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Abstract—Erroneous labels affect the learning models in su-
pervised classification, deteriorate the classification performance
and hinder thereby subsequent tasks. These erroneous labels are
referred to as label noise. The influence of label noise on the
classification performance has been so far mainly studied using
simulations with a uniform distribution of noisy labels accross
the classes. In this paper, we propose a new label noise simulation
approach for hyperspectral images (HSIs) where similar classes
have a higher chance to be mixed up. Under such a realistic
label noise simulation model, we compare the behaviour of
different types of classifiers for HSI in remote sensing, including
traditional machine learning and deep learning approaches. Our
analysis reveals which levels of label noise are acceptable for a
given tolerance in the classification accuracy and how robust are
different learning models in this respect.

Index Terms—Robust classification, hyperspectral images, la-
bel noise

I. INTRODUCTION

Hyperspectral images (HSIs) have been extensively used
in numerous applications in various domains, including geo-
sciences [1], agriculture [2], defense and security [3] and en-
vironment monitoring [4]. Image classification, which assigns
labels to each pixel, plays an essential role in the automatic
analysis and interpretation of HSIs [5].

The performance of supervised classification models de-
pends greatly on the amount of training data. Most supervised
classification methods are designed under the assumption that
the training data does not contain erroneous labels. However,
imprecise labels are inevitable in practice as labeling is often
labor intensive and involves a lot of manual work [6], [7].
Resent work [8] identified label errors in the test sets of 10
of the most commonly-used computer vision, natural language
and audio data sets. They estimated an average of 3.4% errors
across the 10 data sets, which could cause problems in artificial
intelligence systems that use these data sets. The erroneous
labels affect adversely model training, resulting in a degraded
classification performance. We refer to the erroneous labels as
label noise.

Most of the works that studied in the influence of label
noise on the image classification performance consider the
uniform label noise, with which the erroneous labels are
chosen uniformly at random [9]-[11]. This results in an
equal probability of labelling a data point to other incorrect
classes. However, mutually similar classes are in practice more
easily mixed up with each other in the labelling process than

dissimilar classes. Thus, the probability of wrongly assigning
a data point to other classes is non-uniform. In order to
study the effect of label noise on classification performance
of classifiers in a more practical way, we here propose a new
label noise simulation method, which is based on the spectral
feature distances. The proposed simulation method quantifies
the distances between spectral features of classes, and then
constructs the probability transition matrix according to these
distances. This probability transition matrix is used to simulate
the label noise for each class with a corresponding probability
distribution, which admits that similar classes have a higher
probability to be mixed up with each other.

Under the proposed label noise simulation approach, we
study thoroughly the behaviour of several representative super-
vised classification approaches in the scenario where different
levels of label noise are present in the training data. We
characterize statistically the effect of errors in labels on
the spectral signatures and compare them to those spectral
signatures under uniform label noise. The empirical results
show how erroneous labels affect the spectral signatures and
deteriorate the classification performance. We also analyze the
classifiers’ tolerance to label noise given an acceptable overall
accuracy degradation with the proposed simulation approach.

II. PROPOSED LABEL NOISE SIMULATION APPROACH

Most work relating to label noise generate the erroneous
labels uniformly at random. Although it is the easiest way
to simulate label noise, it does not reflect well the situation
in practice. Mutually similar classes have a higher chance to
be mixed during the labelling of pixels. Therefore, we here
propose a new label noise simulation approach, which takes
these considerations into account.

