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Abstract. Supervised classification methods

rely heavily on labeled training data. How-

ever, errors in the manually labeled data arise

inevitably in practice, especially in applications

where data labeling is a complex and expen-

sive process, as is often the case in remote sens-

ing. Erroneous labels affect the learning mod-

els, deteriorate the classification performances

and hinder thereby subsequent image analysis

and scene interpretation. In this paper, we an-

alyze the effect of erroneous labels on spec-

tral signatures of landcover classes in remotely

sensed hyperspectral images (HSIs). We ana-

lyze also statistical distributions of the princi-

pal components of HSIs under label noise in

order to interpret the deterioration of the clas-

sification performance. We compare the be-

haviour of different types of classifiers: spec-

tral only and spectral-spatial classifiers based on

different learning models including deep learn-

ing. Our analysis reveals which levels of label

noise are acceptable for a given tolerance in the

classification accuracy and how robust are dif-

ferent learning models in this respect.

Key words. Robust classification, hyperspec-

tral images, remote sensing, label noise.

1 Introduction

Hyperspectral images (HSIs) are being extensively used

in numerous applications in various domains, including

geosciences [1], agriculture [2], defense and security [3]

and environment monitoring [4]. Image classification,

which assigns a class label to each image pixel, plays an

essential role in the automatic analysis and interpretation

of HSIs.

In the past decade, numerous supervised classification

methods for HSIs have been proposed [1, 5] and have

achieved satisfactory classification performance. Most of

them are designed under the assumption that the training

data does not contain erroneous labels. However, in prac-

tice imprecise labels are inevitable as labeling is often la-

bor intensive and involves a lot of manual work [6, 7].

The erroneous labels falsely increase the feature variabil-

ity within class and decrease the discrimination of fea-

tures across classes. This affects thereby the training of

classifiers towards making an incorrect recognition for the

new samples, resulting in a degraded classification per-
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formance. We shall refer to the erroneous data labels as

label noise. Classification methods built on diverse tech-

niques such as Naive Baysian model [8], k-nearest neigh-

bours (k-NN) [9], support vector machine (SVM), sparse

representation classification (SRC) [1, 10] and deep neu-

ral networks, will be influenced by the label noise dif-

ferently [7, 11]. Thus, it is of great interest to investigate

which levels of label noise can be tolerated in practice, for

a given (user-defined or application-dependent) allowed

drop in the classification accuracy and how does this de-

pend on the particular classifier type.

Observing that research on this problem is very scarce,

in this paper we study thoroughly the behaviour of several

representative supervised classification approaches in the

scenarios where different levels of label noise are present

in the training data. We assume that the label noise is uni-

formly distributed in the training data of different classes.

We characterise statistically its effect on the spectral sig-

natures of landcover classes and the statistical distribu-

tions of features. Our empirical results explain from this

perspective clearly the reason for the excellent robustness

of Bayesian classifiers (and in particular the simple naive

Bayesian classifier) compared to some more complex ap-

proaches, such as SVM [12], SRC [13], SRC-based clas-

sifier with spectral-spatial features (SJSRC) [10] and three

spectral-spatial deep learning methods (SSUN, SSRN and

CBSP) [14, 15, 16]. At the same time, the empirical re-

sults show how erroneous labels affect the model, result-

ing in a deteriorated classification performance. In addi-

tion, the comparison between spectral-based and spectral-

spatial based methods demonstrates the benefit of using

spatial information to improve the robustness to label

noise. We also analyze the classifiers’ tolerance to label

noise given an acceptable OA degradation.

The rest of the paper is organized as follows. The repre-

sentative classification methods for HSI that are used for

analysis in this paper are briefly introduced in Section 2.

In Section 3, we explain our simulation approach and we

analyze the influence of label noise on different aspects.

Experimental results and analysis are given in Section 4.

We conclude the paper in Section 5.

2 Representative Classification
Methods for HSI

Here, we review briefly the classifiers that we use for the

analysis in this paper. We denote by x = (x1, · · · , xm)

a training sample and y = (y1, · · · , ym) a test sample,

where xi and yi are the corresponding i-th features. Both

of these vectors are pixel values of a HSI at a given spa-

tial position in m spectral bands. Let C denote the class

variable that is assigned to these samples and that takes

values c in a finite set C.

