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Abstract—Convolutional Neural Network (CNN) has been
widely applied in hyperspectral image (HSI) classification exhibit-
ing excellent performance. Weak generalization of CNN models
to different data sets is a common issue in this domain largely
due to limited amount of labelled training samples. In this paper,
we propose a fully group convolutional neural network (FGCNN)
method that integrates cascades of shuffled group convolutions
tailored to different network stages. To our knowledge, this is
the first reported full group CNN model in general, and we
design it in particular for robust spectral-spatial classification
of HSI. In the primary feature extraction stage, we develop
an original multi-scale spectral feature extraction approach
based on a novel concept of multi-kernel depthwise convolution
that we define in terms of shuffled and importance-weighted
group convolution. In the subsequent stage, we introduce a
discriminative spectral-spatial feature extraction method with a
novel group competition block to capture informative features
with relatively few parameters. The final feature fusion stage, is
defined as a novel lightweight group feature fusion method that
sharply reduces fusion weights compared to traditional methods
with fully connected layers. Experimental results on three data
sets show that the proposed FGCNN yields robust classification
accuracy under the same hyperparameter settings compared to
the current state-of-the-art.

Index Terms—Group convolution, multi-scale spectral feature
extraction, spectral-spatial feature learning, lightweight feature
fusion, hyperspectral image classification.

I. INTRODUCTION

HYPERSPECTRAL imaging is now established as one
of the key technologies in remote sensing [1]. While

offering rich spectral information in hundreds of continuous
spectral bands, hyperspectral images (HSIs) remain to pose
challenges for processing [2, 3] due to their huge dimension-
ality, and lack of sufficient training data to match it. Feature
extraction is a common way to address this challenge.

Recent studies demonstrate the success of deep learning in
HSI feature extraction [4–6]. Diverse deep learning models
have been applied to spectral feature extraction, including
stacked auto-encoders [7], deep belief networks [8], recurrent
neural networks [9], one dimensional convolutional neural
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networks (1D-CNN) [10], and graph convolutional networks
[11]. Because of the spatial variability of spectral signatures,
spectral noise and other ambiguities in the data, spectral-
spatial classification that incorporates spatial context typically
outperforms spectral classification alone [12, 13]. Both for
extracting spatial features and for combined spectral-spatial
features, CNNs are by far the most often used deep learning
model [5], typically employed with 2D or 3D neurons [14–16].

Current CNN models often use overparameterized networks
to boost the classification performance [17–19]. However, the
shortage of labelled pixels leads to a weaker generalization
[20, 21]. Data augmentation [22] can mitigate this problem
to a certain extent, as well as transfer learning [15], weakly
supervised learning [23], few-shot learning [24, 25], generative
adversarial learning [26, 27], and neural architecture search
[28, 29]. Still, the inherent limitations of the models remain
a limiting factor for the performance of the whole system.
Recent approaches to reducing the amount of the learning
parameters including combining CNNs with traditional ma-
chine learning models, such as Gabor filters [30], Markov
random fields [31], and conditional random fields [32], which
allows them to reduce the number of the convolutional layers.
Compared to pure CNNs, these models involve some type of
feature engineering [33].

The approach that we follow here is based on group feature
extraction [34], which reduces redundancy of the learned
weights in deep networks [20]. The term group convolution
refers to dividing the input channels into distinct groups and
performing a regular convolution over each group separately.
A downside is a weaker representation due to ignoring the
correlations among the different groups. A clever idea of
channel shuffling was recently introduced in computer vision
[35], to incorporate correlation across different groups. Related
methods include interleaved group convolutions (IGCs) [36–
38] and fully learnable group convolution (FLGC) [39]. A
limitation of the current group CNN models including Shuf-
fleNet [35], IGCs [36–38], and FLGC [39] methods is that
they employ group convolution only partially (i.e., only in
some stages of the network), and never for primary feature
extraction nor for feature fusion.

In this paper, we develop a fully group convolutional neural
network (FGCNN). We give a unified and compact mathemati-
cal description, where different learning stages share the same
operations, tailored to the particular tasks (such as primary
and subsequent feature extractions, and feature fusion). This
is to the best of our knowledge the first reported fully group
CNN model in general, and we design it in particular for
robust spectral-spatial classification of HSI. Our architecture
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is based on 2D-CNN. In contrast to most of the 2D-CNN
methods, including [17, 40–42], which need to apply some
form of dimensionality reduction (like PCA) prior to feature
extraction, our learning architecture consumes the original raw
3D HSI data. We accomplish this through an efficient multi-
scale spectral feature extraction method. Its key novelty is
a multi-kernel depthwise convolution that we define such to
weight the spatial information of each band from different
scales. We express formally this multi-scale feature extraction
operation in terms of shuffled and importance-weighted group
convolution operations. The subsequent stage in our model is
a discriminative feature extraction approach, which consists
of two parallel streams of shuffled group convolutions with
different depths and kernel sizes. We introduce element-
wise maximum operation to identify automatically informative
features of the two streams. The final stage in our model
is a novel lightweight feature fusion method, which reduces
sharply the number of learning parameters compared to the
commonly used fully connected layers while enhancing the
feature fusion capability. The whole learning framework is
defined in a unified, consistent manner, where the same core
principle of shuffled group convolutions is built in the different
network stages. The proposed framework proves to be robust
to changing characteristics of the datasets and yields not only
improved accuracy but also remarkably stable performance.

The main contributions of this work are the following:
1) We propose a fully group convolutional network for the

classification of hyperspectral images based on spectral-spatial
features. To our knowledge, this is the first reported fully group
convolutional network in general. The main advantage of the
proposed method is its robustness, exhibited as a remarkably
stable performance when applied to different data sets.

2) We introduce multi-kernel depthwise convolution to
weight the spatial information at different scales in each band.
Based on this idea, we develop a multi-scale spectral feature
extraction method, which consumes raw hyperspectral data
with all spectral bands. This is an important asset compared
to the current CNN models for HSI classification that often
require some form of dimensionality reduction at the input.

3) We propose a novel lightweight feature fusion method
that sharply reduces the fusion weights compared to traditional
methods with fully connected layers. This lightweight fusion
method can be applied to other networks too and is especially
of interest when the available training data is rather limited.

4) We devise an effective approach to reduce the number of
hyperparameters and the time required for their tuning. This
enables automatic adaptation of the proposed classification
method to different data sets while maintaining the same
hyperparameters settings.