We define the level of label noise p as the proportion
of training samples that have wrong labels. We denote by
x = (x1, "+ ,&y) a training sample and y = (y1,-** ,Ym)
a test sample, where x; and y; are the corresponding i-th
features. Both of these are vectors of pixel values in an HSI
at a given spatial position in m spectral bands. Let C' denote
the class variable that is assigned to these samples and that
takes values c in a finite set C, with cardinality s. Further
on, let {x$}_, be a set of feature vectors with label c in
an HSI for training, where ¢ € C, [ is the number of feature
vectors that are labelled as class c. The average feature vector
in class ¢, denoted by X, is obtained by computing the average
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Fig. 1. The framework of the proposed label noise simulation approach.

of all samples belonging to class c, i.e., x;. The generation
of erroneous labels is governed by the probability transition

matrix.
To this end, we define the distance matrix D; as:

din diz ... dis 0 diz ... dis

d d das d 0 ... das
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where d;; is defined as the Euclidean Distance between the
average feature vectors X., and X.;:

dij = \/Zm(xcim - Ecj-m)2- (2)

The probability transition matrix P, has the general form

P11 P12 Pi1s 0 pi2 Dis
| I I B
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and we define its entries in terms of the corresponding entries

in the distance matrix:
m

pij = e—dij/ Z e dik (4)
k=1,k#i

The sum of the probabilities in each row of P; is 1. The
smaller distance between two classes, the larger probability
for the transition from one class to the other. Note that P,
is not symmetric, the transition is only available through the
probabilities in the same row of P;. Fig. 1 shows an illustration
of the generation of probability transition matrix. The proposed
label noise simulation implements a practical scenario that
similar classes have higher chance to be mixed up.

III. SPECTRAL SIGNATURE ANALYSIS WITH DIFFERENT
TYPES OF LABEL NOISE

We now move on to analyze the effect of label noise on
the estimation of spectral signatures of landcover classes.
In particular, the erroneous labels are chosen in two ways:
uniformly at random and using our proposed label noise
simulation approach. These average spectral signatures are
obtained by taking the mean value of spectral intensities for
each class. We randomly select 50% samples as the training
samples and then select at random a given portion p of the
total training samples (from various classes) and flip each of
them to one of the remaining classes by the two ways.
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Fig. 2. Average spectral signatures for the HYDICE Urban data set (top
three), Indian Pines data set (middle three) and the Salinas Scene data set
(bottom three) with p = 0 (left column) and with p = 0.5 obtaining noisy
labels by uniform transition (middle column) and by probability distribution
transition (right column).

A. Data sets

We conduct our experiments on three real HSI data sets: HY-
DICE Urban, Indian Pines and Salinas Scene. The HYDICE
Urban data set was captured by the HYDICE sensor with size
200 x 200 x 188. There are five classes in this data set: trees,
concrete, soil, grass and asphalt. The Indian Pines data set
has a spatial size of 85 x 70 and contains 200 spectral bands,
including four classes: corn-notill, grass-trees, soybean-notill
and soybean-minitill. The size of the Salinas Scene data is
100 x 80 x 224, including six classes: brocoli-green-weeds-1,
brocoli-gree-weeds-2, grapes-untrained, lettuce-romaine-4wk,
lettuce-romaine-5wk and lettuce-romaine-6wk.

B. Spectral signatures analysis with noisy labels

Fig. 2 illustrates the effect of label noise on the average
spectral signatures in the three data sets. In HYDICE Urban
data set, the spectral signatures of different classes are rather
different from each other without label noise. In the presence
of label noise, they wrongly appear to be more similar to
each other with both methods of label noise simulation. The
spectral signatures with our non-uniform label noise show
slightly different from those with uniform label noise. This
is because the five classes in this data set are rather different
from each other, causing the distances between features in
different classes not very distinguishable. In Indian Pines data
set, the spectral signatures of all the four classes are quite
similar without label noise. In the presence of label noise under
two simulation methods, the spectral signatures of the four
class are quite similar, and falsely appear to be more similar
to each other.

In Salinas Scene data set, without label noise, the spectral
signatures of Class 1 and Class 2 are quite similar and the
other four classes are similar. With the uniform label noise,
the spectral signatures of all classes wrongly appear to be more



TABLE I
PROBABILITY TRANSITION MATRIX FOR Salinas Scene DATA SET.