2.1 Naive Bayes Classifiers (NBCs)

NBCs are simple Bayesian classifiers. For any given fea-

ture vector x, an NBC returns the Maximum a Posteri-

ori (MAP) estimate of the class variable C, assuming the

conditional independence P (x|c) =
∏m

i=1 P (xi|c). The

estimated class is thus:

ĉ = argmax
c∈C

P (c|x) = argmax
c∈C

P (c)
∏m

i=1
P (xi|c).

(1)

2.2 K-nearest-neighbor classifier (k-NN)

In k-NN algorithm, the test sample y is classified by the

majority voting of its k nearest neighbors, which are often

measured by the Euclidean distance as follows:

d(x,y) =

√∑
m
(xm − ym)2. (2)

Let Ny be the set of k nearest neighbors of y according

to Equation (2). The test sample y is assigned to the class

that is most common among Ny .
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2.3 Support vector machine (SVM)

SVM learns a separating hyperplane from a given set of

training data with an optimal decision boundary to each

class [17], and categorizes new data points by the learned

hyperplane. Let K(xi,xj) be a kernel function which de-

fines an inner product in the feature space. The decision

function implemented by SVM can be written as:

f(y) = sgn(
∑N

i=1
ciαiK(y,xi) + b), (3)

where ci is the corresponding label of sample xi, b is a real

number and the coefficients αi are obtained by solving the

convex Quadratic Programming (QP) problem [18].

2.4 Sparse Representation Classification
(SRC)

SRC identifies the label of test data in two steps: sparse

representation and classification. Sparse representation

represents a test data y by a linear combination of a few

atoms from a dictionary D ∈ Rm×d, which in SRC is

constructed specially by the training samples {xi}di=1.

We denote by Di ∈ Rm×di the i-th subdictionary in

D = [D1,D2, ...,Dc] where each column of Di is a

training sample of i-th class. The resulting sparse coef-

ficients vector α ∈ Rd of y can be obtained by solving

the following optimization problem:

α̂ = argmin
α

‖y −Dα‖22 s.t. ‖α‖0 ≤ K, (4)

where ‖α‖0 denotes the number of non-zero elements

in α and K is the sparsity level, i.e., the largest number

of atoms in dictionary D needed to represent any input

sample y. The optimization problem in Eq. (4) is typi-

cally solved with a greedy algorithm, such as Orthogonal

Matching Pursuit (OMP) [19]. Then, the class of the test

sample is identified by calculating the class-specific resid-

uals ri [13]:

class(y) = argmin
i=1,2,...,C

ri(y)

= argmin
i=1,2,...,C

‖y −Diαi‖2,
(5)

where αi are the sparse coefficients associated with class

i.

2.5 SRC-based classifier with spectral-
spatial features

We also consider a representative of SRC-based method

where spatial information is included, and in particular

we will use in our analysis the method of [10], called

SJSRC, which employs super-pixel segmentation and en-

codes jointly all the pixels within one super-pixel. It as-

sumes that similar pixels in local regions, which are de-

fined by super-pixel segmentation, can be represented by

a few common atoms in D. This results in a row sparsity

pattern on the coefficients matrix of the pixels within the

same super-pixel. Let X ∈ Rm×n represent a super-pixel

composed of n pixels in m spectral bands and A ∈ Rd×n

the corresponding coefficients matrix. SJSRC solves the

following problem

argmin
A

‖X−DA‖2F s.t. ‖A‖row,0 ≤ K0, (6)

where ‖A‖row,0 denotes the number of non-zero rows of

A and K0 is the row-sparsity level. After finding A, the

class for the whole super-pixel X is decided as:

class(X) = argmin
i=1,2,...,C

‖X−DiAi‖F , (7)

where Ai is the sub-matrix of A corresponding to class i.