A preliminary version of a part of this work was reported
in a conference paper [43]. Here, we build further on this
work, and present important novelties and improvements in
the performance. Apart from more elaborate theoretical and
experimental analysis, and formal presentation, the main dif-
ferences are the following. Firstly, in contrast to [43], here we
build a fully group convolutional neural network (FGCNN),
which is also one of the most important contributions of this
paper in general. This fully group convolutional design leads

to a more elegant formulation and to improved classification
performance. Secondly, we introduce here a new lightweight
feature fusion method as opposed to the conventional fusion
method with fully connected layers that was used in [43].
This novel feature fusion method is important in its own right
and can be used independently from the rest of our model,
to boost the performance of other CNN classifiers. Thirdly,
the discriminative spectral-spatial feature extraction developed
here differs significantly from [43], and employs a novel
group competition structure with parallel network streams.
Furthermore, we give elaborate analysis of our FGCNN model
in terms of parameter settings and reducing memory require-
ments. These novelties led to significantly improved perfor-
mance compared to [43]: the overall classification accuracy
increased by more than 6% on some data sets, and much more
stable performance over different data sets is reached.

The rest of this paper is organized as follows. Section II
reviews related work on spectral-spatial feature extraction and
basic ideas behind group feature learning. Section III presents
the proposed method in detail. Section IV evaluates the
effectiveness of the proposed approach on real hyperspectral
images and Section V draws the conclusion of this work.

II. RELATED WORK

A. Spectral-Spatial Feature Learning
Classification of hyperspectral images based on spectral in-

formation alone is susceptible to noise and spatial variability of
spectral signatures. Combined spectral-spatial feature learning
mitigates these adverse effects by incorporating the spatial
information. 3D CNN-based methods [10, 44] extract spectral
and spatial information jointly from 3D HSI data. These
methods often use a relatively small filter size in the spectral
dimension to avoid overfitting. Consequently, the resulting
classification maps tend to be oversmoothed [40].

Alternative, multi-stream models [11, 14, 40, 45] extract
spectral and spatial features separately, and fuse them subse-
quently. The spectral stream is then independently designed
from the spatial one and can be based on various models,
including 1D-CNN [45], recurrent neural networks (RNN)
[40], and emerging graph convolutional networks [11]. 1D-
CNN models typically extract local spectral features due to
local connection mechanism, while RNN models can learn
non-adjacent spectral features from sequential perspective.
Graph convolutional networks are capable of generalizing the
operation of convolution from grid data to graph data by using
non-Euclidean structure. Here, we adopt another approach,
where spectral-spatial features are extracted via 2D-CNNs.
The representative methods of this kind [10, 40–42] typically
apply first some form of dimensionality reduction like prin-
cipal component analysis and use only several first principal
components as input. This way, fewer learning parameters are
needed and thus the computational cost is reduced. However,
the spectral information is less well exploited [10, 40] and
the number of principal components is often inconsistent in
different data sets [14, 18, 42, 46]. We introduce here a novel
multi-scale spectral feature extraction method based on 2D-
CNN that requires no dimensionality reduction, making use
of all spectral bands.
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Fig. 1. The overall architecture of the proposed FGCNN. Black solid arrows illustrate here weights and black dashed arrows represent shuffling operations.
GConv denotes group convolution operation and PGConv denotes pointwise group convolution operation. M© represents element-wise maximum operation.

B. Group Feature Learning

Convolutional neural networks yield a highly redundant
representation [20]. Group feature learning reduces the re-
dundancy of the representation and the amount of learnable
parameters by using group convolution. The term group con-
volution refers to dividing the input channels into distinct
groups and performing a regular convolution operation over
each group separately. In HSI processing, group convolution
was successfully used both with deep belief networks [47]
and with CNN models for band-adaptive feature learning [34].
The methods mentioned above process each group of channels
independently, ignoring thus correlation between channels
assigned to different groups.

A ShuffleNet method of Zhang et al. [35] that was de-
veloped specifically for mobile devices, allows for inter-
group correlations by channel shuffling. A related approach
based on interleaved group convolutions (IGC) was proposed
in [36], and later extended to a structured sparse version
[37] and a low-rank version [38]. Recently, a FLGC method
was proposed to learn the group structure for reducing the
computational cost [39]. These methods demonstrated huge
success in RGB image processing, but they employ group
convolution only in some stages of the network, and never
for primary feature extraction nor for feature fusion. Partially,
this is because these methods were primarily aimed for RGB
images, and a regular convolutional layer is then typically
utilized to enlarge the number of channels for the following
group convolutions [35–39].

We develop instead a fully group convolutional network,
which consumes at the input raw 3D data with an arbitrary
number of input channels, including RGB images and HSIs
with different numbers of spectral bands. Our spectral fea-
ture extraction method builds on the concept of depthwise
separable convolution [48], which is commonly referred to
as “separable convolution” in deep learning frameworks. It
consists of a depthwise convolution followed by a pointwise
convolution. The depthwise convolution is a spatial convolu-
tion performed independently over each channel of an input,
saving computation greatly. The pointwise convolution is 1×1
convolution, which projects the output of the depthwise convo-
lution onto a new channel space and enables this way cross-
channel correlations. This separable convolution is different

from spatially separable convolution. We shall employ both
depthwise and spatially separable convolution to introduce a
multi-kernel generalization of the depthwise convolution.

For feature fusion, several fully connected layers are typi-
cally used both in general computer vision works [35–39] and
in hyperspectral image analysis [19, 42, 49]. As opposed to
this common fusion approach that involves a large number of
fusion parameters, we propose a lightweight fusion method
while maintaining the fusion ability.

III. PROPOSED METHOD

A. Overall Architecture

A major challenge faced by CNN-based models for HSI
classification is a weak generalization to different images.
Here, we propose a novel approach to learning spectral-spatial
features effectively with a fully group CNN also in the case
of relatively few labelled data. This way we achieve much
more robust and stable performance, which is evidenced by the
results on varying data sets. Earlier reported group CNNs [35–
39] employed group convolution only in some stages of the
networks and to our knowledge our model that we abbreviate
as FGCNN is the first reported fully group CNN model in
general. Its first stage extracts multi-scale spectral features
from the raw hyperspectral data with all spectral bands,
and reduces the spectral dimensionality. The second stage
performs a discriminative spectral-spatial feature extraction
powered by a novel group competition block. The final stage
is a lightweight feature fusion, which contains much fewer
fusion parameters compared to traditional methods with fully
connected layers. Fig. 1 shows the overall architecture of the
proposed FGCNN, with its three main components: 1) multi-
scale spectral feature extraction, 2) discriminative spectral-
spatial feature extraction, and 3) lightweight feature fusion. In
the following, we present the details of the three components
and a network design guideline. The definitions of the symbols
used in the paper are given in Table I for better readability.

B. Multi-Scale Spectral Feature Extraction

Since HSIs contain hundreds of bands, current 2D-CNN
based models often use only few principal components as
inputs to reduce the number of the parameters [17, 40–42],
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TABLE I
THE SYMBOLS USED IN THIS PAPER AND THEIR DEFINITIONS.

