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Abstract—With the ever-increasing availability of data, the
need for efficient and accurate image retrieval methods has
become larger and larger. Deep hashing has proven to be a
promising solution, by defining a hash function to convert the
data into a manageable lower-dimensional representation. In this
paper, we apply recent insights from the field of variational
autoencoders to the field of deep image hashing, thus achieving
an improvement over the current state of the art as shown by
experimental evaluation. The code used in this paper is open-
source and available on GitHub1.

Index Terms—Image hashing, deep hashing, content-based
image retrieval, variational autoencoders, unsupervised deep
learning.

I. INTRODUCTION

Due to the growth of computer vision applications, there
has been an ever-increasing supply of high-dimensional visual
data. Thus, there is an increase in demand for accurate
and efficient retrieval methods for these datasets. Traditional
nearest neighbour search methods tend to struggle with high-
dimensional data. Not only are these techniques impacted
by the increasing computational cost for calculating element-
wise distances, they also fail to translate semantic information
into these distances. A promising solution to this problem is
presented in the field of image hashing. Here, data in high-
dimensional space is mapped onto low-dimensional hash codes
in such a way that distance between data points is conserved
into those hash codes. This allows for the application of
traditional methods on the converted low-dimensional data.

Hashing methods can be both data-independent and data-
dependent (learning to hash). Data-independent hashing are
based on hand-crafted features, and can thus only capture
visual similarity between images, rather than a semantic
similarity. Data-dependent methods, on the other hand, use
deep learning to achieve semantic similarity and have shown
state-of-the-art performance over classical data-independent
methods [1]–[4]. Data-dependent hashing techniques can be
subdivided in two classes: supervised and unsupervised meth-
ods. While supervised techniques can use labels to increase
retrieval accuracy significantly, they also depend on said
labels. In many real-world applications, datasets may not have
semantic annotations. Here we opt for unsupervised hashing

1https://github.com/maximverwilst/deepimagehashing-VAE

techniques, which use the intrinsic data structure to determine
meaningful hash codes.

Many unsupervised techniques are already established, ex-
amples of which are autoencoder networks [3], [5], [6],
adversarial networks [1], [7], [8] and graph-based networks
[9], [10]. A recent work by Shen et al. [4] shows state-of-the-
art results. The authors describe an autoencoder and graph-
based hybrid network for hashing, called Twin Bottleneck
Hashing (TBH). The architecture leverages a code-driven
graph, allowing it to circumvent the static-graph problem
which is inherent with precomputed graphs.

In this work, we leverage and optimize the architecture
from twin bottleneck hashing with recent insights from the
field of variational autoencoders. In particular, we propose two
separate improvements over TBH and experimentally show an
overall increased performance on the CIFAR-10 dataset for
both improvements separately, as well as together.

The rest of the paper is organised as follows. We provide
an overview of state-of-the-art on hashing for content-based
image retrieval in Section II. In Section III, we present
our image hashing method which builds upon TBH by im-
proving the binary bottleneck (Section III-A) and expanding
the continuous bottleneck (Section III-B). In Section IV, we
experimentally evaluate the two modifications, both separately
and together, in all cases showing improvement over the state
of the art. We conclude our work in Section V.

II. RELATED WORK

A. Hashing for content-based image retrieval

Hashing techniques can be categorised into data-
independent and data-dependent methods (learning to
hash). Data-independent methods tend to rely on designed
features to extract hash codes, without using the data
distribution. These methods are often referred to as locality
sensitive hashing methods, named after a family of hash
functions that maps similar inputs to the same hash code.
Two works pioneered this technique [11], [12]. There are a
lot of variations using different distance metrics [12]–[16] or
changing the search method [17]–[19].

Data-independent methods may not optimally exploit the
full data distribution. These methods often fail to capture
semantic similarities between data points [20]. Data-driven
methods are showing much more promising results in the



field of image retrieval [21]. Most of the work in this field
has focused so far on supervised techniques, which exploit
the data distribution together with its annotations. Over recent
years, many different architectures have been proposed for
supervised learning to hash. Perhaps the most straightforward
techniques make use of a deep encoder to directly encode
inputs to hash codes [2], [22]–[24]. Yang et al. presented a
fine-tuning process to convert such an encoder of a classifier
into a deep hashing network [25]. Another popular supervised
technique trains on predicting a pairwise loss function [26]–
[29]. A natural extension to this are triplet-based losses, where
a query data point is compared to both a similar and a
dissimilar data point [30]. Supervised generative adversarial
networks have proven to be viable hashing methods [31]–[33],
as well as supervised autoencoder-based networks that exploit
the models’ bottleneck to extract hash codes [34], [35].

