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Abstract—Clustering algorithms play an essential and unique
role in classification tasks, especially when annotated data are
unavailable or very scarce. Current clustering approaches in
remote sensing are mostly designed for a single data source, such
as hyperspectral image (HSI), while nowadays multi-sensor data
are being routinely acquired. In this paper, we propose a multi-
view subspace clustering model, which exploits effectively the
rich information from multiple features extracted either from
a single data source (HSI) or from multiple sources, that we
call generically multi-views of the same scene. An important
novelty of our approach is that it integrates local and nonlocal
spatial information from each view in a unified framework. Our
model learns a common intrinsic cluster structure from view-
specific subspace representations by a new decomposition-based
scheme. In addition, we develop innovative manifold-based spatial
regularization as a hybrid hypergraph, which merges local and
non-local spatial context and improves thereby the learning of
view-specific structures. We develop an efficient algorithm to
solve the resulting optimization problem. Extensive experiments
on real datasets demonstrate the superior clustering performance
over the state-of-the-art.

Index Terms—Hyperspectral images, remote sensing, subspace
clustering, multi-view clustering.

I. INTRODUCTION

HYPERSPECTRAL imaging systems measure the light
reflected from objects in hundreds of spectral bands,

covering the spectral range from visible to near-infrared. This
wealth of spectral information enables far better discrimina-
tion between diverse materials compared to traditional color
and multispectral images. Consequently, hyperspectral images
(HSIs) find numerous applications in remote sensing, in the
domains such as precision agriculture [1, 2], defense and
security [3], geology and mineralogy [4] and environmental
monitoring [5, 6]. In all these applications, image classifica-
tion, as a fundamental step in data preprocessing, provides a
basis for the automatic HSI analysis and scene interpretation.

Over the last two decades, a number of supervised classi-
fication methods for HSIs have been proposed [7–9]. Some
of the most prominent approaches are based on random
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forests [10], support vector machine [11], sparse representation
classification [12] and the recently arisen deep neural networks
[13]. All these rely on labeled training samples to optimize the
delicately designed classifiers. Since data labeling is typically
labor intensive and time-consuming, labeled data required
for training the classifiers are often scarce, posing serious
limitations for the supervised classification methods [14]. In
contrast, clustering, as an unsupervised approach, aims to
discriminate data points belonging to different clusters without
using any labeled data. Thus, clustering enables automatic
data processing and interpretation in cases where supervised
classification is infeasible. This is especially of interest in
dynamic scenarios like monitoring forest fires and disaster
damages where clustering plays a unique role [15].

Common clustering approaches include hierachical clus-
tering [16, 17], centroid-based [18–22], density-based [23],
biological clustering [24] and spectral-based methods [25–
29]. Spectral-based clustering methods, which are of special
interest here, consist of two steps: construction of a similarity
matrix and spectral clustering. A large body of the litera-
ture has focused on building a desirable similarity matrix.
Representative methods are low-rank representation (LRR)
model [27] and sparse subspace clustering (SSC) model [28].
While these approaches achieved great success in computer
vision, their direct appliction in HSI clustering often yields
unsatisfactory results, due to various reasons, including noise,
within-class spectral variability and complex data structure
[30, 31].

Various extensions of subspace clustering have been de-
veloped to alleviate these problems. Incorporating spatial
information in the SSC model by using smoothing strategies
in a local square window as proposed in [30] proved to be
effective. Several follow-up works [32–35] exploit the spatial
information using other types of spatial regularization, such as
`2 norm-based smoothing term [32], joint representation [33]
and total variation [34, 35]. An alternative to integrating spatial
regularizations into the learning model is post-processing of
the representation coefficients as in [36, 37]. Other repre-
sentative approaches [38–40] build an anchor-based graph
with a few initially selected samples with the aim to reduce
the overall computational complexity of SSC. Generalizations
to semi-supervised clustering models include [41, 42] and
parameter-free multi-objective SSC was proposed in [43].

While achieving improved clustering performance, the
above mentioned SSC-based clustering methods still face two
crucial limitations. Firstly, they incorporate only local spatial
content from windows of fixed size at a single particular scale.
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However, it is hard to determine the optimal window size due
to the varying spatial resolutions and different scenes in HSIs.
Also, the experience from other image processing problems,
such as denoising [44] teaches us that the use of nonlocal
image similarities can result in huge improvements compared
to using the local correlations only. Secondly, all of the
methods mentioned above are designed for the clustering task
of single-source data. Nowadays, multi-source data in remote
sensing such as hyperspectral images and Light Detection and
Ranging (LiDAR) are routinely acquired and making use of
their complementary information can help in discriminating
better between data points from different classes. Moreover,
many spatial-spectral features that are extracted from HSIs,
such as morphological profiles, Gabor features and local binary
patterns, proved to be more effective than the original spectral
data in the analysing of HSIs [45–47]. Here, we refer to the
different data sources such as HSI and LiDAR and features
extracted either from single-source or multi-source data as
different views of the same scene. Recently, the authors in
[48] reported the first attempt in multi-view HSI clustering.
However, this method is sensitive to noise and outliers, and
its high overall computational complexity poses limitations
to the number of data sources. While multi-view clustering
methods [49–52] demonstrated success in applications with
facial images, online documents and hand written text, none
of them was applied in the clustering of HSIs. Our experiments
show that directly applying such methods in the clustering of
HSIs often yields unsatisfactory performance, which can be
mainly attributed to spectral noise and spectral variability.