Symbol Definition Symbol Definition
X ;X;x HSI patch; matrix; vector Y output of the multi-scale spectral feature extraction

L = P ×P spatial size of X Fl−1;Fl input and output of the l-th group competition block
B number of spectral bands of X d; l number of group competition blocks; block index
S; s number of scales; a particular scale (scale index) k number of channels for each competition block
V; U depthwise convolution; pointwise convolution MP;M max pooling; element-wise maximum operator

VS ; vi,s
multi-kernel depthwise convolution matrix; the s-th kernel

(weight) for the i-th band of X Wl
i,j ;P

l
i,j

weights and shuffling operator of the j-th group
convolution for the i-th residual stream in block l

P shuffling operator (permutation matrix) eli importance weights for the i-th stream in block l
e; ei,s importance weighting matrix; weight along with vi,s Wj ;Pj weights and shuffling operator for the j-th fusion layer
US ;us pointwise group convolution matrix; weights for s-th group n number of fusion layers

b number of adjacent feature maps for learning ei,s ci number of channels for fusion layer i
m number of output channels for each group in US g number of groups

sacrificing some useful information for the classification [34].
On the other hand, the data-driven feature learning methods
that aim to extract more complete spectral features from a
higher-dimensional representation face the limitations known
as the curse of dimensionality [2].

To mitigate this problem, we propose a novel multi-scale
spectral feature extraction approach, based on group convo-
lution, which is able to consume the whole HSI (instead
of several principal components). The main idea is to first
expand the input channels into their multi-scale representa-
tions, with a special kind of group convolution (multi-kernel
depthwise convolution) in order to process spectral features at
multiple scales simultaneously, and then to feed shuffled and
importance-weighted outputs to a group convolution, reducing
thereby the output size.

Let X ∈ RP×P×B denote an HSI patch with window size
of L = P × P and with B spectral bands, and transform
it into a 2D matrix X ∈ RB×L = [xT

1 , · · · ,xT
B ]

T, where
xT
i ∈ R1×L is the i-th band of X . Further on, let us denote

separable convolution compactly as

Y = UVX (1)

where the matrix V acts as operator of the depthwise convo-
lution (i.e., channel-wise spatial convolution) and U denotes
the 1× 1 convolution, which maps cross-channel correlations.

We define the proposed multi-scale spectral feature extrac-
tion as

Y = USe�PVSX (2)

where e � PVS is shuffled and importance-weighted multi-
kernel depthwise convolution matrix. VS is a multi-kernel
generalization of depthwise convolution. P is the permutation
matrix that performs channel shuffling, and e provides im-
portance weighting through the channel-wise product �. US

denotes the 1 × 1 group convolution. Fig. 2 illustrates this
structure and we give a formal description next.

The core component of the proposed spectral feature extrac-
tion approach is a novel multi-kernel depthwise convolution
operation. What makes it essentially different from the com-
mon depthwise convolution [48] is that it has multiple output
channels for each input channel, hence the name multi-kernel
depthwise convolution. Pointwise multi-kernel depthwise con-
volution is a special case where the spatial filter size is of

1× 1, leading to a scalar weight on each band at each kernel.
We employ a pointwise multi-kernel depthwise convolution
to weight the spatial information of each band from S scales
as shown in the left of Fig. 1. We define 1 × 1 multi-kernel
depthwise convolution matrix as

VS =



v1,1 0 · · · 0
...

...
. . .

...
v1,S 0 · · · 0

...
...

. . .
...

0 0 · · · vB,1

...
...

. . .
...

0 0 · · · vB,S


(3)

where [vi,1, · · · , vi,S ]T are the multi-kernel weights with S
scales for xT

i . A common depthwise convolution V is a special
case of the above defined multi-kernel depthwise convolution
VS for S = 1.

The shuffling operator P shuffles VSX ∈ RS·B×L with B
groups:

VSX = [v1,1x
T
1 , · · · , v1,SxT

1︸ ︷︷ ︸
1st band

, · · · ,

vB,1x
T
B , · · · , vB,Sx

T
B︸ ︷︷ ︸

B-th band

]T
(4)

into PVSX ∈ RB·S×L with S groups:

PVSX = [v1,1x
T
1 , · · · , vB,1x

T
B︸ ︷︷ ︸

1st shuffled group

, · · · ,

v1,Sx
T
1 , · · · , vB,Sx

T
B︸ ︷︷ ︸

S-th shuffled group

]T
(5)

where [v1,sx
T
1 , · · · , vB,sx

T
B ]

T is the s-th shuffled group,
which contains all the spectral bands at a particular scale s
(1 ≤ s ≤ S).

Not all the feature maps are equally informative, and it is
thus of interest to identify the most important ones and to
suppress the others by some proper weighting. We accomplish
this by an operation that generalizes the so-called squeeze-
and-excitation (SE) operation [44], which learns automatically
the appropriate channel importance weights e ∈ RB·S×1 =
[e1,1, · · · , eB,1, · · · , e1,S , · · · , eB,S ]

T from their feature maps
PVSX ∈ RB·S×L. Since the adjacent bands have strong
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Fig. 2. An illustration of the proposed multi-scale spectral feature extraction.

correlations, we extend this SE operation to a group SE
that lets the adjacent feature maps share the same channel
importance weight: ei,s = · · · = ei+b,s, where b is the number
of adjacent feature maps. This way, each channel weight ei,s in
our group SE is learned automatically from the corresponding
group of feature maps: [vi,sxT

i , · · · , vi+b,sx
T
i+b]. The amount

of the parameters for our group SE drops by a factor b
compared to a regular SE.

Each shuffled and importance-weighted group is then fed
to the 1× 1 convolution separately, to extract global spectral
features. We define the group convolution matrix as

US =

u1,1 · · · 0
...

. . .
...

0 · · · uS,S

 (6)

where us,s ∈ Rm×B denotes the weights of the s-th group. m
is the number of output channels for each group, which is set
to 1 in our experiment. Each group extracts global (all) spectral
features us,s[e1,sv1,sx

T
1 , · · · , eB,svB,sx

T
B ] at a particular scale

s. The net result amounts to extracting S multi-scale spectral
features. The expression (2) can be written as

Y = USe�PVSX = WX (7)

where W = USe � PVS is a composite convolution kernel
consisting of the shuffled and importance-weighted multi-
kernel depthwise convolution operator VS and the group
convolution operator US . Fig. 2 illustrates these operators.
The proposed multi-scale spectral feature extraction method
behaves as a kind of inverted bottleneck [50] where the number
of channels is firstly expanded (from B to BS) and then
squeezed (from BS to mS, m � B). A large S consumes
more memory due to a huge number of channels (i.e., BS).
We reduce the memory requirements by extending our spectral
feature extraction method to a group version that divides S into
several groups and performing our spectral feature extraction
method over each group separately.

