance of our method is quite stable in a certain range
with respect to each parameter. Most of the results achieve
comparable performance to the case using all the bands on
the three datasets where the accuracies are 79.25, 90.71 and
93.08 in IndianP, PaviaU and Salinas, respectively.
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TABLE V
SELECTED BANDS OF DIFFERENT METHODS (c = 30) IN IndianP

Methods Selected bands
MVPCA 13 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 39 41 42 43 44 45 48 49 50 51 52

FDPC 105 106 107 108 118 124 125 128 130 137 144 145 146 150 153 155 157 159 163 173 175 177 178 181 183 187 189 192 195 196

SBSS 2 7 9 11 14 16 19 22 25 32 35 39 42 44 48 50 52 54 56 62 66 68 72 74 79 83 85 90 94 96 105 109 115 118 122 125 129 131 133 135
138 142 146 149 154 158 161 164 167 169 173 175 177 179 181 183 188 192 194 198

OCF 3 8 9 16 28 29 43 46 49 50 57 58 61 67 72 77 107 115 117 118 128 157 159 163 173 181 187 189 192 200
ASPS 8 10 11 15 27 36 47 49 58 70 72 78 81 94 102 105 116 119 128 132 143 146 151 159 165 175 184 190 195 199
ISSC 16 21 33 39 52 57 64 70 74 78 80 84 86 89 90 100 104 111 116 121 127 135 141 147 154 163 170 180 186 193

L2-LRSC 3 8 14 23 28 30 31 34 35 36 39 42 45 51 58 63 65 68 83 87 90 94 99 107 108 120 129 137 143 174
FLLRSC 9 12 18 20 23 25 28 35 41 47 71 74 82 86 90 97 98 99 107 112 123 131 133 137 152 159 160 163 184 185

STSC 5 8 23 36 39 44 51 64 70 73 76 82 84 95 101 106 111 117 122 127 130 137 144 150 157 164 174 182 188 194

TABLE VI
SELECTED BANDS OF DIFFERENT METHODS (c = 30) IN PaviaU

Methods Selected bands
MVPCA 61 62 63 64 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

FDPC 15 19 29 30 31 33 34 35 36 37 38 39 40 41 42 43 44 48 52 53 55 56 58 61 88 90 92 93 94 99
SBSS 4 6 8 12 18 21 23 25 27 31 34 37 39 41 43 45 49 52 57 59 65 68 70 72 75 77 82 84 88 91 93 97 99 101
OCF 1 2 3 6 10 15 19 22 27 29 33 36 41 44 48 52 53 61 65 66 68 70 73 77 79 82 88 92 99 101
ASPS 5 9 11 15 17 20 25 27 30 34 37 39 43 50 51 53 58 59 60 69 72 74 80 84 86 90 92 95 98 101
ISSC 3 8 14 19 22 23 27 30 31 33 34 35 40 43 45 50 53 54 58 63 69 74 77 79 81 84 86 91 94 100

L2-LRSC 1 2 3 4 5 8 10 12 14 17 21 25 30 34 39 42 48 55 61 65 69 73 76 79 83 85 88 94 99 102
FLLRSC 3 4 6 7 8 9 10 11 12 13 14 15 16 19 23 29 33 39 49 54 59 63 68 76 83 85 86 90 100 103

STSC 7 12 15 19 22 25 29 31 34 36 38 41 45 49 51 56 59 63 67 69 73 76 79 83 84 85 86 89 92 95

TABLE VII
SELECTED BANDS OF DIFFERENT METHODS (c = 30) IN Salinas

Methods Selected bands
MVPCA 28 29 30 31 32 33 34 35 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 72

FDPC 11 20 24 32 55 68 75 82 88 89 93 94 95 96 113 121 126 128 131 141 148 161 166 177 181 185 190 192 196 199

SBSS 2 6 10 12 15 19 22 25 28 31 33 37 42 45 47 52 55 58 60 62 67 69 71 73 76 82 86 88 93 97 100 107 110 112 114 121 124 126 128 133
136 138 143 146 150 154 158 160 165 167 170 174 177 181 185 187 190 192 194 197 200 203