Class1 Class2 Class3 Class4 Class5 Class 6
Class 1 0 0.6043 0.1197 0.0843 0.0779 0.1140
Class 2 0.5611 0 0.1319 0.0938 0.0865 0.1267
Class 3 0.0816 0.0969 0 0.2115 0.2651 0.3449
Class 4  0.0592 0.0710 0.2180 0 0.3435 0.3065
Class 5 0.0504 0.0603 0.2516 0.3181 0 0.3196
Class 6  0.0676 0.0809 0.2999 0.2587 0.2928 0

similar to each other. However, with our proposed simulation
approach, the first two classes tend to mix up with each
other, and the other four classes appear to be more similar
to each other. The probability transition matrix of this case
is shown in Table I. In this table, the probabilities for the
classes with similar spectral signatures are much higher than
the others. This example shows clearly that the proposed
label noise simulation method achieves the goal successfully:
similar classes have higher chance to be mixed with each
other. The analysis also indicates that erroneous labels lead to
model uncertainties, which will in turn affect the classification
performance. In the following section, we will study the
performance of the representative classifiers with the proposed
label noise simulation approach and explore which level of
label noise can be tolerated depending on the acceptable drop
in the classification accuracy.

IV. REPRESENTATIVE CLASSIFICATION METHODS
Here, we review briefly the classifiers that we use for the
analysis in this paper.
A. Naive Bayes classifiers (NBCs)

NBCs are simple Bayesian classifiers. For any given feature
vector x, an NBC returns the Maximum a Posteriori (MAP)
estimate of the class variable C, assuming the conditional
independence P(x|c) = [[;~, P(z;|c). The estimated class
is thus:

¢ = argmax P(c|x) = arg max P(c) Hi:l P(zile). (5)

B. K-nearest-neighbor classifier (k-NN)

In k-NN algorithm, the test sample y is classified by the
majority voting of its k nearest neighbors, which are often
measured by the Euclidean distance as follows:

d(x7Y) = \/Zm(xm - ym)2' (6)

Let N, be the set of k nearest neighbors of y according to
Equation (6). The test sample y is assigned to the class that
is most common among N,.

C. Support vector machine (SVM)

SVM learns a separating hyperplane from a given set of
training data with an optimal decision boundary to each
class [12], and categorizes new data points by the learned
hyperplane. Let K (x;,x;) be a kernel function which defines

an inner product in the feature space. The decision function
implemented by SVM can be written as:

) =sgn(Y

where c¢; is the corresponding label of sample x;, b is a real
number and the coefficients «; are obtained by solving the
convex Quadratic Programming (QP) problem [13].

cioi K(y,x;) +b), (N

D. Sparse representation classification (SRC)

SRC identifies the label of test data in two steps: sparse rep-
resentation and classification. Sparse representation represents
a test data y by a linear combination of a few atoms from a
dictionary D € R™*9, which in SRC is constructed specially
by the training samples {x;}¢_,. We denote by D; € R™*d:
the i-th subdictionary in D = [D;,Ds,...,D.] where each
column of D is a training sample of i-th class. The resulting
sparse coefficients vector & € R? of y can be obtained by
solving the following optimization problem:

& =argmin|ly — Daf3 st Jalo <K, (8)
(e

where ||c||o denotes the number of non-zero elements in
a and K is the sparsity level, i.e., the largest number of
atoms in dictionary D needed to represent any input sample
y. The optimization problem in Eq. (8) is typically solved
with a greedy algorithm, such as Orthogonal Matching Pursuit
(OMP) [14]. Then, the class of the test sample is identified by
calculating the class-specific residuals r; [15]:

argmin r;(y)
i=1,2,...,C

class(y) =
)

= arg min ||y — D;alle,

i=1,2,...,

where o; are the sparse coefficients associated with class i.

