

 Fast Full Search Equivalent Block Matching for
Multichannel Images

Izumi Ito1 and Aleksandra Pižurica2

Abstract – Block matching is a fundamental tool to search
blocks (patches) similar or identical to a given query in image
processing. Generally, a full search (FS) algorithm is the most
accurate but requires vast computation especially in
multichannel images, where the data volume is increasing due to
higher definition and more channels. In this paper, we present a
fast FS-equivalent algorithm using orthonormal tree-structured
Haar transform (OTSHT) for multichannel images. We
demonstrate the superior performance of three-dimensional
OTSHT comparing with state-of-the-art algorithms. This
significant speedup can enable new applications of block
matching in multichannel images.

Keywords – Block matching, Tree-structured Haar transform,
Multichannel image, Full search algorithm.

I. INTRODUCTION

Block matching is a fundamental tool to search blocks
(patches) similar or identical to a given query, and as such has
been widely used in solving various image processing
problems, such as object recognition and tracking [1], image
registration [2], analysis [3], and restoration [4]. Generally, a
full search (FS) algorithm is the most accurate, which
exhaustively compares all pixel intensities of all candidates
overlapping each other in sliding window manner, but
requires vast computation.

To reduce the computational complexity of the FS
algorithm, several fast FS-equivalent algorithms have been
studied [5]. The orthogonal Haar transform (OHT) is one of
the fastest algorithms, where similarity measure is efficiently
evaluated in the transformed domain, but has a limitation that
patch size must be power-of-2 [6]. The two-dimensional tree-
structured Haar transform (2D-OTSHT) is a generalization of
OHT which can apply patches with arbitrary sizes [7], but
must apply to each channel separately for multichannel
images.
 In this paper, we present an FS-equivalent block matching
algorithm using three-dimensional orthonormal tree-structured
Haar transform (3D-OTSHT) for multichannel images to
reduce huge amount of computation involved in increase of
the number of channels with higher definition. Using a three-
dimensional (3D) integral image, similarity measure is
calculated in the transformed domain in order from low to
high frequency-like levels, and at each level, candidates are
reduced. We focus on reduction of candidates in 3D-OTSHT.

Comparing with the basis of state-of-the-art algorithms, 2D-
OTSHT and cube matching [8], superior performance of 3D-
OTSHT is demonstrated using multichannel images. This
paper thus extends our recent work [9]. We provide here
additional insights and more extensive analysis of 3D-OTSHT
showing its clear potential for fast block matching in
multichannel images.

II. PRELIMINARIES

A. Tree-Structured Haar Transform

Tree-structured Haar transform (TSHT) is a generalization
of the Haar transform, which can be applied to signals with
arbitrary length [10]. TSHT functions are composed of square
waves, and a function has an interval at most with a positive
constant, an interval with a negative constant, and otherwise
zero values. A set of TSHT functions is generated by dividing
an interval into two sub-intervals. The complete division of
intervals can be expressed by a binary tree structure.

Let 𝛼 be a node of a binary tree having 𝑁 leaves for a
signal of length N. Let 𝛼! and 𝛼" be the left child node and
the right child node of 𝛼. The TSHT function for interval 𝜄#$$%
is given as

ℎ(𝑡) =
1
𝑁 , 𝑡 ∈ 𝜄#$$%	

(1)

and the other TSHT functions for other intervals are

ℎ(𝑡) = 	-
𝜈(𝑎"), 𝑡 ∈ 𝜄&!
𝜈(𝑎!), 𝑡 ∈ 𝜄&" 	
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

where 𝜈(𝛼) represents the number of leaves that 𝛼 has, and 𝜄&
is the interval derived from 𝛼.	Fig.1 shows a binary tree
having 𝑁 = 3 leaves, the intervals, and TSHT functions,
where in the tree, a circle represents a node, and the number in
a circle is 𝜈(𝛼).

 (a) tree (b) intervals (c) functions

Fig. 1. A binary tree, the intervals, and TSHT functions.