2.6 Deep learning based spectral-spatial
classifier

Deep learning methods have been increasingly used in

HSI classification [20, 21, 22]. As representatives of these

methods, we select three recent ones: SSUN [14], SSRN

[15] and CBSP [16]. All the three combine spectral and

spatial feature extraction.
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2.6.1 Spectral-spatial unified network (SSUN)

The SSUN algorithm [14] integrates the spectral feature

extraction, spatial feature extraction and classifier training

into a unified neural network. It incorporates long short-

term memory (LSTM) [23] network for band grouping

and spectral feature extraction and the multiscale CNN

(NSCNN) for spatial feature extraction. The loss function

is defined as:

L = Ljoint + Lspectral + Lspatial

= −1

d

∑d

i=1
[cilog(ĉi

joint) + (1− ci)log(1− ĉi
joint)]

− 1

d

∑d

i=1
[cilog(ĉi

spectral) + (1− ci)log(1− ĉi
spectral)]

− 1

d

∑d

i=1
[cilog(ĉi

spatial) + (1− ci)log(1− ĉi
spatial)],

(8)

where Ljoint is the main loss function, Lspectral and

Lspatial are two auxiliary loss functions, ĉjointi , ĉspectrali

and ĉspatiali are the corresponding predicted labels for the

ith training sample, ci is the true label, and d is the size of

training set.

2.6.2 Spectral-spatial residual network (SSRN)

The SSRN algorithm [15] is an end-to-end spectral-spatial

residual network that takes raw 3-D cubes as input data for

hyperspectral image classification. In SSRN, the spectral

and spatial residual blocks consecutively learn discrimi-

native features from abundant spectral signatures and spa-

tial contexts in hyperspectral imagery. Let X be the HSI

data set, the spectral residual architecture is formulated as

follows:

Xp+2 = Xp + F (Xp; θ),

F (Xp; θ) = R(X̂p+1)× hp+2 + bp+2,

X = R(X̂p)× hp+1 + bp+1,

(9)

where θ = {hp+1,hp+2,bp+1,bp+2}, Xp+1 represents

the n input 3-D feature cubes of (p+1)th layer, hp+1 and

bp+1 denote the spectral convolutional kernels and bias in

the (p + 1)th layer, respectively, X̂p is the normalization

result of batch feature cubes Xp in the pth layer, R(·) is

the rectified linear unit activation function that sets ele-

ments with negative numbers to zero, F (Xp; θ) is a resid-

ual function. The output tensor of the spectral residual

block includes n 3-D feature cubes. The spatial residual

block is defined similarly with the spectral block. The

output of the spatial block is a 3-D feature volume. More

details can be found in [21].

2.6.3 Convolution based spectral partitioning
architecture (CBSP)

The CBSP algorithm [16] aims to develop a deep learn-

ing architecture using 3-D convolutional neural networks

with spectral partitioning to extract features. It first per-

forms a spatial transformation via 2-D convolution. The

transformed image is partitioned on the spectral level and

split into segments for efficient processing. 3-D convolu-

tion is then applied to each segment. Finally, convoluted

segments are concatenated and fed to two fully-connected

layers with dropout as regularization. The detailed de-

scription of CBSP can be found in [16].

3 Model Uncertainty Caused by
Label Noise

3.1 Data sets

We conduct our experiments on two real HSI data sets:

HYDICE Urban and Indian Pines.

The HYDICE Urban data set, with 188 spectral bands,

was captured by the HYDICE sensor over an urban eara.

Its spatial size is 307×307 pixels and in our experiments,

we use a part of this image with size 200 × 200 shown

in Figure 1a. The ground truth classification is shown in

Figure 1b.

The Indian Pines data set was gathered by Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor

over Northwest Indiana in June 1992. After the removal
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(a) (b) (c) (d)

Fig. 1: Two real hyperspectral data sets used in the ex-
periments. (a) False color images of the selected part of
HYDICE Urban and (b) the corresponding ground truth
classification. (c) False color image of Indian Pines and
(d) the corresponding ground truth classification.

of the water absorption bands, 200 bands remain, and the

total data size is 145 × 145 × 200 with 16 distinctive

classes. The ground truth classification is shown in Fig-

ure 1d.

