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Abstract – Block matching is a fundamental tool to search 
blocks (patches) similar or identical to a given query in image 
processing. Generally, a full search (FS) algorithm is the most 
accurate but requires vast computation especially in 
multichannel images, where the data volume is increasing due to 
higher definition and more channels. In this paper, we present a 
fast FS-equivalent algorithm using orthonormal tree-structured 
Haar transform (OTSHT) for multichannel images. We 
demonstrate the superior performance of three-dimensional 
OTSHT comparing with state-of-the-art algorithms. This 
significant speedup can enable new applications of block 
matching in multichannel images.  
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I. INTRODUCTION 

Block matching is a fundamental tool to search blocks 
(patches) similar or identical to a given query, and as such has 
been widely used in solving various image processing 
problems, such as object recognition and tracking [1], image 
registration [2], analysis [3], and restoration [4]. Generally, a 
full search (FS) algorithm is the most accurate, which 
exhaustively compares all pixel intensities of all candidates 
overlapping each other in sliding window manner, but 
requires vast computation.  

To reduce the computational complexity of the FS 
algorithm, several fast FS-equivalent algorithms have been 
studied [5]. The orthogonal Haar transform (OHT) is one of 
the fastest algorithms, where similarity measure is efficiently 
evaluated in the transformed domain, but has a limitation that 
patch size must be power-of-2 [6]. The two-dimensional tree-
structured Haar transform (2D-OTSHT) is a generalization of 
OHT which can apply patches with arbitrary sizes [7], but 
must apply to each channel separately for multichannel 
images. 
   In this paper, we present an FS-equivalent block matching 
algorithm using three-dimensional orthonormal tree-structured 
Haar transform (3D-OTSHT) for multichannel images to 
reduce huge amount of computation involved in increase of 
the number of channels with higher definition. Using a three-
dimensional (3D) integral image, similarity measure is 
calculated in the transformed domain in order from low to 
high frequency-like levels, and at each level, candidates are 
reduced. We focus on reduction of candidates in 3D-OTSHT. 

Comparing with the basis of state-of-the-art algorithms, 2D-
OTSHT and cube matching [8], superior performance of 3D-
OTSHT is demonstrated using multichannel images. This 
paper thus extends our recent work [9]. We provide here 
additional insights and more extensive analysis of 3D-OTSHT 
showing its clear potential for fast block matching in 
multichannel images.  

II. PRELIMINARIES 

A. Tree-Structured Haar Transform 

Tree-structured Haar transform (TSHT) is a generalization 
of the Haar transform, which can be applied to signals with 
arbitrary length [10]. TSHT functions are composed of square 
waves, and a function has an interval at most with a positive 
constant, an interval with a negative constant, and otherwise 
zero values. A set of TSHT functions is generated by dividing 
an interval into two sub-intervals. The complete division of 
intervals can be expressed by a binary tree structure. 

Let 𝛼  be a node of a binary tree having 𝑁  leaves for a 
signal of length N. Let 𝛼! and 𝛼" be the left child node and 
the right child node of 𝛼. The TSHT function for interval 𝜄#$$% 
is given as 

ℎ(𝑡) =
1
𝑁 , 𝑡 ∈ 𝜄#$$%	

(1) 

and the other TSHT functions for other intervals are 
 

ℎ(𝑡) = 	-
𝜈(𝑎"), 𝑡 ∈ 𝜄&!
𝜈(𝑎!), 𝑡 ∈ 𝜄&" 	
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2) 

 
where 𝜈(𝛼) represents the number of leaves that 𝛼 has, and 𝜄& 
is the interval derived from 𝛼.	Fig.1 shows a binary tree 
having 𝑁 = 3  leaves, the intervals, and TSHT functions, 
where in the tree, a circle represents a node, and the number in 
a circle is 𝜈(𝛼). 
 