3

2 1

1 1

0

00 01

1

root ν(α)α
ιroot

ι0 ι1

ι00 ι01

0

0

0

3

3

3

2

21

ν(01) −ν(0)

ν(1)

1/
√
N

ν(00)
1Izumi Ito is with Tokyo Institute of Technology, Information and

Communications Engineering, 152-8550 Tokyo, Japan, E-mail:
ito@ict.e.titech.ac.jp

2Aleksandra Pižurica is with Gent University, Department
Telecommunications and Information Processing, 9000 Gent,
Belgium, E-mail: Aleksandra.Pizurica@UGent.be

B. 3D Integral Image

A 3D integral image, 𝐽(𝑥, 𝑦, 𝑧), is built from an image,
𝐼(𝑢, 𝑣, 𝑤) , of size 𝐿 ×𝑀 having B bands, for 𝑥 =
0,1,2… , 𝐿 − 1, 𝑦 = 0,1,2… ,𝑀 − 1, and 𝑧 = 0,1,2… , 𝐵 − 1,
as

𝐽(𝑥 + 1, 𝑦 + 1, 𝑧 + 1) = HHH 𝐼(𝑢, 𝑣, 𝑤)									
'

()!

*

+)!

,

-)!

(3)

where 𝐽(0, 𝑦, 𝑧) = 𝐽(𝑥, 0, 𝑧) = 𝐽(𝑥, 𝑦, 0) = 0. Observe that
(3𝐵 − 1)𝐿𝑀 additions are required to build a 3D integral
image.
 The region sum (RS) is the sum of all pixel intensities in a
region whose diagonal starts at location (𝑠𝑋, 𝑠𝑌, 𝑠𝑍) and ends
at location (𝑒𝑋, 𝑒𝑌, 𝑒𝑍) , which can be calculated by seven
additions via a 3D integral image regardless of region size as

𝑅𝑆(𝑟𝑒𝑔𝑖𝑜𝑛) = 𝐽(𝑒𝑋 + 1, 𝑒𝑌 + 1, 𝑒𝑍 + 1)

− 𝐽(𝑒𝑋 + 1, 𝑒𝑌 + 1, 𝑠𝑍)
− 𝐽(𝑒𝑋 + 1, 𝑠𝑌, 𝑒𝑍 + 1)
− 𝐽(𝑠𝑋, 𝑒𝑌 + 1, 𝑒𝑍 + 1)
+ 𝐽(𝑠𝑋, 𝑠𝑌, 𝑒𝑍 + 1) + 𝐽(𝑠𝑋, 𝑒𝑌 + 1, 𝑠𝑍)
+ 𝐽(𝑒𝑥 + 1, 𝑠𝑌, 𝑠𝑍) − 𝐽(𝑠𝑋, 𝑠𝑌, 𝑠𝑍).						(4)

This property is key to significant speedup for calculating
transform coefficients.

III. BLOCK MATCHING FOR MULTICHANNEL
IMAGES

A.3D-OTSHT

3D-OTSHT consists of a set of basis blocks that forms a
basis. For rapid calculation, a basis block of 3D-OTSHT is
designed to have at most two regions in it, a positive constant
region and a negative constant region.

Let 𝑇., 𝑇/, and 𝑇0 be binary trees having N, N, and B leaves
for complete division of the 𝑋, 𝑌, and 𝑍 axes, respectively, for
a query of size 𝑁 ×𝑁 having B bands. We use 𝛼, 𝛽,	and 𝛾 to
denote nodes of 𝑇., 𝑇/, and 𝑇0, respectively. By subdividing a
region whose sides are intervals 𝜄& × 𝜄1 × 𝜄2 , a set of basis
blocks is built, which is defined by the following basis block
functions.