C. Discriminative Spectral-Spatial Feature Extraction

Making use of the extracted multi-scale spectral features,
we want to build next more discriminative spectral-spatial
features. We also want to keep a unified, consistent framework
that shares the same building blocks across the whole learning
system. To this end, we extend further the core component

1×5
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Fig. 3. The architectures of (a) group competition block with no padding,
(b) group competition block with padding. G+S illustrates shuffled group
convolution operation. We employ spatial separable convolution that factorizes
r ∗r (r=3 or 5) into 1×r and r×1. MP represents a max pooling operation.
Maximum represents the element-wise maximum operation. SE represents the
squeeze-and-excitation operation.

from equation (7), employing it now within a spectral-spatial
framework.

The core component of the proposed approach is a novel
multi-stream module that we call group competition block.
Fig. 3 shows its two versions, for larger and smaller input
sizes, the details of which are explained later. The proposed
group competition block consists of two parallel residual
streams of shuffled group convolutions, which have the same
receptive field but different depths and kernel sizes. While
current multi-stream blocks including Inception [51], typically
employ concatenation operation and 1× 1 convolution opera-
tion to fuse multi-stream features, we introduce element-wise
maximum operation, to automatically identify informative fea-
tures of the two streams. An advantage of this approach is that
we avoid increasing the output dimension and the additional
parameters. The two streams based on group convolution
perform element-wise feature selection automatically. In each
stream, we exploit residual learning to facilitate the training
process. In contrast to ShuffleNet [35] and IGC [36], which use
extensively 1×1 convolutions which are known to incur some
loss in accuracy [52], we avoid 1×1 convolutions. Instead, we
employ spatially separable convolution that factorizes convo-
lutions of filter size r× r to a combination of 1× r and r× 1
and then we apply shuffled group convolution to these. This
way, the number of parameters is reduced. Shuffling enables
inter-group correlations and importance weighting promotes
most informative features to be learned.

To adapt to different input spatial size, we design group
competition block both with no padding for a large input
spatial size as shown in Fig. 3 (a) and with padding for a
small one as shown in Fig. 3 (b).

Let Fl−1 be the input of the l-th group competition block,
1 ≤ l ≤ d. The input to the first block is the output of the
previous network stage: F0 = Y. We define the output of i-th
residual stream as

Fl
i = Cl

ie
l
i � Fl−1 +MP(Fl−1) (8)
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Fig. 4. An illustrated architecture of the proposed lightweight feature fusion.
Dashed boxes denote pointwise group convolutions, solid arrows denote
weights, dashed arrows denote shuffling operations. The colors of circles show
the fusion process of the input F. Each fused feature is related to all the input
features in F after W2.

where
Cl

i =
∏
j

Pl
i,jW

l
i,j (9)

is the cascade of shuffled group convolution for the i-th stream
in the l-th group competition block. eli denotes importance
weighting operation, and MP is the max pooling operation.
Wl

i,j and Pl
i,j , i = {1, 2}, j = 1, · · · , 2i are the weights and

shuffling operator of the j-th group convolution for the i-th
stream in the l-th group competition block. By introducing the
element-wise maximum operationM, we define the output of
the l-th group competition block as

Fl =M(Fl
1,F

l
2) (10)

The output for l = d, is the output of the proposed discrimi-
native spectral-spatial feature extraction stage F = Fd.

D. Lightweight Feature Fusion and Classification

We extend now the above introduced approach based on
shuffled pointwise group convolutions also to feature fusion
in the final stage of the learning architecture. This leads to
a lightweight feature fusion method that reduces sharply the
number of fusion parameters compared to the existing methods
that use several fully connected layers.

In particular, we fuse the input features through a cascade
of shuffled pointwise group convolutions, as illustrated in Fig.
4. Due to a structured sparse connection, much less parameters
are used than with fully connected layers. The amount of
the parameters drops by a factor g, where g is the number
of groups. By introducing channel shuffling in between the
pointwise group convolutional layers, we enable also inter-
group cross-correlations and thus more general fusion features,
while keeping a relatively small total amount of the fusion
parameters. This way, the proposed lightweight feature fusion
requires fewer fusion parameters while enhancing the feature
fusion capability compared to the fully connected layers with
the same units. To our knowledge, feature fusion based on
group convolution has not been explored before.

Formally, given the input F, we define the proposed
lightweight feature fusion as

Z = (PnWn) · · · (PjWj) · · · (P1W1)F (11)

TABLE II
THE HYPERPARAMETERS OF THE PROPOSED NETWORK FOR ALL THE

DATA SETS. g IS THE NUMBER OF GROUPS FOR ALL THE FEATURE
LEARNING STAGE. S IS THE NUMBER OF SCALES IN THE PRIMARY STAGE.
k AND d REFER TO THE NUMBER OF CHANNELS AND LAYERS IN THE

MIDDLE STAGE, RESPECTIVELY. n, c1 AND c2 DENOTE THE NUMBER OF
FUSION LAYERS AND CHANNELS IN EACH LAYER, RESPECTIVELY. WE

ONLY NEED TO TUNE THREE HYPERPARAMETERS:g, d AND n.

Parameter g S k d n c1 c2
Value 6 62 62 1 2 2·62 1·62

here Wj , 1 ≤ j ≤ n, is a structured sparse matrix (see
equation (6)) representing the weights for the j-th fusion layer,
Pj is the shuffling operator, and n is the number of fusion
layers. When n ≥ 2, each fused feature is related to all the
input features in F (see the colors of circles in Fig. 4) to
fuse more general features. To avoid overfitting, we use a
dropout with 0.3 threshold before feature fusion and a L2
regularization with 0.2 in the softmax layer. We employ the
mini-batch Adadelta [53] to optimize the cross-entropy loss
function.

E. Fully Group CNN Design

Having developed each feature learning stage of the pro-
posed FGCNN, we need to determine the hyperparameters.
Our goal is to design a robust architecture that can be applied
to any data set, and to reduce the number of hyperparameters
and the time required for their tuning. To this end, we design a
guideline that simplifies the process of hyperparameter setting
and tuning on the premise for each data set.

The main idea is to relate the network hyperparameters to
the number of groups g. Regarding the number of channels,
it is natural to start from the design criteria for the middle
spectral-spatial extraction stage that connects the front (pri-
mary feature extraction) and the end (fusion) stage. To simplify
the optimization process, we fix the number of channels for
all the convolutional layers in this middle stage to k = g2,
which guarantees that the input channels of each layer can
be uniformly divided. Further on, reasoning that the number
of scales S in the multi-scale spectral feature extraction stage
should be equal to the number of output channels of this stage
(which are inputs to the middle stage), we have that S = g2.