 
     (a) tree                         (b) intervals          (c) functions 

Fig. 1. A binary tree, the intervals, and TSHT functions. 
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B. 3D Integral Image 

A 3D integral image, 𝐽(𝑥, 𝑦, 𝑧), is built  from an image, 
𝐼(𝑢, 𝑣, 𝑤) , of size 𝐿 ×𝑀   having B bands, for  𝑥 =
0,1,2… , 𝐿 − 1, 𝑦 = 0,1,2… ,𝑀 − 1,  and 𝑧 = 0,1,2… , 𝐵 − 1, 
as 

𝐽(𝑥 + 1, 𝑦 + 1, 𝑧 + 1) = HHH 𝐼(𝑢, 𝑣, 𝑤)									
'

()!

*

+)!

,

-)!

(3) 

where 𝐽(0, 𝑦, 𝑧) = 𝐽(𝑥, 0, 𝑧) = 𝐽(𝑥, 𝑦, 0) = 0.  Observe that 
(3𝐵 − 1)𝐿𝑀  additions are required to build a 3D integral 
image. 
     The region sum (RS) is the sum of all pixel intensities in a 
region whose diagonal starts at location (𝑠𝑋, 𝑠𝑌, 𝑠𝑍) and ends 
at location (𝑒𝑋, 𝑒𝑌, 𝑒𝑍) , which can be calculated by seven 
additions via a 3D integral image regardless of region size as  
 
𝑅𝑆(𝑟𝑒𝑔𝑖𝑜𝑛) = 𝐽(𝑒𝑋 + 1, 𝑒𝑌 + 1, 𝑒𝑍 + 1)

− 𝐽(𝑒𝑋 + 1, 𝑒𝑌 + 1, 𝑠𝑍)
− 𝐽(𝑒𝑋 + 1, 𝑠𝑌, 𝑒𝑍 + 1)
− 𝐽(𝑠𝑋, 𝑒𝑌 + 1, 𝑒𝑍 + 1)
+ 𝐽(𝑠𝑋, 𝑠𝑌, 𝑒𝑍 + 1) + 𝐽(𝑠𝑋, 𝑒𝑌 + 1, 𝑠𝑍)
+ 𝐽(𝑒𝑥 + 1, 𝑠𝑌, 𝑠𝑍) − 𝐽(𝑠𝑋, 𝑠𝑌, 𝑠𝑍).						(4) 

 
This property is key to significant speedup for calculating 
transform coefficients. 

III. BLOCK MATCHING FOR MULTICHANNEL 
IMAGES 

A.3D-OTSHT  

3D-OTSHT consists of a set of basis blocks that forms a 
basis. For rapid calculation, a basis block of 3D-OTSHT is 
designed to have at most two regions in it, a positive constant 
region and a negative constant region.   

Let 𝑇., 𝑇/, and 𝑇0 be binary trees having N, N, and B leaves 
for complete division of the 𝑋, 𝑌, and 𝑍 axes, respectively, for 
a query of size 𝑁 ×𝑁 having B bands. We use 𝛼, 𝛽,	and 𝛾 to 
denote nodes of 𝑇., 𝑇/, and 𝑇0, respectively. By subdividing a 
region whose sides are intervals 𝜄& × 𝜄1 × 𝜄2 , a set of basis 
blocks is built, which is defined by the following basis block 
functions. 

The basis block function for 𝜄#$$% × 𝜄#$$% × 𝜄#$$% is 

𝜑!(𝑥, 𝑦, 𝑧) =
1

𝑁√𝐵
, (𝑥, 𝑦, 𝑧) ∈ 𝜄#$$% × 𝜄#$$% × 𝜄#$$% (5) 

 
and the other basis block functions are 
 

𝜑"(𝑥, 𝑦, 𝑧) = -
𝑐3"
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1 × 𝜄2
𝑐3"
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1 × 𝜄2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6) 

𝜑6(𝑥, 𝑦, 𝑧) = -
𝑐3#
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1! × 𝜄2
𝑐3#
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1" × 𝜄2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7) 

𝜑7(𝑥, 𝑦, 𝑧) = -
𝑐3$
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1! × 𝜄2	
𝑐3$
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1" × 𝜄2	

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8) 

𝜑8(𝑥, 𝑦, 𝑧) = -
𝑐3&
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1! × 𝜄2!
𝑐3&
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1! × 𝜄2"

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(9) 

𝜑9(𝑥, 𝑦, 𝑧) = -
𝑐3'
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1" × 𝜄2!
𝑐3'
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&! × 𝜄1" × 𝜄2"