The basis block function for 𝜄#$$% × 𝜄#$$% × 𝜄#$$% is

𝜑!(𝑥, 𝑦, 𝑧) =
1

𝑁√𝐵
, (𝑥, 𝑦, 𝑧) ∈ 𝜄#$$% × 𝜄#$$% × 𝜄#$$% (5)

and the other basis block functions are

𝜑"(𝑥, 𝑦, 𝑧) = -
𝑐3"
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1 × 𝜄2
𝑐3"
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1 × 𝜄2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

𝜑6(𝑥, 𝑦, 𝑧) = -
𝑐3#
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1! × 𝜄2
𝑐3#
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1" × 𝜄2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)

𝜑7(𝑥, 𝑦, 𝑧) = -
𝑐3$
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1! × 𝜄2	
𝑐3$
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1" × 𝜄2	

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8)

𝜑8(𝑥, 𝑦, 𝑧) = -
𝑐3&
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1! × 𝜄2!
𝑐3&
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1! × 𝜄2"

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(9)

𝜑9(𝑥, 𝑦, 𝑧) = -
𝑐3'
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1" × 𝜄2!
𝑐3'
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1" × 𝜄2"

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(10)

𝜑:(𝑥, 𝑦, 𝑧) = -
𝑐3(
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1! × 𝜄2!
𝑐3(
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1! × 𝜄2"

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(11)

𝜑;(𝑥, 𝑦, 𝑧) = -
𝑐3)
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1" × 𝜄2!
𝑐3)
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1" × 𝜄2"

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12)

where

𝑐3"
4 =

𝜈(𝛼")
\𝜈(𝛼)𝜈(𝛽)𝜈(𝛾)𝜈(𝛼!)𝜈(𝛼")		

(13)

𝑐3"
5 =

−𝜈(𝛼!)
\𝜈(𝛼)𝜈(𝛽)𝜈(𝛾)𝜈(𝛼!)𝜈(𝛼")		

(14)

𝑐3#
4 =

𝜈(𝛽")
\𝜈(𝛼!)𝜈(𝛽)𝜈(𝛾)𝜈(𝛽!)𝜈(𝛽")		

(15)

𝑐3#
5 =

−𝜈(𝛽!)
\𝜈(𝛼!)𝜈(𝛽)𝜈(𝛾)𝜈(𝛽!)𝜈(𝛽")		

(16)

𝑐3$
4 =

𝜈(𝛽")
\𝜈(𝛼")𝜈(𝛽)𝜈(𝛾)𝜈(𝛽!)𝜈(𝛽")		

(17)

𝑐3$
5 =

−𝜈(𝛽!)
\𝜈(𝛼")𝜈(𝛽)𝜈(𝛾)𝜈(𝛽!)𝜈(𝛽")		

(18)

𝑐3&
4 =

𝜈(𝛾")
\𝜈(𝛼!)𝜈(𝛽!)𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(19)

𝑐3&
5 =

−𝜈(𝛾!)
\𝜈(𝛼!)𝜈(𝛽!)𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(20)

𝑐3'
4 =

𝜈(𝛾")
\𝜈(𝛼!)𝜈(𝛽")𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(21)

𝑐3'
5 =

−𝜈(𝛾!)
\𝜈(𝛼!)𝜈(𝛽")𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(22)

𝑐3(
4 =

𝜈(𝛾")
\𝜈(𝛼")𝜈(𝛽!)𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(23)

𝑐3(
5 =

−𝜈(𝛾!)
\𝜈(𝛼")𝜈(𝛽!)𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(24)

𝑐3)
4 =

𝜈(𝛾")
\𝜈(𝛼")𝜈(𝛽")𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(25)

𝑐3)
5 =

−𝜈(𝛾!)
\𝜈(𝛼")𝜈(𝛽")𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(26)

Eq. (6) through Eq. (12) are repeatedly used for all nodes, and
a total of 𝐾<=> 	 = 𝑁6𝐵 basis blocks are built. Each basis
block is assigned a number 𝑘, (𝑘 = 1, 2, … , 𝐾<=>) in building
order, where 𝑐3*

4 and 𝑐3*
5 , (𝑖 = 1, 2, … , 7) are rewritten as 𝑐@4

and 𝑐@5, respectively. Fig.2 illustrates the appearance of 3D-
OTSHT.