In the fusion stage, we let the number of neurons gradually
decrease from one layer to the next, as it is commonly done. In
particular, we set the number of channels for j-th fusion layer
to cj = α(n − j)g2, where n is the number of fusion layers
and α ≥ 1 is a growth factor, which depends on the amount
of training data. In cases where the amount of training data
is rather limited (the case that we are interested in), α = 1
provides the best performance based on our empirical study. A
larger α is recommended in computer vision fields where more
training data is available. In summary, we only need to tune
three hyperparameters: the number of groups g, the number of
group competition blocks d and the number of fusion layers
n. We use the same hyperparameters for our network on each
data set as shown in Table II. An ablation study regarding the
robustness of the hyperparameters is given in Section IV-C.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 7

TABLE III
COMPARISON OF THE CLASSIFICATION ACCURACIES AMONG THE PROPOSED FGCNN AND THE BASELINES USING INDIAN PINES IMAGE.

ID Train/Test MRFCNN PPFCNN DRCNN SSRN HybridSN ADGAN MCNNCP FRCNN GCNN FGCNN
1 50/1378 69.75±5.61 80.70±3.40 77.56±4.69 83.17±6.75 79.48±5.52 85.65±5.02 81.21±4.54 90.71±3.90 87.16±5.24 94.04±2.12
2 50/780 79.22±4.72 79.54±6.60 86.20±5.47 75.85±10.52 87.14±4.13 77.81±12.03 89.88±4.50 94.69±4.80 86.03±4.77 95.45±4.00
3 50/433 95.20±1.55 92.44±3.02 96.92±1.05 96.50±2.79 95.84±2.27 90.46±9.21 96.19±1.74 98.01±1.71 95.78±1.69 98.11±1.59
4 50/428 99.84±0.11 99.98±0.07 99.77±0.34 99.03±1.50 100±0 99.49±0.61 100±0 100±0 100±0 100±0
5 50/922 80.38±3.06 75.77±5.17 85.75±3.99 70.20±14.71 86.69±6.26 77.10±9.56 88.81±4.48 90.09±6.5 86.31±7.22 94.47±3.61
6 50/2405 65.42±3.36 90.06±2.56 69.18±3.16 87.46±3.78 69.22±6.03 91.97±2.98 73.45±8.57 85.85±5.25 79.85±7.87 89.33±3.34
7 50/543 74.00±4.46 81.54±6.65 88.57±4.20 64.86±15.79 83.90±4.88 99.23±1.10 92.32±6.10 94.33±3.45 94.77±2.40 97.79±1.13
8 50/1215 96.11±1.61 99.52±0.20 99.04±0.77 99.01±0.52 97.89±1.91 99.30±0.70 99.57±0.46 99.65±0.48 99.65±0.42 99.82±0.14
AA - 82.49±1.30 87.44±1.40 87.87±0.84 84.51±2.28 87.52±1.32 90.13±2.68 90.18±0.81 94.16±1.23 91.19±0.80 96.12±0.89
OA - 77.77±1.72 86.62±1.36 83.23±1.23 81.94±3.15 83.00±1.37 89.74±2.18 85.90±2.11 92.03±1.39 88.31±1.28 94.48±1.18
κ - 73.67±1.97 84.00±1.61 80.15±1.42 78.59±3.61 79.79±1.59 87.58±2.67 83.22±2.39 90.43±1.66 85.98±1.46 93.37±1.40

TABLE IV
COMPARISON OF THE CLASSIFICATION ACCURACIES AMONG THE PROPOSED FGCNN AND THE BASELINES USING THE PAVIAU IMAGE

ID Train/Test MRFCNN PPFCNN DRCNN SSRN HybridSN ADGAN MCNNCP FRCNN GCNN FGCNN
1 50/6581 89.60±0.72 97.41±1.58 93.06±2.33 99.27±0.61 93.30±1.57 72.82±5.87 87.38±4.73 82.68±21.1493.02±2.19 95.74±2.55
2 50/18599 89.83±1.50 97.00±1.30 95.20±2.49 99.35±0.32 94.73±2.80 81.01±5.78 83.66±4.20 92.17±4.52 91.13±4.54 95.70±2.48
3 50/2049 86.99±0.54 83.53±4.22 91.28±2.15 76.40±13.24 87.99±10.00 90.56±5.08 84.13±6.62 79.63±9.80 80.46±3.28 85.00±3.45
4 50/3014 95.63±0.94 80.34±7.58 96.10±1.22 91.65±11.11 94.26±2.76 93.03±2.95 93.13±2.14 94.40±2.30 95.78±1.96 96.26±1.28
5 50/1295 99.61±0.63 99.76±0.44 99.84±0.22 99.95±0.17 100±0.0 99.78±0.41 100±0 99.99±0.03 99.99±0.04 100±0.0
6 50/4979 82.95±1.71 73.65±4.48 93.26±2.89 88.04±4.72 94.21±5.26 87.38±4.21 88.67±7.14 96.55±2.69 94.93±4.31 96.64±2.64
7 50/1280 91.70±0.77 86.25±7.61 96.77±1.43 90.00±6.16 98.38±0.44 95.97±2.39 98.51±0.46 97.77±1.11 97.34±1.37 98.21±1.07
8 50/3632 80.31±2.53 86.51±6.21 94.12±2.35 87.75±4.16 90.41±5.82 73.73±13.14 86.63±5.26 81.17±20.4285.69±6.32 89.93±2.89
9 50/897 98.72±0.87 96.98±2.93 99.82±0.19 99.87±0.12 99.59±0.47 98.71±1.20 99.22±0.50 99.79±0.25 99.82±0.20 99.92±0.08
AA - 90.59±0.39 89.05±1.67 95.50±0.46 92.47±2.60 94.73±1.11 88.11±2.25 91.26±1.21 91.57±2.61 93.13±0.82 95.27±0.42
OA - 88.99±0.62 90.12±1.56 94.72±0.93 94.19±1.96 94.04±1.13 82.58±3.07 87.06±1.91 90.39±4.05 91.86±2.05 95.14±1.11
κ - 85.56±0.77 87.14±1.99 93.05±1.18 92.38±2.52 92.14±1.45 77.84±3.70 83.27±2.38 87.46±5.12 89.36±2.59 93.58±1.44

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We perform experiments on three well-known HSI data sets:
Indian Pines, the University of Pavia (denoted as PaviaU)
and Salinas. Three objective metrics, overall accuracy (OA),
average accuracy (AA), and Kappa coefficient (κ) are used
for evaluation. For each experiment, we report the mean and
standard deviation of the classification results over ten runs
with randomly selected training samples.

A. Data Set Description and Parameter Setting

The Indian Pines image, captured by the Airborne Visi-
ble Infrared Imaging Spectrometer (AVIRIS) sensor over the
agricultural Indian Pines site in northwestern Indiana in 1992,
contains 145×145 pixels with 224 spectral bands covering the
spectral range from 0.4 to 2.5 µm with a spatial resolution 20
m. It contains 16 ground-truth classes, out of which we select 8
large classes [22, 49], 4 water absorption bands were removed.
The PaviaU image, acquired by the ROSIS-03 sensor over an
urban area surrounding the University of Pavia, Pavia, Italy,
consists of 610×340 pixels with 9 classes and 103 spectral
bands covering the spectral range from 0.43 to 0.86 µm with
a spatial resolution of 1.3 m. The Salinas image, collected
by the AVIRIS sensor over the area of Salinas Valley, CA,
USA, has 512×217 pixels with 224 spectral bands covering
the spectral range from 0.4 to 2.5 µm with spatial resolution
of 3.7 m, 20 water absorption bands were removed.