3.2 Model uncertainties analysis with noisy
labels

We define the level of label noise ρ as the proportion of

training samples that have wrong labels. The erroneous

labels are chosen with equal probabilities in C \ {c}, with

C the set of class values and c the true class of label noise

ρ as the proportion of training samples that have wrong

labels. To reduce the data dimensionality, PCA is com-

monly applied on the original HSIs data. Fig. 2 shows an

illustration of introducing label noise in the HYDICE Ur-

ban data set. The first PC is shown in Figure 2a. All the

labelled samples in Class 1 are highlighted in Figure 2b.

Next, we randomly select 50% of the highlighted samples

as the training samples for Class 1 (Figure 2c). We also se-

lect at random a given portion ρ of the total training sam-

ples (from various classes) and flip each of them to one

of the remaining classes at random. Figure 2d illustrates

an instance of the resulting Class 1 labels for ρ = 0.5.

Different colours denote different original classes of the

training samples that were flipped to Class 1. Note that

the choice of ρ is here merely for clearer illustration pur-

poses; a situation with 50% of wrong labels is unlikely to

be relevant in practice.

(a) (b)

(c) (d)

Fig. 2: An illustration of introducing label noise. (a) the
first PC of HYDICE Urban; (b) labelled samples in Class
1 (marked in blue); (c) training samples (50% of the la-
belled samples) in Class 1 and (d) an instance of the sam-
ples labelled as Class 1 when ρ = 0.5. Different col-
ors denote samples from different classes that were erro-
neously flipped to Class 1.

Fig. 3 illustrates the effect of label noise on the average

spectral signatures in HYDICE Urban data set. Without

label noise the spectral signatures of different classes are

rather different from each other. In the presence of la-

bel noise, they wrongly appear to be more similar to each

other. Thus, label noise obviously trends to uniformise

all the spectral signatures, which will affect inevitably the

classification accuracy. In this case, label noise obviously

tends to uniformise all the spectral signatures as expected,

because now each of them is computed from a mixture of

different classes.

Fig. 3: Average spectral signatures for the HYDICE Ur-
ban data set with ρ = 0 (left) and with ρ = 0.5 (right).
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Fig. 4: The prior probabilities of classes (top left) and
conditional probabilities of the first PC for different levels
of label noise in HYDICE Urban.

Fig. 4 shows the effect of label noise on prior probabil-

ities of classes (top left) and on conditional probabilities

of the first PC. The PC values are uniformly discretized

into twenty intervals. While the actual prior probabilities

of different classes are significantly different from each

other, these differences become smaller when label noise

increases. The distributions conditioned on the class vari-

able keep a similar shape when increasing ρ from 0 to 0.5,

but the peak value decreases and the distribution shape

gets more flattened compared to the distributions without

label noise.

These results indicate that erroneous labels lead to

model uncertainties, which will in their turn affect the

classification performance. Baysian models, which are

based on conditional probabilities like those in Fig. 4,

are likely to be more robust to label noise than some other

classifiers that rely more directly on spectral signatures

(like those in Fig. 3). Conditional probability distribu-

tions do not change significantly until the label noise be-

comes very large.

In the following section, we will study the performance

of the representative classifiers and explore which level of

label noise can be tolerated depending on the acceptable

drop in the classification accuracy.

4 Experimental Results

4.1 Experiments setting

The effect of erroneous labels is studied by evaluating the

performance of the eight representative classification al-

gorithms described in Section 2. Four of these (NBC, k-

NN, SVM and SRC) are based on spectral features alone,

and the remaining four (SJSRC, SSUN, SSRN and CBSP)

make use of both spectral and spatial features. The SSUN,

SSRN and CBSP methods are based on deep learning

model. We detail their implementations by:

1. NBC with Gaussian distribution for the likelihood of

the features where P (xi|c) in Equation (1) is defined

as:

P (xi|c) =
1√
2πσ2

c

exp(− (xi − µc)
2

2σ2
c

) (10)

30 and 55 PCs are extracted for Indian Pines and HY-

DICE Urban respectively, which represent more than

95% of the cumulative variance. The principle com-

ponent analysis (PCA) is applied first to input HSI.

Due to the decorrelating properties of PCA, condi-

tional independence assumption that NBC relies on

is well justified.

2. The number of neighbors for k-NN is obtained by

five-fold cross validation over the training samples;

we adopt the Radial Basic Function (RBF) kernel

for SVM; the parameters in SRC and SJSRC are the

same as those in [10].