Fig. 2. 3D-OTSHT basis blocks built by subdivision.

B. Block Matching Using 3D-OTSHT via 3D Integral Image

In block matching using 3D-OTSHT via 3D integral image,
the sum of square differences (SSD) of 3D-OTSHT
coefficients is used as similarity measure to reject patches that
do not match.

From Eq. (1), the 𝑘-th 3D-OTSHT coefficient, 𝑃A(𝑘), of the
𝑖-th patch, 𝐩A , is obtained by

𝑃A(𝑘) = 𝑐@4 × 𝑅𝑆(𝑟𝑒𝑔𝑖𝑜𝑛4) + 𝑐@5 × 𝑅𝑆(𝑟𝑒𝑔𝑖𝑜𝑛5) (27)

where 𝑟𝑒𝑔𝑖𝑜𝑛4 and 𝑟𝑒𝑔𝑖𝑜𝑛5 are corresponding regions
assigned to 𝑐@4 and 𝑐@5, respectively, in a 3D integral image.
 The SSD of 𝐩A is calculated at 𝐾, (𝐾 = 1,2,… , 𝐾<=>) as

𝑆𝑆𝐷B(𝐩𝒊) = Hb𝑃A(𝑘) − 𝑄(𝑘)d
6

B

@)"

		 (28)

where 𝑄(𝑘) represents the 𝑘-th 3D-OTSHT coefficient of a
query. If 𝑆𝑆𝐷B(𝐩A) is beyond a threshold, 𝐩A is rejected from
the search, and neither OTSHT coefficients nor SSD is
calculated thereafter, which is called pruning.

IV. EVALUATION

A. Methods and environments

We performed three fast block matching algorithms, 2D-
OTSHT [7], a limited cube matching (LCM), i.e., cube
matching [8] without the FS phase, and 3D-OTSHT to
evaluate the pruning performance of the basis. These
algorithms reduce the number of candidates by pruning based
on SSD in the transformed domain in order from low to high
frequency-like levels. In 2D-OTSHT, the transformed
coefficients are obtained by 2D-OTSHT basis images via a 2D
integral image, and SSD is evaluated on each channel
separately. In LCM, the transformed coefficients are obtained
by 2D-OTSHT basis images via a 3D integral image. Note
that other fast FS-equivalent algorithms cannot be performed
due to the limitation of patch sizes, and that FS-equivalent
algorithms applicable to any patch sizes are desired for high
definition images and patch-based denoising.

We used Standard Image Data Base (SIDBA) [11] (dataset
1) containing 12 scenes of size 256	 × 	256 with 3 channels,
TokyoTech five-band image dataset [12] (dataset 2)
containing 11 scenes of size 1824	 × 1368, and TokyoTech
31-band image, ‘butterfly’ of size 500 × 500 [13].

B. Reduction ratio

We chose randomly 𝑁D = 10 queries per patch size, 𝑁 ×𝑁,
in a scene of datasets 1 and 2, and set a threshold 𝑇ℎ = 	𝑁6𝐵.
Note that in 2D-OTSHT basis images 𝐾<=> = 𝑁6.

The pruning performance is evaluated by the reduction ratio,
𝑅(𝑘), of the number of remaining extra patches detected by 𝐾
basis images/blocks to the number of all candidates, which is
defined by

𝑅(𝐾) = 	
𝑁E(𝐾) − 𝑁F

𝑁G
	 (29)

where 𝑁E(𝐾) refers to the number of patches detected by 𝐾
basis images/blocks, 𝑁F is the number of ground truth patches,
and 𝑁G represents the number of all candidates.