We randomly select 50 labelled samples per class for train-
ing the proposed method from scratch. The remaining labelled
samples are used as the test set to evaluate the classification
performance. In order to treat boundary pixels in the same way

as others in the classification procedure, we apply first mirror-
padding, i.e., we extend the HSI with mirror reflections along
it boundaries. We then slide a fixed-size window along the
padded HSI, extracting the image patches in the same way
for all the pixels. We randomly select 10% of the training
samples as the validation set to determine the hyperparameters.
The hyperparameters of the proposed method are set the same
for all the data sets as follows. The initial learning rate is
empirically set to 9. The number of training epochs and
batch size are empirically set to 300 and 64, respectively. The
network hyperparameters of the proposed method are given in
Table II. The proposed network is implemented in Keras1 and
TensorFlow2 framework with Python language.

B. Baseline Comparison

We compare the performance of the proposed FGCNN
with the following state-of-the-art CNN-based methods: CNN
combined with MRF (MRFCNN) [31], CNN with pixel-
pair features (PPFCNN) [22], diverse region based on CNN
(DRCNN) [49], spectral-spatial residual network based on 3D-
CNN (SSRN) [44], spectral-spatial 3D-CNN followed by spa-
tial 2D-CNN (HybridSN) [54], generative adversarial network
with adaptive dropBlock (ADGAN) [17], mixed CNN with co-
variance pooling for spectral-spatial classification (MCNNCP)
[42]. We use spatial patch size 5×5 for all the methods except
for ADGAN, which requires patch size 27×27 as explained in
[17]. All other parameters of the reference methods are set to

1https://keras.io/
2https://www.tensorflow.org/
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TABLE V
COMPARISON OF THE CLASSIFICATION ACCURACIES AMONG THE PROPOSED FGCNN AND THE BASELINES USING THE SALINAS IMAGE

ID Train/Test MRFCNN PPFCNN DRCNN SSRN HybridSN ADGAN MCNNCP FRCNN GCNN FGCNN
1 50/1959 99.26±1.33 99.88±0.29 98.15±3.23 99.98±0.04 99.99±0.02 100±0 99.75±0.42 99.59±0.38 99.84±0.22 99.96±0.11
2 50/3676 97.65±1.12 99.44±0.31 99.11±1.24 99.75±0.49 99.77±0.27 76.93±29.30 99.84±0.22 99.50±0.65 99.97±0.08 99.98±0.06
3 50/1926 98.90±1.38 95.49±3.42 99.31±0.94 98.49±1.31 99.69±0.27 98.12±3.13 99.57±0.86 99.22±0.81 99.97±0.08 100±0
4 50/1344 99.50±0.44 96.61±1.27 99.89±0.05 98.88±0.77 99.29±0.45 99.90±0.20 99.55±0.79 99.11±0.61 99.82±0.13 99.29±0.45
5 50/2628 96.48±6.80 99.03±1.10 92.31±4.77 99.36±0.39 98.96±0.60 98.46±1.42 98.04±1.29 97.46±2.11 98.39±0.45 98.40±0.67
6 50/3909 99.49±0.62 99.86±0.07 99.91±0.08 99.99±0.02 99.84±0.22 99.99±0.01 99.93±0.11 99.50±0.54 99.94±0.09 99.92±0.12
7 50/3529 98.98±0.81 99.32±1.41 99.16±0.38 99.99±0.02 99.85±0.36 95.38±6.46 99.86±0.33 99.84±0.17 99.96±0.04 99.98±0.02
8 50/11221 74.69±4.95 84.82±2.06 82.76±5.68 87.51±4.43 78.84±8.18 63.29±23.25 80.14±6.84 81.33±18.05 82.45±5.34 86.27±4.38
9 50/6153 97.48±2.41 99.15±0.35 99.21±0.29 99.57±0.23 99.98±0.05 98.68±1.89 99.63±0.26 99.77±0.20 99.97±0.04 99.99±0.01
10 50/3228 92.17±2.46 87.71±3.45 93.69±1.52 97.03±1.46 96.21±1.64 94.99±4.99 95.79±1.75 96.73±1.75 98.15±1.12 98.37±1.35
11 50/1018 98.36±1.20 88.55±7.96 99.05±0.24 96.90±2.78 99.64±0.64 96.03±9.27 99.75±0.20 98.13±1.61 99.97±0.05 99.95±0.12
12 50/1877 99.90±0.25 98.60±1.02 100±0 98.83±1.04 98.96±3.13 95.31±8.04 99.45±0.62 99.16±1.00 99.99±0.02 99.99±0.04
13 50/866 99.58±0.77 98.36±1.67 100±0 99.71±0.40 99.76±0.29 98.53±2.28 99.04±0.96 99.75±0.31 99.50±0.40 99.64±0.35
14 50/1020 96.68±1.47 90.98±7.67 97.23±0.68 98.73±0.96 99.16±0.76 99.39±0.72 98.80±0.94 98.30±1.94 99.14±0.95 99.24±0.80
15 50/7218 75.82±4.97 71.99±6.15 73.42±12.42 69.52±4.91 86.04±7.09 94.04±3.31 83.35±8.11 57.87±29.13 84.29±4.68 85.88±4.18
16 50/1757 97.31±1.52 98.55±0.95 98.92±0.18 99.68±0.29 99.08±0.56 96.82±3.67 99.17±0.27 99.10±0.57 99.28±0.34 99.37±0.36
AA - 95.14±0.65 94.27±1.19 95.76±0.60 96.50±0.22 97.19±0.29 94.12±2.86 96.98±0.60 95.27±1.22 97.54±0.33 97.92±0.24
OA - 89.92±0.87 90.97±1.42 91.66±0.72 92.03±0.66 93.21±0.99 88.59±4.88 93.02±1.32 89.74±2.62 93.92±0.96 94.96±0.75
κ - 88.80±0.96 89.96±1.57 90.72±0.82 91.14±0.72 92.46±1.09 87.40±5.31 92.24±1.46 88.55±2.93 93.23±1.07 94.39±0.83

(a) OA=87.15 (b) OA=84.18 (c) OA=83.19 (d) OA=86.33 (e) OA=94.54 (f)

Corn-notill Corn-mintill Grass-pasture Hay-windrowed Soybean-notill Soybean-mintill Soybean-clean Woods Unlabelled

Fig. 5. Classification maps on the Indian Pines image obtained by, (a) PPFCNN, (b) SSRN, (c) HybridSN, (d) MCNNCP, (e) FGCNN, and (f) Ground Truth.