While supervised data-driven methods do show promising
retrieval results, they require annotated datasets. This is a
severe limitation as for many real-world datasets, it is not
feasible or it is simply too costly to annotate. Therefore, there
is a demand for unsupervised methods that can learn useful
hash functions solely based on the data distribution. There is a
wide variety in the type of unsupervised methods. Generative
adversarial networks again show state-of-the-art performance
in this field [1], [7], [8], [31]. Similarly, autoencoders also
remain a relevant technique [3], [5], [36]. Dai et al. build on
the idea of a variational autoencoder, applying it to construct
hash codes directly from the bottleneck [6]. Hu et al. propose
an unsupervised technique which assigns pseudo labels to the
data using precomputed features and shows promising results
[37]. The approach optimises its hash function to maximally
compress the dataset and is a generative approach since it
can be used to regenerate the inputs. A recent work by Shen
et al. [4] introduced an autoencoder-type architecture which
implements elements from graph-based learning called auto-
encoding twin-bottleneck hashing (TBH). This architecture
inspired our work and thus we describe it in more detail in Sec-
tion II-C. While TBH provides state-of-the-art unsupervised
hashing, we show that by improving certain components of
the architecture we can improve its performance even further.

B. Variational autoencoders

Variational autoencoders were first proposed by Kingma et
al. [38] as a probabilistic version of the classical autoencoders.
Since then, variational autoencoders have seen improvements
and adaptations in the last decade, we will briefly touch on
the developments that partly inspired this work. Higgins et
al. [39] adapt the standard variational autoencoder to include
interpretable and factorised latent representations. This work
is expanded upon by Chen et al. [40]. Here a novel loss
function is introduced without the need for additional hyper-
parameters. The work by Rezende et al. includes an algorithm
for constrained optimisation [41]. This allows for a robust way
to balance reconstruction and compression constraints.

Fig. 1. Schematic of the TBH architecture with proposed improvements. In
the binary bottleneck (top bottleneck) we change the generation of hash codes
to be based on variational autoencoder with disentangled variables and we
omit the regulariser (Section III-A). We also change the continuous bottleneck
(bottom bottleneck) to use a variational autoencoder that is trained using a
constrained optimisation setup, in order to better control the trade-off between
compression and reconstruction quality of generated samples (Section III-B).

C. Twin bottleneck hashing

The network structure of TBH is an adapted autoencoder
architecture, the main components of which are explained here
briefly.

1) Twin bottlenecks: The most notable feature of TBH
is the use of two separate bottlenecks instead of one. First,
a binary bottleneck, which is responsible for generating the
actual hash codes. Inspired by Dai et al., a stochastic neuron
is used to generate the hash codes [6]. An intrinsic problem
that arises is that we want binary codes to remain as small as
possible, this limits the flexibility of the model. To alleviate
this problem, a second larger continuous bottleneck allows for
the model to capture much more complex representations.

2) Graph convolutional layer: The graph convolutional
layer creates a pathway to calculate the gradients for both
bottlenecks. It uses the binary variables to create a similarity
graph, which is used to create the convolutional filter along
with a set of trainable weights. Note that intuitively, the
graph convolutional layer will penalise unrelated samples that
are closer together in Hamming space. One of the major
contributions of TBH is that the similarity graph is now
constructed and optimised during training, rather than built
on precomputed features.

3) Regularisation: TBH uses two discriminators as a means
of regularisation. One discriminates hash codes from random
binary codes. The other one discriminates the output of the
graph convolutional layer with uniformly distributed samples
between zero and one.

III. PROPOSED METHOD

Here we propose an unsupervised hashing approach, which
builds on the twin bottleneck hashing (TBH) model and
improves upon it. Specifically we improve two main aspects
of the TBH approach. First, we change the way binary codes
are generated. This way we directly influence the ability of
the model to learn representations. Second, we design a more
powerful generative bottleneck. This improves the model as a
whole, and thus also the retrieval scores. Our overall objective
function consists of three components: a regularisation term
on the binary bottleneck LBBN , a constrained optimisation



setup between the reconstruction loss and the regularisation
on the continuous bottleneck LCBN and lastly a discriminator
term on the output of the graph convolutional network LD

analogous to TBH’s approach. This results in the following
objective:

LOBJ = LBBN + LCBN + LD , (1)

with LBBN and LCBN explained in more detail in the
following sections.