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(10) 

𝜑:(𝑥, 𝑦, 𝑧) = -
𝑐3(
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1! × 𝜄2!
𝑐3(
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1! × 𝜄2"

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(11) 

𝜑;(𝑥, 𝑦, 𝑧) = -
𝑐3)
4 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1" × 𝜄2!
𝑐3)
5 , (𝑥, 𝑦, 𝑧) ∈ 𝜄&" × 𝜄1" × 𝜄2"

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12) 

where 

𝑐3"
4 =

𝜈(𝛼")
\𝜈(𝛼)𝜈(𝛽)𝜈(𝛾)𝜈(𝛼!)𝜈(𝛼")		

(13) 

𝑐3"
5 =

−𝜈(𝛼!)
\𝜈(𝛼)𝜈(𝛽)𝜈(𝛾)𝜈(𝛼!)𝜈(𝛼")		

(14) 

𝑐3#
4 =

𝜈(𝛽")
\𝜈(𝛼!)𝜈(𝛽)𝜈(𝛾)𝜈(𝛽!)𝜈(𝛽")		

(15) 

𝑐3#
5 =

−𝜈(𝛽!)
\𝜈(𝛼!)𝜈(𝛽)𝜈(𝛾)𝜈(𝛽!)𝜈(𝛽")		

(16) 

𝑐3$
4 =

𝜈(𝛽")
\𝜈(𝛼")𝜈(𝛽)𝜈(𝛾)𝜈(𝛽!)𝜈(𝛽")		

(17) 

𝑐3$
5 =

−𝜈(𝛽!)
\𝜈(𝛼")𝜈(𝛽)𝜈(𝛾)𝜈(𝛽!)𝜈(𝛽")		

(18) 

𝑐3&
4 =

𝜈(𝛾")
\𝜈(𝛼!)𝜈(𝛽!)𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(19) 

𝑐3&
5 =

−𝜈(𝛾!)
\𝜈(𝛼!)𝜈(𝛽!)𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(20) 

𝑐3'
4 =

𝜈(𝛾")
\𝜈(𝛼!)𝜈(𝛽")𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(21) 

𝑐3'
5 =

−𝜈(𝛾!)
\𝜈(𝛼!)𝜈(𝛽")𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(22) 

𝑐3(
4 =

𝜈(𝛾")
\𝜈(𝛼")𝜈(𝛽!)𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(23) 

𝑐3(
5 =

−𝜈(𝛾!)
\𝜈(𝛼")𝜈(𝛽!)𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(24) 

𝑐3)
4 =

𝜈(𝛾")
\𝜈(𝛼")𝜈(𝛽")𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(25) 

𝑐3)
5 =

−𝜈(𝛾!)
\𝜈(𝛼")𝜈(𝛽")𝜈(𝛾)𝜈(𝛾!)𝜈(𝛾")		

(26) 

 
Eq. (6) through Eq. (12) are repeatedly used for all nodes, and 
a total of 𝐾<=> 	 = 𝑁6𝐵  basis blocks are built. Each basis 
block is assigned a number 𝑘, (𝑘 = 1, 2, … , 𝐾<=> 	) in building 
order, where 𝑐3*

4  and 𝑐3*
5 , (𝑖 = 1, 2, … , 7) are rewritten as 𝑐@4 

and 𝑐@5, respectively. Fig.2 illustrates the appearance of 3D-
OTSHT. 



 

 

Fig. 2.   3D-OTSHT basis blocks built by subdivision. 

B. Block Matching Using 3D-OTSHT via 3D Integral Image 

In block matching using 3D-OTSHT via 3D integral image, 
the sum of square differences (SSD) of 3D-OTSHT 
coefficients is used as similarity measure to reject patches that 
do not match.  