(a) OA=90.36 (b) OA=94.22 (c) OA=94.12 (d) OA=87.38 (e) OA=95.41 (f)

Asphalt Meadows Gravel Trees Metal sheets Bare soil Bitumen Bricks Shadows Unlabelled

Fig. 6. Classification maps on the PaviaU image obtained by, (a) PPFCNN, (b) SSRN, (c) HybridSN, (d) MCNNCP, (e) FGCNN, and (f) Ground Truth.

the values indicated in the original works. We also compare the
proposed FGCNN to its two reduced versions: FGCNN using
regular convolution with the same network width (FRCNN)
and our conference version (GCNN) [43].

Tables III-V report the classification results of the tested
methods on the three data sets. The proposed FGCNN consis-

tently yields the best OA and κ over the reference methods for
all the three data sets. For example, on Indian Pines (Table III),
the improvement in OA compared to MRFCNN, PPFCNN,
DRCNN, SSRN, HybridSN, ADGAN, and MCNNCP methods
is about 16.7%, 7.8%, 11.2%, 12.5, 11.5%, 4.7%, and 8.6%,
respectively. The gains in OA compared to the best baseline
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(a) OA=91.22 (b) OA=92.17 (c) OA=93.41 (d) OA=93.50 (e) OA=95.12 (f)

Weeds_1 Weeds_2 Fallow Fallow_plow Fallow_smooth Stubble Celery Grapes_untrained

Soil Corn Lettuce_4wk Lettuce_5wk Lettuce_6wk Lettuce_7wk Vinyard_untrained Vinyard_trellis Unlabelled

Fig. 7. Classification maps on the Salinas image obtained by, (a) PPFCNN, (b) SSRN, (c) HybridSN, (d) MCNNCP, (e) FGCNN, and (f) Ground Truth.

method are approximately 4.7%, 0.4%, and 1.7% for the In-
dian Pines, PaviaU, and Salinas images, respectively. It is also
evident that our two reduced versions (FRCNN and GCNN)
perform better or yield comparable results as the reference
methods on the three data sets, which verifies the effectiveness
of the proposed architecture. The proposed FGCNN performs
consistently better than FRCNN due to the benefit of the
proposed full group convolution network. Also, the proposed
FGCNN performs better than our earlier conference version
GCNN due to the new discriminative spectral-spatial feature
extraction and more efficient lightweight fusion. On one test
image, PaviaU, DRCNN yields slightly higher AA than the
proposed method, but our method yields better OA and κ in
this case as well.

In terms of the class-specific accuracy, our FGCNN per-
forms best or yields comparable results to the best ones in most
of the classes for the three data sets. Only in several classes
this is not the case. For instance, in the PaviaU image, some
‘Gravel’ (ID=3) samples are misclassified as ‘Bricks’ (ID=8)
due to their huge spectral similarity and the large within-
class variation in their spectral reflectance. Figs. 5-7 show the
classification maps obtained by different methods on the three
data sets. Visually, they are consistent with the results reported
in Tables III-V. Obviously, the proposed FGCNN exhibits less
noisy estimations compared to reference methods.

We also compare the proposed FGCNN with three methods
designed for small-scale training data: DSFL [55], AML [46],
and NLGCN [13], as well as two pixel-based methods: CRNN
[9] and miniGCN [11] (our FGCNN inputs pixel vectors by
discarding the middle spectral-spatial feature extraction in this
case). The comparison results are given in Table VI, where the
results of the comparative methods are taken from the original
works (except for CRNN), and for the proposed FGCNN we

TABLE VI
OA OBTAINED BY SEVERAL METHODS DESIGNED FOR SMALL TRAINING

DATA AND FOR SPECTRAL CLASSIFICATION. THE RESULTS OF THE
PROPOSED FGCNN ARE IN BRACKETS.

Image Method Training set OA

Indian Pines

DSFL 200 samples per class 98.35% (99.24%)
AML 5% per class 79.11% (94.83%)

NLGCN 695 samples in total 87.92% (94.14%)
CRNN 50 pixels per class 69.57% (72.80%)

miniGCN 695 pixels in total 71.97% (76.23%)

PaviaU

DSFL 200 samples per class 98.62% (99.44%)
AML 1% per class 89.81% (94.57%)

NLGCN 3921 samples in total 90.04% (99.54%)
CRNN 50 pixels per class 72.30% (76.54%)

miniGCN 3921 pixels in total 77.99% (92.55%)

Salinas

DSFL 200 samples per class 98.81% (99.54%)
AML 1% per class 91.63% (95.46%)

NLGCN 50 samples per class 92.48% (94.96%)
CRNN 50 pixels per class 84.61% (86.43%)

show in brackets the results obtained with the same training
data as in the corresponding comparative methods. As can be
observed in Table VI, our FGCNN consistently yields better
OA than the comparative methods for all the three data sets.

C. Robustness Analysis and Parameter Tuning

1) Performance on different data sets: By comparing the
classification results for the three different data sets in Tables
III-V, we observe that the proposed FGCNN shows much
more stable performance than the reference methods. While for
the five best performing reference methods: DRCNN, SSRN,
HybridSN, ADGAN and MCNNCP, OA differs up to 7% from
one set to another, for our method this variation is only 1%.
This indicates better robustness of the proposed FGCNN to
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Fig. 8. The overall accuracy of the proposed method with different sizes of patches P and with different numbers of training samples per class Tr (a) Indian
Pines data set, (b) PaviaU data set, (c) Salinas data set.

different data sets under the same network settings (Table II),
which is an important asset for its practical applicability.

2) Robustness to different volume of training data: We also
analyze the influence of the amount of training samples per
class Tr and input patch size P on the performance of the
proposed method. Fig. 8 shows the mean OA values versus
Tr and P for each of the three data sets. As expected, the
classification accuracy improves when Tr and P increase.
The performance is robust with respect to Tr for all the data
sets, especially when P ≥ 5. Apparently, a larger P which
provides richer spatial information yields better mean OA.
This comes at a price of increased computational cost and
memory requirements.

3) Effect of the number of groups: The number of groups
g is a key hyperparameter in our method, which determines
the number of channels for all the layers (see Section III-E).
Apparently, a larger g increases the memory requirements due
to multi-kernel depthwise convolution. We in parallel split our
primary spectral feature extraction method into three groups to
reduce the memory requirements when g ≥ 7. The results in
Fig. 9 show that the overall accuracy first drastically increases (
g ≤ 6) and then slightly declines or tends to be stable ( g ≥ 6)
when g increases, which holds a similar trend for the OA
of a regular convolutional layer when the number of channel
increases. The main reason is that a smaller g underfits the
features and an excessive S tends to overfit them. On PaviaU
image, the best overall accuracy has a larger g compared to the
other two images due to a smaller number of spectral bands B
(103, 220, and 204 for the PaviaU, Indian Pines, and Salinas
images, respectively). Since a smaller B requires less model
parameters at the same g. We choose g = 6 as a tradeoff
between the accuracy and the memory requirements for the
three data sets.