We propose a novel multi-view subspace clustering method
for HSI, which effectively utilizes the rich information from
different views and integrates local and nonlocal spatial in-
formation. An important novelty is a decomposition-based
learning framework for multi-view data in the low-dimensional
subspaces. Specifically, the subspace representations obtained
from different views are decomposed as a combination of a
global low-rank consensus matrix and view-specific sparse
matrices. This decomposition strategy is based on the fol-
lowing two important observations: 1) the view-specific rep-
resentations derived from a self-representation model often
violate from the ideal block-diagonal structure due to the
effect of noise and large within-cluster spectral variability;
2) the ideal block-diagonal matrix presents an intrinsic low-
rank property [27], which should be shared among the view-
specific representations. Thus, we use the global low-rank
matrix to model the common underlying low-rank structure
shared by all the views, and the sparse matrices to account
for the view-specific deviations from this common structure.
We define a specific regularizer as a manifold constraint based
on a hybrid hypergraph that incorporates the spatial content in
each view. In particular, we build the hybrid hypergraph from a
series of multi-scale local hypergraphs and a spatially nonlocal
hypergraph, which encode the local and nonlocal spatial infor-
mation, respectively. The local hypergraphs are constructed by
applying a sequence of super-pixel segmentations at different
scales, which are automatically determined by the gradient
information of the input image. The nonlocal hypergraph is
constructed based on the patch-wise similarity. We develop an

efficient optimization algorithm to solve the resulting model.
Experimental results on real data sets confirm the efficacy of
our method in comparison with the current state-of-the-art in
the field.

The rest of this paper is organized as follows. Section II
briefly reviews single-view subspace clustering methods for
hyperspectral image, basic concepts behind hypergraphs and
super-pixel segmentation. Section III introduces the proposed
multi-view subspace clustering method and develops an effi-
cient algorithm to solve the resulting optimization problem.
Experiments and analysis on the benchmark datasets are
conducted in Section IV. Section V concludes the paper.

II. PRIOR WORK AND PRELIMINARIES

The following notation will be used throughout the paper.
‖A‖1 =

∑
i

∑
j |Aij | is the `1 norm of matrix A, where

Aij denotes the element in i-th row and j-th column of A.
‖A‖F =

√∑
i

∑
j A

2
ij is the Frobenius norm and ‖A‖1,2 =∑

i

√∑
j A

2
ij is the `1,2 norm of A. |A| is a matrix with each

entry being the absolute value of the corresponding entry in
A. The nuclear norm of A, ‖A‖∗, is the sum of singular
values of matrix A. We denote by diag(A) a vector with its
i-th element being Aii and Diag(aaa) a diagonal matrix with
its diagonal elements being ai. 1 is an all-one vector and
〈A,B〉 = Tr(ATB) =

∑
i

∑
j AijBij is the inner product

between A and B, where Tr(Z) is the trace of a real square
matrix Z, i.e., Tr(Z) =

∑
i Zii.

A. Single-view Subspace Clustering Model for HSIs

Let X ∈ RB×N be the input HSI, where B denotes the
number of bands and N the number of pixels. Each column
of X represents a spectral signature in a given pixel. The self-
representation sparse coding problem is defined as follows:

arg min
A

Ψ(X−XA) + λΦ(A), s.t. diag(A) = 0, (1)

where A ∈ RN×N is the coefficient matrix of X;
Ψ(X−XA) is a given loss function accounting for the data
fidelity, e.g., ‖ · ‖2F or ‖ · ‖1; Φ(A) is a regularization term,
encoding a priori knowledge about A; λ is a parameter that
balances the trade-off between the data-fit and regularization
terms. The representative LRR [27] and SSC [28] models
utilize ‖A‖∗ and ‖A‖1 to promote the low-rank property and
sparseness of the representation matrix, respectively. Recent
works improve clustering performance by using spatial regu-
larization, such as the centralized smoothing regularization in
[30], `2 norm based regularization in [32] and the `1,2 norm
based joint representation [33].

The resulting coefficients matrix A is combined with its
transpose to yield a symmetric similarity matrix: W = (|A|+
|AT |)/2, which is then applied within the standard spectral
clustering. Specifically, the c eigenvectors {vk}ck=1 of the
Laplacian matrix L = Diag(W1)−W corresponding to its c
smallest eigenvalues are first calculated and then the clustering
results are obtained by applying the k-means algorithm to the
matrix V = [v1, ...,vc], where c is the number of clusters.
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Fig. 1. An example of hypergraph (a) and its corresponding incidence matrix
H (b). The hypergraph includes eight vertices {vi}8i=1 marked by blue dots
and three hyperedges {ej}3j=1 annotated by three colored regions.

B. Hypergraph Preliminaries

A hypergraph is a generalization of an ordinary graph,
where an edge, called hyperedge, can connect more than two
vertices. This offers more flexibility in modelling complex
topological structures of high-dimensional data [53]. The con-
nected vertices correspond to entities with similar characteris-
tics. By enabling simultaneous connections among the groups
of vertices, the hypergraph encodes effectively high-order
geometric data structure. We denote by Gh = (V, Eh,Wh)
a hypergraph where V = {vi}Ni=1 is the set of vertices
corresponding to all the data points; Eh = {ei}Mi=1 is a
collection of subsets of V and each ei is called a hyperedge
of Gh; Wh is a diagonal matrix for the hyperedge weights.
An incidence matrix H ∈ RN×M represents the connections
of vertices within each hyperedge, defined as

Hij = h(vi, ej) =

{
1, if vi ∈ ej
0, otherwise. (2)

The vertex degree of each vertex vi ∈ V and the edge degree
of each hyperedge ei are given by

d(vi) =
∑
ej∈Eh

Whjjh(vi, ej) (3)

d(ej) =
∑
vi∈V

h(vi, ej). (4)

Fig. 1 (a) shows an example of a hypergraph with eight
vertices and three hyperedges. For instance, the hyperedge e1
connects a group of three vertices {v1, v2, v3} and e2 connects
four vertices v2, v4, v5 and v6. The corresponding incidence
matrix in Fig. 1 (b) represents compactly the connectivity
structure.