E. SRC-based classifier with spectral-spatial features

We also consider a representative of SRC-based method
where spatial information is included, and in particular we will
use in our analysis the method of [16], called SISRC, which
employs super-pixel segmentation and encodes jointly all the
pixels within one super-pixel. It assumes that similar pixels in
local regions, which are defined by super-pixel segmentation,
can be represented by a few common atoms in D. This results
in a row sparsity pattern on the coefficients matrix of the
pixels within the same super-pixel. Let X € R™*"™ represent
a super-pixel composed of n pixels in m spectral bands and
A € RI*™ the corresponding coefficients matrix. SJISRC
solves the following problem

argmin | X — DA|% s.t. |A]rowo < Ko,  (10)
A

where ||A||;ow,0 denotes the number of non-zero rows of A
and K is the row-sparsity level. After finding A, the class
for the whole super-pixel X is decided as:
class(X) = argmin | X — D;A;||F,
i=1

3ty

(1L

where A; is the sub-matrix of A corresponding to class 1.



F. Deep learning based spectral-spatial classifier

Deep learning methods have been increasingly used in HSI
classification [17]-[19]. As a representative of these methods,
we select the SSUN [20], SSRN [21] and CBSP algorithm
[22]. All the three algorithms combine spectral and spatial
feature extraction.

1) Spectral-spatial unified network (SSUN): The SSUN
algorithm [20] integrates the spectral feature extraction, spatial
feature extraction and classifier training into a unified neural
network. It incorporates long short-term memory (LSTM) [23]
network for band grouping and spectral feature extraction and
the multiscale CNN (NSCNN) for spatial feature extraction.

2) Spectral-spatial residual network (SSRN): The SSRN
algorithm [21] is an end-to-end spectral-spatial residual net-
work that takes raw 3-D cubes as input data for hyperspectral
image classification. In SSRN, the spectral and spatial residual
blocks consecutively learn discriminative features from abun-
dant spectral signatures and spatial contexts in hyperspectral
imagery. More details can be found in [21].

3) Convolution based spectral partitioning architecture
(CBSP): The CBSP algorithm [22] aims to develop a deep
learning architecture using 3-D convolutional neural networks
with spectral partitioning to extract features. It first performs
a spatial transformation via 2-D convolution. The transformed
image is partitioned on the spectral level and split into seg-
ments for efficient processing. 3-D convolution is then applied
to each segment. Finally, convoluted segments are concate-
nated and fed to two fully-connected layers with dropout as
regularization. The detailed description of CBSP can be found
in [22].

V. COMPARISONS OF CLASSIFICATION PERFORMANCE
WITH NOISY LABELS

We conduct experiments on two real HSI data sets: HYDICE
Urban and Indian Pines.

A. Experimental setting

The effect of erroneous labels is studied by evaluating the
performance of the eight representative classification algo-
rithms described in Section IV. Four of these (NBC, k-NN,
SVM and SRC) are based on spectral features alone, and the
remaining four (SJSRC, SSUN, SSRN and CBSP) make use
of both spectral and spatial features.

In the following experiments, 10 percent of samples are
randomly selected for training and the rest are for testing. The
reported results are averaged values over 10 runs with different
training samples. We evaluate the classification performance
by overall accuracy (OA), which is the ratio between correctly
classified testing samples and the total number of testing
samples.

B. Experiments on HYDICE Urban

Fig. 3 (a) shows the overall accuracy of the eight algorithms
on HYDICE Urban with p ranging from 0 to 0.9. When there
is low-to-moderate amounts of label noise, the four spectral-
spatial methods show much better performance than the four
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Fig. 3. (a) Influence of label noise on OA and (b) the classifiers’ tolerance
to label noise in the data set HYDICE Urban with respect to OA drop. (c)
Influence of label noise on OA and (d) the classifiers’ tolerance to label noise
in the data set Indian Pines with respect to OA drop.