OCF 5 7 11 14 20 24 32 34 37 38 39 40 42 46 50 55 57 62 64 68 75 79 88 113 121 128 131 135 137 166
ASPS 10 13 18 26 29 41 47 51 53 71 73 81 85 94 106 110 113 116 129 139 146 148 155 161 170 177 182 184 194 203
ISSC 5 15 19 25 30 42 48 54 58 68 73 80 83 89 94 100 108 114 120 125 133 143 154 159 165 171 177 186 194 201

L2-LRSC 3 4 7 9 13 16 20 24 31 33 40 44 48 53 58 65 70 77 80 86 99 104 111 124 128 139 151 162 181 195
FLLRSC 6 26 40 41 53 57 68 76 81 84 86 90 91 95 99 114 116 124 125 126 135 141 142 156 158 165 183 195 198 201

STSC 6 12 21 27 31 37 40 43 47 51 58 63 68 76 81 88 97 111 122 134 144 154 159 164 170 177 183 191 197 201
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Fig. 8. Influence of training data size on the overall accuracy of SVM on the datasets: (a) Indian Pines, (b) Pavia University and (c) Salinas.

λ1 and λ2 control the local regularizations in our model.
The results in IndianP in Fig. 9 (a) show that a larger λ1
yields a higher OA. For parameter λ2, we also observe the
similar results in PaviaU in Fig. 9 (b). This validates the
importance of the incorporation of local regularizations in our
model. We shall observe that the OA decreases slightly with
larger λ1 and λ2 on the dataset PaviaU in Fig. 9 (a) and on the
dataset IndianP in Fig. 9 (b). This is mainly caused by the too
strong constraints on the local structure, which results in an

unbalanced learning result with respect to the local and global
property of data. Fig. 9 (c) indicates that the OA is very stable
when λ3 ≤ 10−2 but drops significantly when λ3 > 10−2,
showing the significance of the global regularization in our
model. The parameter β controls the error between coefficients
matrices A and L, and often yields a better performance with
a relatively smaller value . When β is sufficiently large such
as β ≥ 0.1, the error matrix S becomes a zeros matrix on
the three datasets. In this case, our model reduces to a special
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Fig. 9. Performance analysis in terms of OA by SVM with respect to parameters λ1, λ2, λ3 and β on the three datasets (x-axis is in log10).
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Fig. 10. Ablation study: OA in SVM for different variants of STSC.
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Fig. 11. The normalized eigenvalue gaps dni on the datesets IndianP (top),
Pavia (middle) and Salinas (bottom). The figures in the right are the enlarged
details corresponding to the results in the left.

case where the regularization ‖S‖1 in (6) is eliminated and
the constraint A = L + S reduces to A = L, which allows
the structural regularization Ψ(L) functions equally to A.
We observe that this yields inferior performance in terms of
OA compared to our original model, which demonstrates the
efficacy of our decomposition strategy.

E. Ablation Study

We conduct ablation studies by removing one of the reg-
ularizations in (6), and denote by P1, P2, P3 and P4 the
variants of the proposed model when ‖∇xL‖2,1, ‖∇yL‖1,
‖L‖∗ and ‖S‖1 are removed, respectively. Note that we have
A = L when ‖S‖1 is removed. We set c = 30 in the exper-
iments. The results shown in Fig. 10 indicate that our STSC
achieves consistently the best OA in SVM, demonstrating the
effectiveness of each regularization. Compared with STSC, the
variants, which produce the most severe OA drop, are P1 in
IndianP, P3 in PaviaU and P3 in Salinas. This verifies the
importance of incorporating local and global regularizations.
It is also observed that when the term ‖S‖1 is removed, the
resulting performance of P4 is worse than the proposed STSC
model, which is consistent with the previous conclusion in
Section IV-D.