C. Entropy Rate Segmentation

Entropy rate segmentation (ERS) method [54] is a graph-
based clustering algorithm, which segments effectively an im-
age into non-overlapping super-pixels, each of which consists
of highly similar pixels. Given an ordinary graph G = (V,E),
where V is the vertex set corresponding to the pixels of the im-
age and E is the edge set representing the pairwise similarities
between neighbouring pixels, ERS aims to segment the graph
into connected sub-graphs (each corresponding to a super-

pixel) by selecting a subset of edges A ⊆ E. Mathematically,
ERS solves the following problem:

arg min
A

H(A) + λB(A) s.t. A ⊆ E and NA ≥ n (5)

where n is a predefined number of super-pixels; NA is the
number of connected components in the graph; H(A) is the
entropy rate of the random walk on G = (V,A); B(A) is a
balancing term to encourage clusters with similar size and λ
is a parameter to control the balance between the two terms.
We refer to [54] for details. Note that λ can be estimated
adaptively by the value of n, therefore the parameter that
needs to be specified by user in ERS is n. Incorporating the
two terms in the objective function, ERS is able to generate
compact, homogeneous and balanced super-pixels.

III. HYBRID-HYPERGRAPH REGULARIZED MULTI-VIEW
SUBSPACE CLUSTERING FOR HSIS

Here we introduce our hybrid-hypergraph regularized multi-
view subspace clustering (HMSC) model for hyperspectral
images. We first describe our multi-view clustering model, and
then present a new hybrid-hypergraph-based regularization.
Finally, an efficient algorithm is proposed to solve the resulting
optimization problem.

A. Multi-view Subspace Clustering

Multimodal data are commonly available now, offering
much richer information, better discrimination among different
classes of interest and better robustness to various degrada-
tions and missing data. For example, while HSIs enable to
discriminate between different materials, LiDAR data provides
a complementary information about the altitude of the imaged
objects. Apart from the data acquired by different sensors,
many spatial features that are dedicatedly extracted from HSIs,
such as Gabor features [11, 55], morphological features [56]
and local binary patterns [46], are proved to be effective in
improving the classification performance of HSI. Combining
such complementary sources of information enables better
clustering performance than based on a single-view data alone.
Here we propose an effective multi-view subspace clustering
approach with the aim to enhance the clustering performance
by incorporating data from multiple sources.

Let {Xt ∈ RBt×N}Tt=1 denote the multi-view data, where
Bt is the dimensionality of the t-th data source and T is
the number of data sources. According to (1), the data points
in each view can be represented by a linear combination of
others, i.e., Xt ≈ XtAt, where At is the coefficient matrix
of Xt. Ideally, the representation matrices At show a block-
diagonal structure [28], where the coefficients corresponding
to the data points from distinct clusters are zero. However, this
can be rarely true due to the effect of noise and large spectral
variability within class [42]. Observe that a block-diagonal
matrix presents an intrinsic low-rank property [27]. To capture
the underlying common data structure, we propose a low-rank
decomposition based scheme, which decomposes the view-
specific matrix At as a global low-rank matrix Z ∈ RN×N and
a sparse matrix Et ∈ RN×N . Z is shared by all the subspace



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 4

Fig. 2. An example by using HSI for the construction of hybrid-hypergraph, including multi-scale local hypergraphs (top) and spatial-wise nonlocal hypergraph
(bottom).

representation matrices At to model the consensus between
different data sources, while Et models the corresponding
errors. The proposed multi-view subspace clustering model is
formulated as follows:

min

T∑
t=1

(‖Xt −XtAt‖2F + λ1Θ(At)

+ λ2‖Et‖1) + λ3‖Z‖∗
s.t. At =Z + Et (∀t = 1, 2, ..., T ) (6)

where λ1, λ2 and λ3 are positive numbers, and Θ(At) is
adopted regularization to model the important local and non-
local spatial information in t-th data source. We elaborate on
Θ(At) in the following part. The global consensus low-rank
matrix Z in (6) links all the representation matrices At and
reveals the underlying common data structure of all the data
sources in the low-dimensional subspaces. The computational
complexity of solving a low-rank regularized problem is
O(N3) [57]. Compared with the multi-view HSI clustering
method [48] which integrates a low-rank regularization for
each At, our model contains only one low-rank related con-
straint, achieving thereby a lower computational complexity.
Moreover, our adopted spatial regularization Θ(At) integrates
both local and nonlocal topological information of each data
source in the clustering model, facilitating the learning model
to uncover a more precise cluster structure than [48].

Once obtaining the global consensus matrix Z, we construct
a similarity matrix by W = (|Z|+ |ZT |)/2, which is further
applied in the standard spectral clustering [58] to obtain the
clustering result.

B. Hybrid-hypergraph Regularization
The current subspace clustering approaches for hyperspec-

tral images typically consider only the local spatial information

in the learning model, extracted from fixed-size windows
at a particular scale. The main idea behind our approach
is to exploit 1) multiscale spatial information (instead of
setting fixed window sizes) and 2) non-local similarities of
image features (instead of relying on local spatial correlations
alone). We shall develop a unified framework that merges
these components elegantly within a hybrid hypergraph. Fig.
2 illustrates an example by using HSI for the construction
of this hybrid hypergraph. In the following, we suppress for
compactness the index t that refers to a particular data source.

1) Multi-scale local hypergraph: Although spatial context
modelling has been a very active area in image processing
in general, the current clustering models for hyperspectral
images typically ignore the spatial context or incorporate
relatively simple features like pairwise correlations extracted
from fixed-size windows [30, 32–34, 37, 59]. Here we build
instead a multiscale spatial context model, by applying a
sequence of super-pixel segmentations at different granularity
levels. Each of these segmentation levels is encoded in a local
hypergraph at the corresponding scale. The multiscale spatial
content is expressed through a sequence of local hypergraphs
as illustrated in the top of Fig. 2.

Each super-pixel can be viewed as a group of locally con-
fined pixels that share similar characteristics [54]. We view the
pixels within one super-pixel as a hyperedge of the hypergraph
at the corresponding scale. Directly applying a super-pixel
segmentation method as [54] in HSI is infeasible as hyper-
spectral images contain hundreds of spectral bands. As most of
these bands are highly correlated, the first principal component
(PC) depicts reasonably well the dominant spatial structures
in the whole hyperspectral data cube and is employed as the
input image for super-pixel segmentation. Determining the
number of super-pixels n (which translates directly to the cor-
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responding granularity of the segmentation) involves always
a trade-off. A small n leads to large super-pixels, that may
include pixels from multiple classes. Conversely, a too large n
results in tiny super-pixels with a cumbersome representation
and loss of important local correlations. A proper n needs
to be determined for each image at hand, depending on its
resolution. We avoid these problems by introducing a sequence
of segmentation maps instead of choosing a particular n.