3. For the three deep learning methods, the training

epochs of SSUN are set as 200 with a learning rate of
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0.001 and batch size of 64; For SSRN method, 10%,

10% and 80% of the labelled data are randomly as-

signed to training, validation and testing groups, re-

spectively. The training epochs are 200 with batch

size of 16; For CBSP method, 10%, 5% and 85% of

the labelled data are randomly selected as training,

validation and testing data. The training epochs are

600 with batch size of 50.

In the following experiments, 10 percent of samples are

randomly selected for training and the rest are for testing.

The reported results are averaged values over 10 runs with

different training samples. We evaluate the classification

performance by overall accuracy (OA), which is the ratio

between correctly classified testing samples and the total

number of testing samples.

4.2 Experiments on Indian Pines

Fig. 5 (left) shows the overall accuracy of the eight algo-

rithms on Indian Pines with ρ ranging from 0 to 0.9, to

see the behaviour of selected classifiers and to explore at

which level of label noise their performance starts to drop.

When there is low-to-moderate amounts of label noise

(ρ ≥ 0), the four spectral-spatial methods show much

better performance than the four spectral-based methods.

When there is no label noise (ρ = 0) the deep learn-

ing method SSRN yields the best OA, while the naive

Bayesian classifier (NBC) is inferior to all other methods.

This can partly be attributed to the fact that this partic-

ular NBC makes use of only spectral features while the

other better performing methods (SJSRC, SSUN, SSRN

and CBSP) incorporate spatial next to spectral features.

With the increasing levels of label noise, spectral-based

algorithms k-NN, SVM and SRC show similar behaviour,

but SRC performs worse than the other two and shows

approximately linear decrease. The performance of NBC

is the most stable, which can be well understood by ana-

lyzing the shape of the involved conditional probabilities

(see Fig. 4 and the accompanying discussion in Section

3). The performance of NBC drops suddenly when ρ ex-

ceeds 0.6. At this point, following further the flattening

trend from Fig. 4, the conditional probability distributions

become too flattened and the classifier can no longer rea-

sonably operate. The overall accuracy of spectral-spatial

methods SJSRC, SSUN, SSRN and CBSP deteriorate sig-

nificantly with the increasing label noise and the three

deep learning methods (SSUN, SSRN and CBSP) are es-

pecially vulnerable in this respect. The sparse coding

method SJSRC achieves thus best performance over the

whole range where ρ > 0.1.

Fig. 5 (right) shows the maximum level of label noise

that a classifier can tolerate given a decreasing rate in the

OA compared to the case with no label noise (ρ = 0).

We analyze the tolerance of the eight classification mod-

els in the cases with OA decreasing in 5%, 10% and 15%

compared to the OA of ρ = 0. We assume that the OAs

between any two successive ρ (in steps of 0.1) decrease

linearly as in Fig. 5. NBC shows the highest tolerance

to label noise. E.g., if 5% decrease in OA can be tol-

erated, NBC allows 30% of erroneous labels. The three

deep learning approaches (SSUN, SSRN and CBSP) ex-

hibit very low tolerance to label noise, although they make

use of both spectral and spatial features. The sparse cod-

ing approach based on spectral features alone (SRC) also

shows low tolerance to label noise, but its version with

spatial information (SJSRC) is much more robust, both

compared to the basic SRC and to the deep learning meth-

ods.

4.3 Experiments on HYDICE Urban

Fig. 6 shows the performance of the eight algorithms

on HYDICE Urban. Spectral-based algorithms k-NN,

SVM and SRC show similar behaviour as in the other

data set. NBC performs now better and even outper-

forms other algorithms for very large ρ. Also, NBC is

again the most stable method. Its performance drops sud-

denly when ρ exceeds 0.6. The spectral-spatial methods
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Fig. 5: Influence of label noise on OA (left) and the clas-
sifiers’ tolerance of label noise at different drops in OA
(right). Data set: Indian Pines.

Fig. 6: Influence of label noise on OA (left) and the clas-
sifiers’ tolerance of label noise at different drops in OA
(right). Data set: HYDICE Urban.

(SJSRC, SSUN, SSRN and CBSP) also behave similarly

as on the other data set and their overall accuracy deterio-

rates significantly with the increasing label noise.