F. Determination of the Number of Selected Bands

We plot the normalized eigenvalue gaps dni in Fig. 11 for
the three datasets. The complete curves of dni are shown
in the left and the right are the corresponding details. We
can see from Figs. 11 (a), (c) and (e) that all the curves
originate at a wide flatten region, where dni are close to
zero, and then increase dramatically to 1. Despite some small
fluctuations, all the curves grow gradually overall. According
to (7), the number of representative bands is associated with
the smallest index k that satisfies dnk ≥ δ. All the dni
are in the range of [0,1], which allows us to determine the
number of bands adaptively regardless of the type of HSIs.
We set δ to 5 × 10−5 for our method and obtain n = 27
for IndianP, n = 20 for PaviaU and n = 21 for Salinas, by
which our approach yields excellent classification performance
that is comparable to the case using all the bands as shown
in Figs. 5-7. Moreover, in Figs. 5-7 we can see that these
estimated numbers are very close to the saturated points that
achieve stable classification performances, which validates the
effectiveness of our approach.

G. The Influence of Noise

We study the influence of noise on the performance of
different band selection methods in IndianP. The number
of bands is set to 30 and the SVM classifier is used. We
consider three types of noise: Gaussian noise, impulse noise
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TABLE VIII
THE OAS IN SVM FOR BAND SELECTION METHODS IN Indian Pines WITH DIFFERENT NOISE

Data MVPCA FDPC OCF ASPS ISSC L2-LRSC FLLRSC STSC ALL
Original data 65.90±0.79 69.85±0.50 75.15±0.50 78.53±0.38 74.62±0.56 77.76±0.52 79.09±0.48 80.58±0.51 79.25±0.34

Gaussian noise 48.23±0.49 48.09±0.66 62.39±0.66 62.34±0.64 65.28±0.54 65.24±0.54 63.30±0.40 67.36±0.54 72.85±0.47
Impulse noise 41.02±0.88 70.37±0.43 43.49±0.65 76.24±0.39 66.19±0.64 72.25±0.52 69.99±0.53 77.49±0.46 69.09±0.57
Mixed noise 40.38±0.44 50.80±0.60 35.56±0.64 64.55±0.74 59.06±0.55 58.92±0.89 58.00±0.57 64.04±0.60 66.36±0.73

TABLE IX
RUNNING TIME (IN SECONDS) FOR DIFFERENT BAND SELECTION METHODS

Date sets MVPCA FDPC SBSS OCF ASPS ISSC L2-LRSC FLLRSC STSC
IndianP 0.06 0.07 1.64 1.03 1.05 0.06 0.87 20.51 1.06
PaviaU 0.57 0.20 3.77 0.76 0.46 0.08 0.63 18.86 0.53
Salinas 0.58 0.24 4.25 1.40 0.94 0.10 1.15 20.27 1.13

and a mixture of the former two. We add Gaussian noise such
that signal-to-noise ratio (SNR) varies between 20 and 30 dB
in each band, and we introduce impulse noise with 30% of
corrupted pixels in bands 30-40 and 150-160. The results in
Table VIII show that the accuracies of all methods decrease
after adding the noise and the mixed noise tends to deteriorate
the performance most severely except for the methods FDPC
and ASPS. Our STSC method yields the highest OA in the
cases after adding Gaussian noise and impulse noise. For the
case of mixed noise, the performance of STSC is comparable
to the best result of ASPS. We also show the classification
results of “ALL” in Table VIII, which uses all the bands. We
observe that for the method “ALL”, impulse noise results in
a more significant OA drop than Gaussian noise compared
with the results in the original data, which demonstrates that
impulse noise has a more severe impact on the classification
performance than Gaussian noise. It is noted that in the case
of impulse noise our method outperforms significantly “ALL”
by 8.4%, demonstrating the robustness of STSC to impulse
noise. Other methods FDPC, ASPS, L2-LRSC and FLLRSC
yield also higher accuracies than “ALL” in the case of impulse
noise. A common idea among STSC, ASPS and L2-LRSC is
that they consider the correlation of neighbouring bands in the
band selection model, which facilitates a robust performance
to impulse noise. ISSC does not consider such local correlation
of bands, which in fact treats each band independently in the
optimization process, yielding thereby a worse accuracy than
STSC, ASPS and L2-LRSC in the case of impulse noise.