Let {Fi}pi=1 denote the sequence of segmentation maps at
p scales, where Fi = [li1, li2, ..., liN ] and lij ∈ {1, 2, ..., ni} is
the label of the pixel j in the i-th segmentation map obtained
by using ERS [54] in the first PC of HSI. ni = 2i−1n is the
number of super-pixels at scale i. We determine n based on the
gradient information. The rationale is that thresholded gradient
magnitudes indicate important image discontinuities, and the
amount of these discontinuities is related to the number of
super-pixels. Denote by f ∈ R1×N the first PC of X, and its
gradient ∇f by

∇f = |Hxf
T |+ |Hyf

T |, (7)

where Hx and Hy are the forward finite-difference operators
in the horizontal and vertical directions, respectively, with
periodic boundary conditions. It is reasonable to segment
image into more super-pixels when more spatial edges are
present. Motivated by this, we define

n = b 1

2
√
N

N∑
i=1

(∇fi − δ)+c (8)

where b·c denotes the rounding floor operation and

(x)+ =

{
1, if x > 0
0, otherwise (9)

δ is a threshold defined as δ = 1
N

∑
i∇fi. The threshold

excludes the less relevant edges from ∇f and only takes the
significant ones into consideration.

With equation (8), the segmentation now is adaptive to
the image size, spatial content and image resolution. By
setting the number of super-pixels as {ni}pi=1, we obtain a set
of super-pixels segmentation maps {Fi}pi=1. We view each
pixel as a vertex and each super-pixel as a hyperedge and
correspondingly, we define the incidence matrix Hi for the
multi-scale local hypergraph Gil as

Hi
jk = hi(vj , e

i
k) =

{
1, if vj ∈ eik
0, otherwise, (10)

where eik = {vl}l∈{j|lij=k} is the k-th hyperedge in the i-th
hypergraph. The diagonal elements of the matrix Wi

h for the
hyperedge weights are given by

W i
hjj =

∑
xk,xl∈eij

exp(−‖xk − xl‖2

σ2
1

), (11)

where σ1 = 1
N2

∑
k,l ‖xk−xl‖2 is the mean pairwise distance

in the given dataset. For the sake of further analysis, it will be
convenient to express the vertex degrees and the edge degrees
as diagonal matrices. We denote by Di

v ∈ RN×N the diagonal

matrix that contains the degrees of vertices at scale i and define
the entries Di

vjj as

Di
vjj = di(vj) =

∑
ek∈Eih

W i
hkk

hi(vj , e
i
k), (12)

where Eih is the collection of hyperedges in Gil . Let a diagonal
matrix Di

e ∈ Rni×ni represent the edge degrees at scale i with
diagonal elements Di

ejj defined as

Di
ejj = di(eij) =

∑
vi∈V

hi(vi, e
i
j). (13)

The above defined vertex degree Di
v and edge degree Di

e

matrices will be employed to formulate compactly the reg-
ularization function.

2) Nonlocal hypergraph: Images of natural scenes, includ-
ing hyperspectral images in remote sensing, exhibit nonlocal
self-similarities: similar patches occur at different locations in
the image [60]. To capture this nonlocal spatial information,
we design an additional hypergraph Gn that we shall refer to
as nonlocal hypergraph. The whole procedure is depicted in
the bottom of Fig. 2. Firstly, we extract centralized patches for
all the pixels by using a square window w×w. Let Xi denote
the data cube centered at spatial location i, extending over the
spatial window w × w and covering all the spectral bands.
We construct a hyperedge for each pixel and its K closest
neighbours in terms of the patch-wise similarity, measured as
follows

s(xi,xj) = exp(−‖Xi −Xj‖
2
F

σ2
2

), (14)

where σ2 = 1
N2

∑
i,j ‖Xi − Xj‖F is the mean distance of all

the patches in HSI. Let N (xi) represent the set of indices of
the nearest neighbours of xi in terms of the similarity measure
defined above. We define the incidence matrix Hn for the
nonlocal hypergraph Gn as

Hn
ij = hn(vi, e

n
j ) =

{
1, if vi ∈ enj
0, otherwise,

(15)

where enj = {vi}i∈N (xj)} is the j-th hyperedge. Let Wn
h

be a diagonal matrix containing the hyperedge weights. The
diagonal elements are given by

Wn
hjj =

∑
xk,xl∈enj

s(xk,xl). (16)

The vertex degree and the edge degree in the nonlocal hy-
pergraph Gn are denoted by diagonal matrices Dn

v and Dn
e ,

respectively. We calculate the entries Dn
vjj and Dn

ejj as

Dn
vjj = dn(vj) =

∑
ek∈Enh

Wn
hkk

hn(vj , e
n
k ), (17)

Dn
ejj = dn(enj ) =

∑
vi∈V

hn(vi, e
n
j ). (18)

3) Hybrid-hypergraph regularization: The aforementioned
two types of hypergraphs capture the important spatial in-
formation of hyperspectral data from local and nonlocal per-
spectives. We derive the hybrid hypergraph Gh directly from
the combination of the multi-scale local hypergraphs Gil and



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 6

the spatial-wise nonlocal hypergraph Gn, and formulate the
proposed hybrid-hypergraph-based regularization as:

Θ(A) =
1

2

p∑
i=1

∑
eij∈Eih

∑
vk,vl∈V

W i
hjj
hi(vk, e

i
j)h

i(vl, e
i
j)

di(eij)
‖αk −αl‖2

+
1

2

∑
enj ∈Enh

∑
vk,vl∈V

Wn
hjj
hn(vk, e

n
j )hn(vl, e

n
j )

dn(enj )
‖αk −αl‖2,

(19)

where αk is the k-th column of the representation matrix
A. The regularization term Θ(A) integrates the complex
topological structure of data in the subspace representation
and promotes similar representations for the pixels within the
same hyperedge. We reformulate the regularization in (19) to
the following concise form by

Θ(A) =

p∑
i=1

tr(ALiA
T ) + tr(ALnAT )

= tr(ALhA
T ) (20)

where Li = Di
v − HiWi

h(Di
e)
−1HiT and Ln = Dn

v −
HnWn

h(Dn
e )−1HnT are the Laplacian matrices of the multi-

scale local hypergraphs Gil and the nonlocal hypergraph Gn,
respectively, and

Lh =

p∑
i=1

Li + Ln (21)

is the Laplacian matrix corresponding to the hybrid hypergraph
Gh.