spectral-based methods. When there is no label noise (p = 0)
the deep learning method SSRN yields the best OA, while
the naive Bayesian classifier (NBC) is inferior to all other
methods. This can partly be attributed to the fact that this
particular NBC makes use of only spectral features while
the other better performing methods (SJSRC, SSUN, SSRN
and CBSP) incorporate spatial and spectral features. With the
increasing levels of label noise, spectral-based algorithms k-
NN, SVM and SRC show similar behaviour, but SRC performs
worse than the other two and shows approximately linear
decrease. The performance of NBC is the most stable, and
drops sharply when p exceeds 0.6. The overall accuracy of
spectral-spatial methods SJSRC, SSUN, SSRN and CBSP
deteriorate significantly with the increasing label noise and
the three deep learning methods (SSUN, SSRN and CBSP)
are especially vulnerable in this respect.

Fig. 3 (b) shows the maximum level of label noise that
a classifier can tolerate given a decreasing rate in the OA
compared to the case without label noise (p = 0). We analyze
the tolerance of the eight classification models in the cases
with OA decreasing by 5%, 10% and 15% compared to the OA
of p = 0. We assume that the OAs between any two successive
p (in steps of 0.1) decrease linearly as in Fig. 3 (a). NBC
shows the highest tolerance to label noise, which means that
if 5% decrease in OA can be tolerated, NBC allows 40% of
erroneous labels. The three deep learning approaches (SSUN,
SSRN and CBSP) exhibit very low tolerance to label noise,
although they make use of both spectral and spatial features.
The sparse coding approach based on spectral features alone
(SRC) also shows low tolerance to label noise, but its version
with spatial information (SJSRC) is much more robust, both
compared to the basic SRC and to the deep learning methods.



C. Experiments on Indian Pines

Fig. 3 (c) shows the performance of the eight algorithms
on Indian Pines. Spectral-based algorithms k-NN, SVM and
SRC show similar behaviour as in HYDICE Urban data set.
NBC is again the most stable method. Its performance drops
significantly when p exceeds 0.6. The spectral-spatial methods
(SJSRC, SSUN, SSRN and CBSP) also behave similarly as
in HYDICE Urban and their overall accuracy deteriorates
significantly with the increasing label noise.

Results in Fig. 3 (d) show similar trends as in HYDICE
Urban data set in terms of the tolerance to label noise. NBC
shows again the highest tolerance to label noise in the three
cases. The sparse coding approach based on spectral alone
(SRC) shows very low tolerance to label noise, but the version
with spatial information (SJSRC) is much more robust to label
noise, both compared to basic SRC and to the deep learning
methods SSUN, SSRN and CBSP.

VI. CONCLUSION

We proposed a new label noise simulation approach, and
employed it in the evaluation of classifiers for HSI images
in remote sensing. The proposed approach admits the fact
that similar classes have a higher chance to be mixed up
with each other. With the proposed label noise model, we
analysed the effect of erroneous data labeling on the estimated
spectral signatures of different classes. We also compared
the performance of representative supervised classification
approaches when erroneous labels simulated by our proposed
method are present. The results reveal that Bayesian classifiers,
even under the simplest naive Bayesian model (NBC) are more
robust to the label noise simulated by the proposed method
than methods based on support vector machines (SVM), sparse
coding and deep learning. Deep learning approaches exhibited
in all our experiments the highest vulnerability to label noise.
This agrees with recent studies that show susceptibility of
deep learning to various other perturbations, such as noise
in the data and adversarial attacks. The k-NN method also
demonstrated very robust performance, which can be attributed
to its majority voting strategy. Our analysis shows also clearly
the importance of using spatial context not only to improve
the classification accuracy in ideal settings but also to improve
the robustness to label noise. Sparse coding methods that make
use of both spectral and spatial information showed excellent
performance and can be considered as a good choice of a
classifier, which enables a high classification accuracy and a
robust performance to label noise.
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