4) Analysis of the multi-scale spectral feature extraction
stage: It is also of interest to analyze the influence of the
number of scales S within our multi-scale spectral feature
extraction method on the overall performance. By setting the
other parameters to the values from Table II, we perform
the classification experiments with different S. The results
in Fig. 10 show that the overall accuracy first increases with
increasing S and then tends to be stable or slightly declines
for the PaviaU and Salinas images. For the PaviaU and Salinas
data sets the performance remains stable over a broad range
of S values. For the Indian Pines image, the overall accuracy
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Fig. 9. The influence of the number of groups g on the overall classification
accuracy in three data sets.
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Fig. 10. The overall accuracy in function of the number of scales S in our
multi-scale spectral feature extraction method.

fluctuates with S values above 36, but these fluctuations are
within 2%. We choose S = 36 which yields nearly optimal
performance on all the data sets. Larger values bring no
significant benefit while they increase memory requirements.

We further analyze the effect of the proposed multi-scale
spectral feature extraction (labelled by MSSFE) with different
reduced versions: without using group convolution, without
using shuffling operator, and without using squeeze and ex-
citation (labelled by SE). The results in Fig. 11 show that
the proposed MSSFE performs the best by combining these
strategies, especially using the group convolution.
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Fig. 11. The overall accuracy of the proposed multi-scale spectral feature
extraction method (MSSFE) with different strategies for the three data sets.
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Fig. 12. The influence of different spectral-spatial extraction methods on the
overall accuracy in three data sets. ShuffleNet [35] and IGC[36] are related
group convolution-based methods.
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Fig. 13. The overall accuracy in function of the number of layers d in our
spectral-spatial extraction stage on overall accuracy for the three data sets.

5) Analysis of the spectral-spatial feature extraction stage:
We first compare the proposed discriminative spectral-spatial
feature extraction approach with two state-of-the-art group
convolution-based models: ShuffleNet [35], and IGC [36]. The
results in Fig. 12 show clear advantage of our approach with
the novel group competition structure compared to ShuffleNet
and IGC for all the three data sets.

The results in Fig. 13 show the influence of the number
of layers d on the performance of our discriminative feature
extraction approach. d = 1 yields the best accuracy for all the
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Fig. 14. The overall accuracy of the proposed discriminative spectral-spatial
feature extraction method (DSSFE) with different strategies in three data sets.
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Fig. 15. The effect of different fusion methods on overall classification
accuracy in three data sets. Our approach is compared to its version without
shuffling and to fusion with fully connected layers with the same number of
parameters as in our method (FC-Para) and with the same network width as
in our method (FC-Width).

three data sets. Observe that the case d = 0 corresponds to
excluding the middle discriminative feature extraction stage.
The results show clearly the benefit of this middle stage and
indicate that its single-layer implementation is not only the
simplest computationally but also optimal in terms of the
overall network performance.

We further compare the proposed discriminative spectral-
spatial feature extraction method (labelled by DSSFE) with
its reduced versions: without using residual learning, without
using group convolution, without using shuffling operator,
and without using SE under the same setting as in Table II.
The results in Fig. 14 show that employing these strategies
indeed improves the overall accuracy for all the three data
sets, especially employing the residual learning strategy.

6) Analysis of the feature fusion stage: We compare the
performance of the proposed feature fusion method against
fully connected layers with the same network width and with
the same number of parameters and also to group fusion
without using shuffling operation. The results in Fig. 15
show that the proposed lightweight fusion method consistently
yields better accuracy than the versions with fully connected
layers. It is also evident that the shuffling operation indeed
improves the classification accuracy, especially in Indian Pines
and PaviaU images. Furthermore, our analysis shows that two
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Fig. 16. The effect of the numbers of fusion layers n on overall classification
accuracy in three data sets.

TABLE VII
COMPARISON OF THE COMPUTATIONAL COMPLEXITY ON DIFFERENT

MODELS FOR THE PAVIAU IMAGE.

Method Training
(s)

Testing
(s)

# Params
(× M)

FLOPs
(×107 )

DRCNN 243.8 45.8 2.922 3.436
SSRN 205.5 17.1 0.198 2.858

HybridSN 10.4 6.3 0.741 2.983
ADGAN 87.9 3.9 7.382 71.805
MCNNCP 9.6 2.6 1.377 2.917
GCNN 89.2 6.9 27.548 5.549

FGCNN 171.4 7.5 3.077 0.655

shuffling layers are sufficient. The results in Fig. 16 show that
two shuffling layers provide the best overall accuracy for the
three data sets.

D. Computational Complexity

The results in Table VII provide comparative analysis of the
computational complexity of the proposed FGCNN, our ear-
lier conference version (GCNN) [43], and five representative
reference methods: DRCNN [49], SSRN [44], HybridSN [54],
ADGAN [17], and MCNNCP [42]. The following attributes
are reported: the training and testing time, the number of pa-
rameters and the number of floating point operations (FLOPs).
The reported values correspond to one of the data sets (PaviaU)
and are similar for other two test data sets. All experiments
are conducted on a computer equipped with an Intel Core i7-
7820X CUP with 3.6 GHz and an Nvidia TITAN Xp GPU.

In the training and testing processes, our FGCNN is moder-
ately fast compared to the reference methods. SSRN and Hy-
bridSN involve much less parameters than our method, which
is in this respect comparable to DRCNN and MCNNCP, and
much better than ADGAN and GCNN. Our FGCNN requires
much less FLOPs compared to all the reference methods.
Given that the accuracy of the proposed method is much
better compared to the faster methods, it can be concluded that
the proposed FGCNN with the same hyperparameter settings
is very competitive and robust in terms of the classification
accuracy compared to the current state-of-the-art.

V. CONCLUSION

In this paper, we proposed a fully group CNN architecture
for robust spectral-spatial classification of hyperspectral im-
ages. It offers a unified theoretical framework where all the
stages of the learning architecture are formulated as cascades
of shuffled group convolutions. One of the key contributions is
an original multi-scale spectral feature extraction approach. Its
core component is a multi-kernel depthwise convolution that
extends the regular depthwise convolution in order to weight
the information from multiple scales. Within the same unified
framework, we designed a discriminative spectral-spatial fea-
ture extraction approach with a novel group competition block
to extract more discriminative spectral-spatial features with
fewer learning parameters. Finally, our lightweight feature
fusion stage sharply reduces the fusion parameters while
enhancing the feature fusion capability. Experimental results
on real data demonstrated robust performance compared to the
current state-of-the-art.
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