 (a) dataset 1 (b) dataset 2

Fig. 3. Reduction ratio

Figs. 3(a) and 3(b) show the mean 𝑅(𝑘) of in datasets 1 and
2, respectively. Initially, the mean 𝑅(𝑘) decreases rapidly,
then decreases slowly, as K increases. In 2D-OTSHT and 3D-
OTSHT, 𝑅(𝐾<=>) = 0, i.e., the results are the same as the FS
algorithm, while in LCM, 𝑅(𝐾<=>) ≠ 0, i.e., the results of
LCM are not the same as those of the FS. Note that the results
of LCM include all the results of the FS. 3D-OTSHT is better
than LCM, but worse than 2D-OTSHT in terms of K.
However, 2D-OTSHT requires operations on each channel,
and takes more time, which will be shown in the next section.

C. Speedup by pruning

We measured speedup over the FS algorithm from the
elapsed time required for the three algorithms. All algorithms
were written in C as single thread task, compiled with Xcode
and ran on a macOS system with 2.5 GHz Intel Core i7 and 16
GB RAM. The speedup over the FS algorithm is defined as

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 	
𝑇HI
𝑇JKL

	 (30)

where 𝑇HI and 𝑇JKL represent the elapsed time required for the
FS algorithm and an algorithm, respectively. Figs. 4(a) and
4(b) show the mean speedup in datasets 1 and 2, respectively,
where 𝑁D = 10	 queries were randomly chosen per patch size,
𝑁 ×𝑁, in a scene of datasets 1 and 2, 𝑇ℎ = 𝑁6𝐵, and 𝐾 =
𝐾<=>. In dataset 1, 3D-OTSHT is around 9 to 165 times faster
than the FS algorithm, and in dataset 2, 3D-OTSHT ran

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ1

ϕ1

ϕ1

ϕ1

ϕ1

ϕ1

ϕ2

ϕ2

ϕ2

ϕ2

ϕ2

ϕ3

ϕ3

ϕ3

ϕ4

ϕ5

α
β

γ

α1

α0

γ1
γ0

β0 β1

β0 β1

γ0

γ1

γ0

γ1

γ0

γ1

ϕ1

ϕ4

ϕ4

ϕ4

ϕ5

ϕ2

α0

α1

γ0

γ

γ

γ1

γ0

β0

β1

α1

α1

γ0

α0

β0

β1

ϕ6

ϕ7

ϕ6

around 12 and 1,000 times faster, i.e., the larger patch sizes,
the higher the efficiency. When 𝑁 = 45 , 3D-OTSHT was
slightly slower than LCM, because in 3D-OTSHT, 𝐾<=> =
10,125 , and there are no extra patches, while in LCM,
𝐾<=> = 2,025 , and there remained extra patches. Together
with 𝑅(𝑘), the results testify to the efficacy of 3D-OTSHT.

 (a) dataset 1 (b) dataset 2

Fig. 4. Speedup over FS algorithm

D. Pruning details

Reduction ratio of candidates varies depending on queries.
We focus on each query in pruning with condition that
candidates are reduced to 𝑆 = 0.02 percent of all candidates
to identify the patch. We performed LCM and 3D-OTSHT in
limited B-band images generated from image ‘butterfly’,
where 𝑇ℎ = 𝑁6𝐵	 and 𝐵 = 5, 10, 15, 20, 25, and 31. 50
queries of size 𝑁 ×𝑁, (𝑁 = 16) were randomly chosen.
 In some queries, LCM failed to reduce candidates. Fig. 5
shows 50 queries where queries that LCM succeeded/failed to
reduce are expressed in green/red squares in 𝐵 = 5, 10,	and 15.
The results in 𝐵 = 20,	 25, and 31 are the same as those in
𝐵 = 15. We observed that LCM failed when queries are
homogeneous areas. 3D-OTSHT, on the other hand,
succeeded to reduce in all queries. In the queries that LCM
failed to reduce, the mean 𝐾-values of 3D-OTSHT in 𝐵 = 5
and 10 were 980 and 1,776 (around 77 and 70 percent of
𝐾<=>), respectively, and 𝐾 = 𝐾<=> 	, in 𝐵 = 15 to 31.
 Practically, 3D-OTSHT is more efficient when used in
combination with the FS algorithm than 3D-OTSHT alone,
because direct calculation is more efficient than calculation
via a 3D integral image in higher 𝐾-values, as shown in [10].
However, the threshold to reject candidates, and parameters
(𝐾 and 𝑆) to terminate the pruning process should be carefully
chosen depending on queries and machine capability for
significant speedup. For example, when queries are
homogeneous, a lower 𝑇ℎ or an appropriate 𝑆-value with 𝐾 =
𝐾<=> 	 works, and when queries have distinct contrast, a lower
𝐾-value can work well.