C. Optimization Algorithm

According to the definition of Θ(At) in (20), we derive the
following optimization problem from (6):

arg min
At,Z,Et

T∑
t=1

(‖Xt −XtAt‖2F + λ1tr(AtLthA
tT )

+ λ2‖Et‖1) + λ3‖Z‖∗
s.t. At =Z + Et (∀t = 1, 2, ..., T ) (22)

where Lth is the Laplacian matrix in the t-th data source.
Directly solving the optimization problem in (22) is difficult
and there is no known close-form solution. In this section, we
propose an efficient algorithm to solve the optimization prob-
lem (22). First, we introduce auxiliaries St (∀t = 1, 2, ..., T )
and let At = St. The problem (22) can be solved equivalently
as follows:

arg min
At,St,Z,Et

T∑
t=1

(‖Xt −XtAt‖2F + λ1tr(StLthS
tT )

+ λ2‖Et‖1) + λ3‖Z‖∗
s.t. At = Z+Et, At = St (∀t = 1, 2, ..., T ) (23)

We resort to augmented Lagrangian multiplier method and

Algorithm 1 The proposed HMSC model
1: Input: {Xt}Tt=1, λ1, λ2, λ3, K, p, w, ε
2: Laplacian matrices Lth generation:
3: for t← 1 to T do
4: Generate G(t,i)l in Xt (i=1,2,...,p) by (10)
5: Generate Gtn in Xt by (15)
6: Compute Lth by (21)
7: end for
8: Initialize St, Z,Et,Yt

1,Y
t
2 as zero matrices and µ = 1

9: while not converged do
10: Update At by (26)
11: Update St by (28)
12: Update Z by (32)
13: Update Et by (35)
14: Update others by (36)
15: Check the convergence condition ‖At−Z−Et‖∞ < ε

and ‖At − St‖∞ < ε
16: end while
17: Output: Matrix Z

solve the following objective function instead:

arg min
At,St,Z,Et

T∑
t=1

(‖Xt −XtAt‖2F + λ1tr(StLthS
tT )

+λ2‖Et‖1 + 〈Yt
1,A

t − Z−Et〉+ 〈Yt
2,A

t − St〉

+
µ

2
‖At − Z−Et‖2F +

µ

2
‖At − St‖2F ) + λ3‖Z‖∗

(24)

where Yt
1 and Yt

2 are the Lagrange multipliers introduced for
the constraints in (23), respectively and µ is a penalty param-
eter. Then, we update each of the variables {At,St,Z,Et}
iteratively by solving one while fixing others based on the al-
ternating direction method of multipliers (ADMM) algorithm.

The subproblem with respect to At (t = 1, 2, ..., T ) is
formulated by

arg min
At

‖Xt −XtAt‖2F + 〈Yt
1,A

t − Z−Et〉

+〈Yt
2,A

t − St〉+
µ

2
‖At − Z−Et‖2F +

µ

2
‖At − St‖2F .

(25)

We derive the solution by setting the first-order derivative to
zero and update At as follows:

At =(2XtTXt + 2µI)−1(2XtTXt + µ(Z + Et + St)

−Yt
1 −Yt

2). (26)

The objective function with respect to St (t = 1, 2, ..., T ) is
given by

arg min
St

λ1tr(StLthS
tT ) +

µ

2
‖At − St +

Yt
2

µ
‖2F (27)

The problem in (27) is convex and we update St by the
following close-form solution:

St = (µAt + Yt
2)(2λ1L

t
h + µI)−1 (28)
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Next, we solve the subproblem with respect to Z as shown by

arg min
Z

T∑
t=1

µ

2
(‖At − Z−Et +

Yt
1

µ
‖2F ) + λ3‖Z‖∗. (29)

To solve this problem, we first introduce the soft-thresholding
operator Dδ(X). Let UΣVT be the singular value decom-
position of a matrix X, i.e., X = UΣVT where U and V
are the left and right singular vectors, respectively, and Σ is a
diagonal matrix containing the singular values σi. The operator
Dδ(X) is defined as follows:

Dδ(X) := UDδ(Σ)VT , (30)

where Dδ(Σ) = diag(max((σi−δ), 0)). By reformulating the
problem (29) into the following form

arg min
Z

µT

2
‖ 1

T

T∑
i=1

(At −Et +
Yt

1

µ
)− Z‖2F + λ3‖Z‖∗.

(31)

We obtain the following solution of (29):

Z = D λ3
µT

(
1

T

T∑
i=1

(At −Et +
Yt

1

µ
). (32)

Then, we derive the subproblem with respect to Et (t =
1, 2, ..., T ) as follows:

arg min
Et

λ2‖Et‖1 +
µ

2
‖At − Z−Et +

Yt
1

µ
‖2F . (33)

By introducing the following soft-thresholding operator:

R4(x) =

{
sgn(x)(|x| − 4) |x| ≥ 4
0 otherwise,

(34)

we can update Et by

Et = Rλ2
µ

(At − Z +
Yt

1

µ
). (35)

Finally, we update other variables by

Yt
1 = Yt

1 + µ(At − Z−Et)

Yt
2 = Yt

2 + µ(At − St)

µ = ρµ, (36)

where ρ is a parameter. Here, we set ρ = 1.1 in our algorithm.
The complete solver for the problem (22) is summarized in
Algorithm 1.