From Eq. (1), the 𝑘-th 3D-OTSHT coefficient, 𝑃A(𝑘), of the 
𝑖-th patch, 𝐩A , is obtained by 

 
𝑃A(𝑘) = 𝑐@4 × 𝑅𝑆(𝑟𝑒𝑔𝑖𝑜𝑛4) + 𝑐@5 × 𝑅𝑆(𝑟𝑒𝑔𝑖𝑜𝑛5) (27) 

where 𝑟𝑒𝑔𝑖𝑜𝑛4  and 𝑟𝑒𝑔𝑖𝑜𝑛5  are corresponding regions 
assigned to 𝑐@4 and 𝑐@5, respectively, in a 3D integral image. 
     The SSD of 𝐩A is calculated at 𝐾, (𝐾 = 1,2,… , 𝐾<=> 	) as 

𝑆𝑆𝐷B(𝐩𝒊) = Hb𝑃A(𝑘) − 𝑄(𝑘)d
6

B

@)"

		 (28) 

where 𝑄(𝑘) represents the 𝑘-th 3D-OTSHT coefficient of a 
query. If  𝑆𝑆𝐷B(𝐩A) is beyond a threshold, 𝐩A is rejected from 
the search, and neither OTSHT coefficients nor SSD is 
calculated thereafter, which is called pruning. 

IV. EVALUATION 

A. Methods and environments 

We performed three fast block matching algorithms, 2D-
OTSHT [7], a limited cube matching (LCM), i.e., cube 
matching [8] without the FS phase, and 3D-OTSHT to 
evaluate the pruning performance of the basis. These 
algorithms reduce the number of candidates by pruning based 
on SSD in the transformed domain in order from low to high 
frequency-like levels.    In 2D-OTSHT, the transformed 
coefficients are obtained by 2D-OTSHT basis images via a 2D 
integral image, and SSD is evaluated on each channel 
separately. In LCM, the transformed coefficients are obtained 
by 2D-OTSHT basis images via a 3D integral image. Note 
that other fast FS-equivalent algorithms cannot be performed 
due to the limitation of patch sizes, and that FS-equivalent 
algorithms applicable to any patch sizes are desired for high 
definition images and patch-based denoising. 

We used Standard Image Data Base (SIDBA) [11] (dataset 
1) containing 12 scenes of size 256	 × 	256 with 3 channels, 
TokyoTech  five-band image dataset [12] (dataset 2) 
containing 11 scenes of size 1824	 × 1368, and TokyoTech  
31-band image, ‘butterfly’ of size 500 × 500  [13].  

B. Reduction ratio 

We chose randomly 𝑁D = 10 queries per patch size, 𝑁 ×𝑁, 
in a scene of datasets 1 and 2, and set a threshold 𝑇ℎ = 	𝑁6𝐵. 
Note that in 2D-OTSHT basis images 𝐾<=> = 𝑁6. 

The pruning performance is evaluated by the reduction ratio, 
𝑅(𝑘), of the number of remaining extra patches detected by 𝐾 
basis images/blocks to the number of all candidates, which is 
defined by 

𝑅(𝐾) = 	
𝑁E(𝐾) − 𝑁F

𝑁G
	 (29) 

where 𝑁E(𝐾) refers to the number of patches detected by 𝐾 
basis images/blocks, 𝑁F is the number of ground truth patches, 
and 𝑁G represents the number of all candidates. 

  
             (a)  dataset 1                              (b) dataset 2 

Fig. 3.   Reduction ratio 
 

Figs. 3(a) and 3(b) show the mean 𝑅(𝑘) of in datasets 1 and 
2, respectively. Initially, the mean 𝑅(𝑘)  decreases rapidly, 
then decreases slowly, as K increases. In 2D-OTSHT and 3D-
OTSHT, 𝑅(𝐾<=>) = 0, i.e., the results are the same as the FS 
algorithm, while in LCM, 𝑅(𝐾<=>) ≠ 0, i.e., the results of 
LCM are not the same as those of the FS. Note that the results 
of LCM include all the results of the FS. 3D-OTSHT is better 
than LCM, but worse than 2D-OTSHT in terms of K. 
However, 2D-OTSHT requires operations on each channel, 
and takes more time, which will be shown in the next section. 