Percentages of wrong labels that can be tolerated for a

given decrease in OA, shown in the right of Fig. 6, show

similar trends as in the first data set. NBC shows again

the highest tolerance to label noise in the three cases. The

sparse coding approach based on spectral alone (SRC)

shows very low tolerance to label noise, but the version

with spatial information (SJSRC) is much more robust to

label noise, both compared to basic SRC and to the deep

learning methods SSUN, SSRN and CBSP.

5 Conclusion

We analysed the effect of erroneous data labeling on su-

pervised HSI classification from different aspects: the es-

timated spectral signatures of different classes, the esti-

mated statistical distributions of features and the perfor-

mance of different types of classification algorithms. The

analysis reveals that Bayesian classifiers, even under the

simplest naive Bayesian model (NBC) are more robust

to label noise than methods based on support vector ma-

chines (SVM), sparse coding and deep learning. Deep

learning approaches exhibited in all our experiments the

biggest vulnerability to label noise. This agrees with re-

cent studies that show susceptibility of deep learning to

various other perturbations, such as noise in the data and

adversarial attacks. We provided explanation for the ro-

bustness of the Bayesian approach by analyzing the effect

of label noise on the probability distributions of the prin-

cipal components conditioned on the class variable. These

statistical distributions change gently with increasing the

label noise (remaining peaked at the same positions and

getting gradually flattened). This is the reason why the

classification performance of NBC remains very stable

until the label noise becomes excessively large. The k-

NN method also demonstrated very robust performance,

which can be attributed to its majority voting strategy.

Our analysis shows also clearly the importance of us-

ing spatial context not only to improve the classification

accuracy in ideal settings but also to improve the robust-

ness to label noise. Sparse coding methods that make use

of both spectral and spatial information showed excellent

performance and can be considered as a good choice of

a classifier, which is not only highly accurate but also ro-

bust to non-ideal data labeling. It will be also of interest

to explore Bayesian classifiers that combine both spectral

and spatial features within a unified framework (e.g., as an

extension of the NBC that we considered) and to compare

those to the sparse coding approach.
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Emanuel Peres, Raul Morais, and Joaquim João Sousa.
Hyperspectral imaging: A review on UAV-based sen-
sors, data processing and applications for agriculture and
forestry. Remote Sens., 9(11):1110, 2017.

[3] Michael T Eismann, Alan D Stocker, and Nasser M
Nasrabadi. Automated hyperspectral cueing for civilian
search and rescue. Proc. IEEE, 97(6):1031–1055, 2009.

[4] Chen Wu, Liangpei Zhang, and Bo Du. Kernel slow fea-
ture analysis for scene change detection. IEEE Trans.
Geosci. Remote Sensing, 55(4):2367–2384, 2017.

[5] Mingjing Wang and Huiling Chen. Chaotic multi-swarm
whale optimizer boosted support vector machine for med-
ical diagnosis. Appl. Soft. Comput., 88:105946, 2020.

[6] Junjun Jiang, Jiayi Ma, Zheng Wang, Chen Chen, and Xi-
anming Liu. Hyperspectral image classification in the pres-
ence of noisy labels. IEEE Trans. Geosci. Remote Sensing,
57(2):851–865, 2018.

[7] Meizhu Li, Shaoguang Huang, and Aleksandra Piˇzurica.
Robust dynamic classifier selection for remote sensing im-
age classification. In Proc. ICSIP, pages 101–105. IEEE,
2019.

[8] Juan Mario Haut, Mercedes E Paoletti, Javier Plaza, Jun
Li, and Antonio Plaza. Active learning with convolutional
neural networks for hyperspectral image classification us-
ing a new bayesian approach. IEEE Trans. Geosci. Remote
Sensing, 56(11):6440–6461, 2018.

[9] Mahdi Hasanlou and Farhad Samadzadegan. Comparative
study of intrinsic dimensionality estimation and dimension
reduction techniques on hyperspectral images using k-nn
classifier. IEEE Geosci. Remote Sens. Lett., 9(6):1046–
1050, 2012.

[10] Shaoguang Huang, Hongyan Zhang, and Aleksandra
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