Next, we analyse the computational complexity of updating
each variable in Algorithm 1. The time complexity is O(TN3)
for updating At, O(TN3) for updating St and O(N3) for
updating Z. The computational complexity to update Et, Yt

1

and Yt
2 is neglectable. Thus, the overall time complexity of

Algorithm 1 is O(I(2T + 1)N3), where I is the number of
iterations.
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Fig. 3. Four real HSI data sets in the experiments, including the false color
image, ground truth and classes in the Indian Piens (top row), Pavia University
(second row), Salinas A (third row) and University of Houston (bottom row)

IV. EXPERIMENTS

We perform experiments on four real data sets to eval-
uate the effectiveness of the proposed HMSC model. The
benchmark methods consist of single-view clustering methods
and multi-view clustering methods. The single-view clustering
approaches include two classical clustering methods FCM [19]
and k-means [18], the clustering by fast search and find of
density peaks (CFSFDP) [23], the original SSC model [28],
the spatial-spectral `2-norm based SSC (L2-SSC) [32] and
joint SSC (JSSC) [42]. We are not aware of any reported
multi-view clustering methods in remote sensing except the
recent work [48], where a spatial-spectral based multi-view
low-rank sparse subspace clustering (SSMLC) was proposed.
Apart from SSMLC, we also compare our approach to another
general multi-view subspace clustering (MSC) method [49],
which has achieved the state-of-the-art performance in multi-
view clustering tasks.

A. Data sets

1) Indian Pines: This hyperspectral image was captured by
the Airborne/Visible Infrared Imaging Spectrometer (AVIRIS)
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sensor over the Indian Pines region in North-western In-
diana on June 12, 1992, with 20-m spatial resolution per
pixel. The original image size is 145 × 145 × 220. In the
experiment, we remove 20 spectral bands in 104-108, 150-
163 and 200 due to water absorption. For computational
efficiency, a typical subimage with the spatial size 85 × 70
is tested as in [30, 33, 61], which includes four classes.
The false-color composite image and ground truth are shown
in Fig. 3 (a) and (b), respectively. To generate a second
data source, we utilize an effective spatial feature extended
multiattribute profiles (EMAPs) [62], which has demonstrated
superior performance in the supervised HSI classification [63].
We follow [62, 63] and consider four different attributes,
i.e., area, length of the diagonal, moment of inertia and
standard deviation, on the first few principle components of
HSI, which are obtained by principle component analysis
(PCA). Denote by λa, λd, λi, λs the parameters which cor-
respond to the four adopted attributes, respectively, we set
λa = [100, 500, 1000, 5000], λd = [10, 25, 50, 100], λi =
[0.2, 0.3, 0.4, 0.5] and λs = [10, 25, 50, 100] as suggested
in [62] to extract the multiattribute profiles. We utilize six
principle components and concatenate their spatial features,
i.e., the multiattribute profiles, as the EMAPs. We refer to
[62] for more details.

2) Pavia University: The second HSI was acquired by
the Reflected Optics System Imaging Spectrometer (ROSIS)
during a flight campaign over Pavia, Northern Italy. The image
has a spatial size of 610 × 340 with 103 spectral bands. A
typical area with a size of 200×100 is extracted as the test data
which includes eight classes in total. The false color image
and ground truth can be found in Fig. 3 (c) and (d). We also
employ the EMAPs spatial feature as an additional data source.
Specifically, we utilize the same parameter settings as in Indian
Pines except that the number of principle components is set
to four.

3) Salinas A: This hyperspectral image was collected by
the AVIRIS sensor over Salinas Valley, CA, US. The image
size is 86 × 83 × 204. The false color image and ground
truth are shown in Fig. 3 (e) and (f), which include seven
classes of vegetables. We generate the second data source
similarly to Indian Pines and Pavia University by extracting
the EMAPs spatial feature of HSI. Two attributes, including
area and length of the diagonal, are considered. We generate
the EMAPs on the first three principle components of HSI
with λa = [100, 500, 1000, 5000] and λd = [10, 25, 50, 100].

4) University of Houston (Houston): The last data set
contains a HSI and pseudowaveform LiDAR, which is often
utilized as a benchmark data set in the task of supervised
multimodal classification [64]. The hyperspectral data was
acquired by the ITRES-CASI 1500 sensor over the University
of Houston campus and the neighbouring urban area. The
LiDAR data was collected by an Optech Gemini 280 sensor
and then coregistered to the HSI. We select a representative
region with the image size of 130×130×144 as the test data.
The false color of HSI and the ground truth of seven classes
are shown in Fig. 3 (g) and (h). To increase the discriminative
ability of LiDAR, we follow [63] and employ the EMAPs
spatial feature of LiDAR as the second data source. The

adopted attributes and parameters are the same as in Indian
Pines.

B. Experiment setting

We conduct all the experiments in MATLAB on a computer
with an Intel c© core-i7 3930K CPU with 64GB of RAM. The
quantitative metrics to measure the clustering performance are
overall accuracy (OA), Kappa coefficient (κ) and Normalized
Mutual Information (NMI). For a dataset with N samples, the
OA is obtained by:

OA =
1

N

N∑
i=1

δ(map(ri), li), (37)

where ri is the label of the i-th data point obtained by
clustering and li is the corresponding true label, δ(x, y) = 1
if x = y and is zero otherwise; map(·) is a mapping function
that finds the best match between the clustering results and
ground truth. We use the Hungarian algorithm to derive the
best mapping function. Let ni,j be the number of samples in
class i that are labeled as class j. The Kappa coefficient κ is
then defined as:

κ =
1
N

∑
i ni,i −

1
N2

∑
i ni,+n+,i

1− 1
N2

∑
i ni,+n+,i

, (38)

where ni,+ =
∑
j ni,j is the number of samples in class i and

n+,i =
∑
j nj,i is the number of samples that are identified

as class i. The NMI score is calculated as:

NMI =
I(l; r)

max(H(l),H(r))
, (39)

where I(l; r) denotes the mutual information between l and r,
and H(l) and H(r) are their entropies.

For the three evaluation metrics, a larger value indicates
a better performance. Note that the label information is only
utilized in the evaluation of clustering results. We tune the
parameters of all the methods carefully and report their optimal
results in terms of OA. For our HMSC method, we fix p = 4
and w = 5 in all the data sets.