H. Running Time

We show in Table IX the running time of different band
selection methods on the three data sets. The number of
selected bands is set to 30. All the methods were implemented
in MATLAB R2016b on a laptop with an Intel c© core-i7
6700HQ CPU with 16GB of RAM. The results show that
ISSC is the fastest method, which can be mainly attributed
to the closed-form solution. MVPCA, FDPC and ASPS are
often more efficient than the representation-based methods L2-
LRSC, FLLRSC and STSC. Due to the expensive computation
of Hessian matrix, SBSS uses more running time in large
data sets PaviaU and Salinas than IndianP. FLLRSC takes the
longest running time because of the high computational cost

Fig. 12. The convergence curves of STSC in IndianP (left), PaviaU (middle)
and Salinas (right).

from multiple SVDs. Compared with the benchmark methods,
the running speed of the proposed method STSC is reasonable.

I. Convergence Study

We show in Fig. 12 the convergence curves of Algorithm 1
in three data sets. The loss of objective function is calculated
by L = 1

2‖X−XA‖2F + λ1‖∇xV1‖2,1 + λ2‖∇yV2‖1 +
λ3‖V3‖∗ + β‖S‖1. The results reveal that the loss of our
objective function monotonically decreases to a stable level.
The loss drops sharply at the first several iterations and then
tends to saturate at following iterations in all three data sets,
demonstrating a stable convergence property of our algorithm.

V. CONCLUSION

In this paper, we present a new unsupervised band selection
method based on structural subspace clustering. Compared
with the traditional subspace clustering model, we formulate
a more general model where the coarse coefficients matrix,
derived from the self-representation, is decomposed as a sum-
mation of a desirable coefficients matrix and a sparse matrix.
To guide the learning of the desirable coefficients matrix, we
take into account the prior information of bands in terms
of local and global property, and propose a novel structural
regularization. This allows a comprehensive analysis of the
data in the lower-dimensional subspaces, facilitating thereby
a better solution in subspace clustering model to uncover
the intrinsic cluster structure of hyperspectral bands than
the existing methods. Moreover, an adaptive approach with
eigenvalue gap analysis on the Laplacian matrix is proposed
to estimate the number of selected bands. We also develop an
efficient algorithm based on the ADMM to solve the result-
ing optimization problem. Experiments on three benchmark
datasets demonstrate that our method outperforms the state-
of-the-art band selection methods.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 14

REFERENCES

[1] X. Bai, F. Xu, L. Zhou, Y. Xing, L. Bai, and J. Zhou,
“Nonlocal similarity based nonnegative tucker decomposition
for hyperspectral image denoising,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 11, no. 3, pp. 701–712, 2018.

[2] G. Hughes, “On the mean accuracy of statistical pattern rec-
ognizers,” IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 55–63,
1968.

[3] M. D. Farrell and R. M. Mersereau, “On the impact of pca
dimension reduction for hyperspectral detection of difficult
targets,” IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2, pp.
192–195, 2005.

[4] M. Fauvel, J. Chanussot, and J. A. Benediktsson, “Kernel prin-
cipal component analysis for the classification of hyperspectral
remote sensing data over urban areas,” EURASIP J. Adv. Signal
Process., vol. 2009, no. 1, pp. 1–14, 2009.

[5] Q. Du, “Modified fisher’s linear discriminant analysis for hy-
perspectral imagery,” IEEE Geosci. Remote Sens. Lett., vol. 4,
no. 4, pp. 503–507, 2007.

[6] Q. Wang, Z. Meng, and X. Li, “Locality adaptive discriminant
analysis for spectral–spatial classification of hyperspectral im-
ages,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 11, pp.
2077–2081, 2017.

[7] W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, “Locality-
preserving dimensionality reduction and classification for hy-
perspectral image analysis,” IEEE Trans. Geosci. Remote Sens.,
vol. 50, no. 4, pp. 1185–1198, 2011.

[8] Y.-J. Deng, H.-C. Li, L. Pan, L.-Y. Shao, Q. Du, and W. J.
Emery, “Modified tensor locality preserving projection for di-
mensionality reduction of hyperspectral images,” IEEE Geosci.
Remote Sens. Lett., vol. 15, no. 2, pp. 277–281, 2018.
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