C. Speedup by pruning 

We measured speedup over the FS algorithm from the 
elapsed time required for the three algorithms. All algorithms 
were written in C as single thread task, compiled with Xcode 
and ran on a macOS system with 2.5 GHz Intel Core i7 and 16 
GB RAM. The speedup over the FS algorithm is defined as 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 	
𝑇HI
𝑇JKL

	 (30) 

where 𝑇HI and 𝑇JKL represent the elapsed time required for the 
FS algorithm and an algorithm, respectively. Figs. 4(a) and 
4(b) show the mean speedup in datasets 1 and 2, respectively, 
where 𝑁D = 10	 queries were randomly chosen per patch size, 
𝑁 ×𝑁, in a scene of datasets 1 and 2,  𝑇ℎ = 𝑁6𝐵, and 𝐾 =
𝐾<=>. In dataset 1, 3D-OTSHT is around 9 to 165 times faster 
than the FS algorithm, and in dataset 2, 3D-OTSHT ran 
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around 12 and 1,000 times faster, i.e., the larger patch sizes, 
the higher the efficiency. When 𝑁 = 45 , 3D-OTSHT was 
slightly slower than LCM, because in 3D-OTSHT, 𝐾<=> =
10,125 , and there are no extra patches, while in LCM, 
𝐾<=> = 2,025 , and there remained extra patches. Together 
with 𝑅(𝑘), the results testify to the efficacy of 3D-OTSHT.  

 
      (a)  dataset 1                                (b)  dataset 2 

Fig. 4.   Speedup over FS algorithm  

D. Pruning details 

Reduction ratio of candidates varies depending on queries.  
We focus on each query in pruning with condition that 
candidates are reduced to 𝑆 = 0.02 percent of all candidates 
to identify the patch. We performed LCM and 3D-OTSHT in 
limited B-band images generated from image ‘butterfly’, 
where 𝑇ℎ = 𝑁6𝐵	 and 𝐵 = 5,  10, 15, 20, 25, and 31. 50 
queries of size 𝑁 ×𝑁, (𝑁 = 16) were randomly chosen.  
    In some queries, LCM failed to reduce candidates.  Fig. 5 
shows 50 queries where queries that LCM succeeded/failed to 
reduce are expressed in green/red squares in 𝐵 = 5, 10,	and 15. 
The results in 𝐵 = 20,	 25, and 31 are the same as those in 
𝐵 = 15.  We observed that LCM failed  when queries are 
homogeneous areas. 3D-OTSHT, on the other hand, 
succeeded to reduce in all queries. In the queries that LCM 
failed to reduce, the mean 𝐾-values of 3D-OTSHT in 𝐵 = 5 
and 10 were 980 and 1,776 (around 77 and 70 percent of 
𝐾<=> 	), respectively, and 𝐾 = 𝐾<=> 	, in 𝐵 = 15 to 31.   
    Practically, 3D-OTSHT is more efficient when used in 
combination with the FS algorithm than 3D-OTSHT alone, 
because direct calculation is more efficient than calculation 
via a 3D integral image in higher 𝐾-values, as shown in [10]. 
However, the threshold to reject candidates, and parameters 
(𝐾 and 𝑆) to terminate the pruning process should be carefully 
chosen depending on queries and machine capability for 
significant speedup. For example, when queries are 
homogeneous, a lower 𝑇ℎ or an appropriate 𝑆-value with 𝐾 =
𝐾<=> 	 works, and when queries have distinct contrast, a lower  
𝐾-value can work well.  

 
B = 5                        B = 10                            B = 15 

Fig. 5.   50 queries. Queries that LCM succeeded/failed to reduce are 
expressed in green/red squares. 

V. CONCLUSION 

In this paper we presented new insights into our 3D-
OTSHT approach for block matching in multichannel images 
with more extensive analysis. Using a 3D integral image, the 
similarity measure is evaluated in the transformed domain in 
order from low to high frequency-like levels to reduce the 
number of candidates, and thereby achieves significant 
speedup. Comparing 3D-OTSHT with state-of-the-art 
algorithms, 2D-OTSHT and LCM, in terms of reduction ratio, 
speedup, and pruning details, we showed that 3D-OTSHT is 
advantageous over the others. Fast search of patches in 
multichannel images is a fundamental problem and hence 3D-
OTSHT has many applications. Moreover, 3D-OTSHT can 
enable new applications in multichannel images that were not 
feasible before due to prohibitive computational complexity.  
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