A. Improving the binary bottleneck

We focus first on the generation of the binary hash codes.
Instead of generating hash codes with a stochastic neuron
[6] like in TBH, we use a variational autoencoder scheme.
In recent years, variational-autoencoder–based methods have
shown improvements over the state of the art in image gen-
eration, classification and particularly representation learning.
This motivates us to explore their potential for improved image
hashing too. Learning a better representation in the bottleneck
will enable us to capture more information from the input
images to the hash codes and thus achieve better retrieval
accuracies.

We thus design the binary bottleneck, which generates hash
codes, as a variational autoencoder with stochastic sampling.
We intend to optimise the hash codes to have statistically
independent bits. This relates to a common topic in variational
autoencoders where the latent distribution in the bottleneck
is optimised to be disentangled. Chen et al. [40] stated that
Kullback-Leibler (KL) divergence term in the ELBO objective
for variational autoencoders can be decomposed in three
terms: Index-Code mutual information, total correlation and
dimension-wise KL divergence. They claimed that penalising
the total correlation term by an extra factor would be re-
sponsible for a disentangled latent distribution. This results
in latent variables that map to more explainable features like
colour, shape etc., but it sacrifices some quality of the models’
reconstructions.

We apply these principles to our hash code generation
to measure if disentangled representations would benefit our
models’ performance. We formulate the loss on the binary
bottleneck LBBN as in a standard variational autoencoder with
the decomposed KL term.

LBBN = KL[q(z, n)||q(z)p(n)] +

β ∗KL[q(z)||
∏
j

q(zj)] +
∑
j

KL[q(zj)||p(zj)] , (2)

where β is a new hyper-parameter to penalise the total correla-
tion term, x and z are the data and latent variable respectively,
and n is a uniform random variable on {1, 2, ..., N} which
indexes the data points. Our encoder is defined as q(z|n) =
q(z|xn) and the data’s prior distribution p(n) = 1/N . From
these we can derive q(z, n) = q(z|n)p(n) = q(z|n) 1

N and the

aggregated posterior q(z) =
N∑

n=1
q(z|n)p(n). Following [40],

we express KL[q(z, n)||q(z)p(n)] as the index-code mutual

information. This is the mutual information between the data
variable n and the latent variable z on the empirical data
distribution q(z, n). The second term, β∗KL[q(z)||

∏
j q(zj)],

is referred to as the total correlation. The penalty on this term
forces the model to find statistically independent factors in the
data distribution. The last term,

∑
j KL[q(zj)||p(zj)], is the

dimension-wise KL divergence, which encourages individual
latent dimensions to represent their corresponding prior.

We expect that hashing with disentangled latent variables
will force bits to allocate to clear, explainable features, al-
lowing our model to preserve semantic similarity between
samples. Note that these extra constraints on the bottleneck
could also worsen the models’ ability to fit to the input data.
Experimentally however, we see a slight improvement in the
precision of the architecture as will be shown in Section IV. In
addition, we omit the discriminator on the binary bottleneck,
as our implementation now uses KL divergence to regularise
the binary bottleneck.

B. Expanding the continuous bottleneck

Now we turn to the design of the continuous bottleneck.
Our idea is to convert the more standard autoencoder structure
to a variational-autoencoder–type structure. This expanded
architecture should allow the model to better capture input
data, specifically boosting the shared encoder and thus achieve
better results when generating hash codes. Rezende et al. [41]
propose a robust algorithm for optimising variational autoen-
coders. We apply their method on the continuous bottleneck
and redefine accordingly the ELBO objective into a constraint
optimisation problem:

LCBN = Ep(x)[KL[q(z|x);π(z)]]
+ λTEp(x)q(z|x)[C(x, g(z))] , (3)

with C(x, g(z)) = ‖x− g(z)‖2 − κ , (4)

where we balance compression Ep(x)[KL[q(z|x);π(z)]] on
the bottleneck with reconstruction quality of our generated
samples Ep(x)q(z|x)[C(x, g(z))]. For the compression term,
we use the KL divergence between the encoder’s generated
Gaussian distributions q(z|x) and a set of normalised Gaus-
sian priors π(z). We use L2-loss, ‖x − g(z)‖2, to represent
our reconstruction loss. This allows for an elegant trade-off
where we can choose to invest a bit more in compression as
we do not care much about our generated samples. A new
hyper-parameter κ is set to achieve the desired reconstruction
quality, which controls the value of λT , as is described in the
optimisation scheme proposed by Rezende et al. [41].

We expect as the model improves through the continuous
bottleneck, that the shared encoder and decoder will improve.
This benefits the binary bottleneck directly and should result in
better retrieval scores for our model. In the following section,
we will show that this indeed improves the performance of the
model.