B = 5 B = 10 B = 15

Fig. 5. 50 queries. Queries that LCM succeeded/failed to reduce are
expressed in green/red squares.

V. CONCLUSION

In this paper we presented new insights into our 3D-
OTSHT approach for block matching in multichannel images
with more extensive analysis. Using a 3D integral image, the
similarity measure is evaluated in the transformed domain in
order from low to high frequency-like levels to reduce the
number of candidates, and thereby achieves significant
speedup. Comparing 3D-OTSHT with state-of-the-art
algorithms, 2D-OTSHT and LCM, in terms of reduction ratio,
speedup, and pruning details, we showed that 3D-OTSHT is
advantageous over the others. Fast search of patches in
multichannel images is a fundamental problem and hence 3D-
OTSHT has many applications. Moreover, 3D-OTSHT can
enable new applications in multichannel images that were not
feasible before due to prohibitive computational complexity.

REFERENCES

[1] R. Dufour, R, E. Miller, N. Galatsanos, “Template matching
based object recognition with unknown geometric parameters.”
IEEE Transactions on Image Processing. vol.11, pp.1385-1396,
2002.

[2] L. Ding, A. Goshtasby, M. Satter, “Volume image registration
by template matching.” Image and Vision Computing, vol. 19,
pp. 821-832, 2001.

[3] S. Sarraf, C. Saverino, A.M. Colestani, “A robust and adaptive
decision-making algorithm for detecting brain networks using
functional MRI within the spatial and frequency domain.” In
Proceedings of the IEEE-EMBS International Conference on
Biomedical and Health Informatics, pp. 53-56, 2016.

[4] V. Papyan, M. Elad, “Multi-scale patch-based image restoration.”
IEEE Transactions on Image Processing, vol.25, pp. 249-261,
2016.

[5] W.Ouyang, F. Tombari, S. Mattoccia, L.D.Stefano, and W.-K.
Cham, “Performance evaluation of full search equivalent patten
matching algorithms,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 1, pp.127-143, 2012.

[6] W. Ouyang, W. Zhao, W.-K. Cham, L. WeiFast, “Fast full-
search-equivalent pattern matching using asymmetric Haar
wavelet packets.” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 28, pp.819-833, 2018.

[7] I. Ito, K. Egiazarian, “Two-dimensional orthonormal tree-
structured Haar transform for fast block matching.” Journal of
Imaging, 4, pp.1-18, 2018.

[8] I. Ito, A. Pižurica, “Fast cube matching using orthogonal tree-
structured Haar transform for multispectral images.” In
Proceedings of the 11th International Symposium on Image and
Signal Processing and Analysis, pp. 70-75, 2019.

[9] I. Ito, A. Pižurica, “Three-dimensional block matching using
orthonormal tree-structured Haar transform for multichannel
images,” Journal of Imaging, vol.6, issue 4, pp.1-18, 2020.

[10] K. Egiazarian, J. Astola, “Tree-structured Haar transform.”
Journal of Mathematical Imaging and Vision, 16, pp.269-279,
2002.

[11] Standard Image Data Base (SIDBA). Available online:
http://www.ess.ic.kanagawa-it.ac.jp/app_images_j.html

[12] Y. Monno, M.Tanaka, M.Okutomi, TokyoTech 5-Band
Multispectral Image Dataset and Demosaiking Codes. Available
online: http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata.html

[13] --, TokyoTech 31-Band Hyperspectral Image Dataset. Available
online: http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata31.html