Fig. 2. Comparison of precision-recall curves for both TBH, our method and improvements from sections III-A and III-B separately on the CIFAR-10 dataset.
We use 16-bit, 32-bit and 64-bit codes (left to right respectively) to evaluate these models.

Fig. 3. Comparison of precision-recall curves for TBH and our method on the MS-COCO dataset. We use 16-bit, 32-bit and 64-bit codes (left to right
respectively) to evaluate the models.

IV. EXPERIMENTAL RESULTS

We evaluate our method in comparison with the related
state-of-the-art methods in the field of unsupervised hashing.
We perform experiments on both CIFAR-10 and MS-COCO
dataset. Additionally, we extract features from the fc7 layer
using AlexNet [42]. This is the same extraction method as
described in TBH. We train and evaluate our models in Ten-
sorFlow. For the baseline method TBH, we experiment with
the same setup and hyper-parameters as stated in their paper.
As for our method, we use the following hyper-parameters.
TBH hyper-parameters are kept the same, with λ = 1 and
L = 512. We train in batches with batch size = 1024 using
learning rate = 1e−4. For the GECO implementation we use
κ = 2400, and clip the λ parameter between 1e− 6 and 1e12
to avoid extreme values during training.

Figure 2 shows precision-recall curves for our method, the
TBH baseline and each of the two improvements from sections
III-A and III-B separately on CIFAR-10 dataset. We see that
our method improves precision scores across the board for 16,
32 and 64 bits codes. This confirms that the changes we make
to the bottlenecks of TBH do in fact improve the generated
hash codes and thus the retrieval scores. Looking at the

components separately, we see that expanding the continuous
bottleneck contributes to the majority of our improvement.
Changing the binary bottleneck has a less significant effect.

Figure 3 shows precision-recall curves for our method and
TBH baseline on MS-COCO dataset. On this dataset, the
curves for both methods look different in comparison to those
on the CIFAR-10 dataset. This suggests that there is a group of
data samples that cause confusion and retrieving later samples
starts to increase precision. Our method outperforms TBH on
this dataset as well.

Table I shows a comparison between more state-of-the-art
methods on CIFAR-10 dataset. To evaluate methods, we use
mean average precision (mAP) at 1000. This measures the
average relevance scores of a set of the top-1000 images in
response to a query. Our method shows improved results over
multiple baselines.

To conclude the results, we show some example retrievals
from both our method and the TBH baseline in Figure 4. The
query examples are randomly selected from the test set and
retrievals are returned from our train set. On such a small
set of queries, it is difficult to clearly see our improvements
– there are examples of images where our method performs



TABLE I
MAP OF OUR METHOD AND STATE-OF-THE-ART UNSUPERVISED HASHING

METHODS ON THE CIFAR-10 DATASET.

METHOD 16 BITS 32 BITS 64 BITS

LSH [11] 0.106 0.102 0.105
SPH [9] 0.272 0.285 0.300
AGH [43] 0.333 0.357 0.358
SPHERH [44] 0.254 0.291 0.333
KMH [45] 0.279 0.296 0.334
ITQ [23] 0.305 0.325 0.349
DGH [46] 0.335 0.353 0.361
DEEPBIT [47] 0.194 0.249 0.277
SGH [6] 0.435 0.437 0.433
BGAN [8] 0.525 0.531 0.562
BINGAN [7] 0.476 0.5122 0.520
GREEDYHASH [48] 0.448 0.473 0.501
HASHGAN [31] 0.447 0.463 0.481
DVB [49] 0.403 0.422 0.446
DISTILLHASH [50] 0.284 0.285 0.288
PSEUDOLABEL [37] 0.517 0.572 0.596
TBH [4] 0.532 0.573 0.578

PROPOSED METHOD 0.556 0.6021 0.6057

slightly better than TBH, and vice versa. For the most part,
however, we observe that queries where our method struggles
are the same ones that are difficult TBH method, which is to
be expected since these are more difficult queries and since
these two methods share similarities.

V. CONCLUSION

In this paper, an improved method for unsupervised hashing
based on twin bottleneck hashing is proposed. We improve
the performance of the state-of-the-art TBH approach by
designing the bottleneck structure inspired by some recent
insights in the field of variational autoencoders. We adapt the
generation of hash codes to promote learning disentangled
representations and expand the continuous bottleneck to a
variational autoencoder to improve the models’ ability to fit
to input data. The experiments show that the proposed archi-
tecture has improved retrieval performance when compared to
state-of-the-art methods.
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