C. Performance Comparison

Comparative quantitative evaluation of the clustering meth-
ods on the four datasets is reported in Tables I–IV and the cor-
responding clustering maps are shown in Figs. 4–7. We denote
by V1 the case where only the original hyperspectral data is
utilized, V2 the case where only the second data source is used,
and V1+V2 the case where both data sources are applied.
In all the tables, the best result is annotated in bold and the
second best result is underlined. We report the clustering maps
of single-view clustering methods FCM, k-means, CFSFDP,
SSC, L2-SSC and JSSC with the data source that produces
the best performance. We set the parameters of our method
as λ1 = 5e−3, λ2 = 5e−3, λ3 = 1e−2,K = 15 for Indian
Pines, λ1 = 1e−4, λ2 = 5e−2, λ3 = 1e−5,K = 20 for Pavia
University, λ1 = 1e−1, λ2 = 5e−2, λ3 = 1e−3,K = 25 for
Salinas A and λ1 = 1e−3, λ2 = 5e−3, λ3 = 5e−1,K = 25 for
Houston. The parameters analysis is given in subsection IV-H.
Generally, in Tables I–IV the proposed HMSC consistently
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TABLE I
QUANTITATIVE EVALUATION OF DIFFERENT CLUSTERING METHODS FOR THE INDIAN PINES IMAGE:

CLUSTERING ACCURACY(%), κ COEFFICIENT AND NMI. (V1: HSI, V2: EMAPS FEATURE)

No. Class name FCM k-means CFSFDP SSC

V1 V2 V1 V2 V1 V2 V1 V2
1 Corn-notill 45.87 0.00 43.28 39.90 75.92 32.44 60.00 43.18
2 Grass-trees 99.59 100.00 99.59 86.58 100.00 100.00 98.36 87.81
3 Soybean-notill 59.97 6.97 57.51 2.73 69.40 75.96 76.91 30.60
4 Soybean-mintill 57.95 91.27 63.15 97.97 18.61 55.15 50.68 87.68

OA(%) 62.45 57.78 63.72 66.91 53.72 60.87 65.11 68.00
κ 0.48 0.38 0.49 0.48 0.40 0.46 0.53 0.53

NMI 0.42 0.29 0.43 0.51 0.40 0.45 0.41 0.45

No. Class name L2-SSC JSSC SSMLC MSC HMSC

V1 V2 V1 V2 V1+V2 V1+V2 V1+V2
1 Corn-notill 61.09 63.68 74.73 83.78 72.34 61.09 91.24
2 Grass-trees 99.32 100.00 99.18 100.00 99.59 96.85 100.00
3 Soybean-notill 79.37 83.20 95.90 95.08 54.51 68.99 100.00
4 Soybean-mintill 54.89 55.35 86.33 85.34 84.51 62.16 91.53

OA(%) 67.78 69.32 87.41 89.05 79.23 68.82 94.28
κ 0.5629 0.59 0.82 0.85 0.70 0.57 0.92

NMI 0.48 0.53 0.68 0.73 0.53 0.45 0.83

TABLE II
QUANTITATIVE EVALUATION OF DIFFERENT CLUSTERING METHODS FOR THE Pavia University IMAGE:

CLUSTERING ACCURACY(%), κ COEFFICIENT AND NMI. (V1: HSI, V2: EMAPS FEATURE)

No. Class name FCM k-means CFSFDP SSC

V1 V2 V1 V2 V1 V2 V1 V2
1 Asphalt 0.00 0.00 0.00 87.53 0.00 0.71 0.00 99.06
2 Meadows 59.24 97.79 86.07 98.70 62.37 99.87 98.57 99.87
3 Trees 100.00 9.52 0.00 0.00 0.00 0.00 0.00 0.00
4 Metal 62.66 56.43 36.88 54.68 35.51 99.85 55.82 98.86
5 Bare Soil 28.76 41.70 40.17 59.48 58.15 76.44 54.90 67.17
6 Bitumen 99.77 93.95 99.88 89.88 99.88 100.00 98.84 67.79
7 Brick 3.19 0.00 36.17 0.00 0.00 100.00 41.49 100.00
8 Shadows 100.00 99.72 100.00 98.89 100.00 0.00 99.17 99.17

OA(%) 51.20 57.94 53.19 69.84 56.70 77.47 64.28 81.33
κ 0.43 0.51 0.45 0.64 0.47 0.71 0.57 0.77

NMI 0.65 0.71 0.65 0.76 0.67 0.78 0.71 0.86

No. Class name L2-SSC JSSC SSMLC MSC HMSC

V1 V2 V1 V2 V1+V2 V1+V2 V1+V2
1 Asphalt 0.00 99.76 98.12 99.53 0.00 100.00 100.00
2 Meadows 94.27 99.87 99.87 100.00 100.00 100.00 100.00
3 Trees 84.13 90.48 14.29 1.59 0.00 100.00 0.00
4 Metal 97.34 99.54 96.50 99.70 50.04 99.54 99.54
5 Bare Soil 51.78 68.19 46.03 81.36 60.73 34.62 75.03
6 Bitumen 97.21 99.30 96.51 68.26 98.95 98.60 100.00
7 Brick 39.36 0.00 1.06 100.00 98.94 0.00 100.00
8 Shadows 99.72 99.72 96.12 0.00 99.45 99.72 100.00

OA(%) 71.61 85.59 74.76 81.71 66.45 72.29 89.01
κ 0.66 0.82 0.70 0.77 0.60 0.68 0.86

NMI 0.74 0.88 0.78 0.84 0.76 0.84 0.90

achieves the best clustering performance in terms of OA, κ and
NMI in the four data sets, demonstrating the effectiveness of
our multimodal clustering method. The following observations
can be made:
1) The results in Tables I–IV reveal that the subspace cluster-
ing methods SSC, L2-SSC, JSSC, SSMLC, MSC and HMSC,
outperform the classical clustering methods FCM, k-means

and CFSFDP in most cases. Compared with CFSFDP, the most
basic subspace clustering method SSC in V1 even achieves
OA improvements of 11.39% in Indian Pines, 7.58% in Pavia
University, 4.06% in Salinas A and 16.63% in Houston.
Compared with FCM and k-means, SSC also yields notable
improvements. This demonstrates that subspace clustering is
able to uncover better the cluster structure of data than the
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TABLE III
QUANTITATIVE EVALUATION OF DIFFERENT CLUSTERING METHODS FOR THE Salinas A IMAGE:

CLUSTERING ACCURACY(%), κ COEFFICIENT AND NMI. (V1: HSI, V2: EMAPS FEATURE)

No. Class name FCM k-means CFSFDP SSC

V1 V2 V1 V2 V1 V2 V1 V2
1 Brocoli-green-weeds-1 99.74 99.74 99.74 0 99.74 99.74 99.23 99.49
2 Corn-senesced-green-weeds 31.12 41.03 28.15 59.79 40.21 39.76 56.59 55.85
3 Lettuce-romaine-4wk 94.97 94.48 94.97 95.62 94.48 100.00 91.40 99.51
4 Lettuce-romaine-5wk 100.00 100.00 100.00 100.00 100.00 100.00 99.93 98.89
5 Lettuce-romaine-6wk 99.26 99.85 99.11 100.00 99.26 100.00 100.00 95.10
6 Lettuce-romaine-7wk 94.62 99.87 94.62 99.87 97.37 100.00 99.12 97.00

OA(%) 81.21 84.50 80.44 82.07 83.84 84.85 87.90 87.43
κ 0.77 0.81 0.76 0.78 0.80 0.82 0.85 0.85

NMI 0.81 0.88 0.80 0.89 0.86 0.89 0.87 0.85

No. Class name L2-SSC JSSC SSMLC MSC HMSC

V1 V2 V1 V2 V1+V2 V1+V2 V1+V2
1 Brocoli-green-weeds-1 99.23 99.49 99.49 98.98 99.49 99.74 99.74
2 Corn-senesced-green-weeds 58.67 59.94 97.77 99.26 41.55 58.67 100.00
3 Lettuce-romaine-4wk 95.62 98.38 99.03 98.86 92.69 96.59 100.00
4 Lettuce-romaine-5wk 99.74 97.70 100.00 100.00 100.00 100.00 100.00
5 Lettuce-romaine-6wk 99.85 99.41 99.85 100.00 99.85 0.00 100.00
6 Lettuce-romaine-7wk 99.00 97.12 99.00 99.00 98.37 99.12 100.00

OA(%) 88.82 88.56 99.12 99.46 84.18 76.48 99.98
κ 0.86 0.86 0.99 0.99 0.81 0.71 1.00

NMI 0.88 0.87 0.97 0.98 0.86 0.87 1.00

TABLE IV
QUANTITATIVE EVALUATION OF DIFFERENT CLUSTERING METHODS FOR THE Houston IMAGE:

CLUSTERING ACCURACY(%), κ COEFFICIENT AND NMI. (V1: HSI. V2: LIDAR EMAPS FEATURE)

No. Class name FCM k-means CFSFDP SSC

V1 V2 V1 V2 V1 V2 V1 V2
1 Concrete 82.79 46.50 80.70 46.50 78.02 46.50 52.83 46.50
2 Grass-1 99.65 100.00 100.00 100.00 100.00 100.00 99.30 100.00
3 Grass-2 0.00 0.00 0.00 0.00 0.00 23.12 71.68 54.48
4 Parking lot 52.72 67.65 70.89 99.70 43.58 62.01 99.50 62.16
5 Roof 2.31 95.38 92.31 95.38 0.00 24.62 100.00 0.00
6 Trees 81.60 51.57 79.42 52.30 1.94 25.18 91.53 57.87
7 Asphalt 64.15 70.82 95.85 0.00 83.14 92.96 0.00 85.41

OA(%) 63.52 61.30 74.97 62.65 56.55 61.16 73.18 64.78
κ 0.57 0.53 0.69 0.51 0.48 0.53 0.65 0.58

NMI 0.69 0.62 0.73 0.65 0.64 0.62 0.79 0.65

No. Class name L2-SSC JSSC SSMLC MSC HMSC

V1 V2 V1 V2 V1+V2 V1+V2 V1+V2
1 Concrete 46.50 46.50 53.50 46.50 46.42 53.20 52.19
2 Grass-1 99.30 100 99.88 100.00 100.00 100 100.00
3 Grass-2 58.06 41.58 69.89 29.21 97.31 98.57 98.75
4 Parking lot 99.10 69.10 96.36 96.95 99.50 73.74 90.26
5 Roof 100.00 0.00 0.00 0.00 93.08 0.00 0.00
6 Trees 83.05 83.54 84.26 53.51 90.80 81.11 85.96
7 Asphalt 30.19 65.66 76.35 64.40 0.25 95.09 91.70

OA(%) 73.77 65.04 79.54 70.86 74.05 76.92 82.18
κ 0.67 0.57 0.75 0.63 0.67 0.72 0.78

NMI 0.72 0.61 0.78 0.67 0.80 0.80 0.83

conventional clustering methods in this task. The superior per-
formance of subspace clustering can be mainly attributed to the
efficient subspace representation which learns the correlations
of data points in a lower-dimensional subspaces by solving
self-representation based optimization problems.

2) The methods that use spatial regularization show indeed
improvement over the methods based on spectral information
alone. For instance, in the single-view subspace clustering
methods, L2-SSC and JSSC obtain the OA gains of (2.67%,
22.3%) with hyperspectral data (V1), and (1.32%, 21.05%)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Indian Pines image. (a) Ground truth and clustering maps of (b) FCM,
(c) k-means, (d) CFSFDP, (e) SSC, (f) L2-SSC, (g) JSSC, (h) SSMLC, (i)
MSC, (j) HMSC.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Pavia University image. (a) Ground truth and clustering maps of (b)
FCM, (c) k-means, (d) CFSFDP, (e) SSC, (f) L2-SSC, (g) JSSC, (h) SSMLC,
(i) MSC, (j) HMSC.

with generated feature (V2) in the Indian Pines. The OA
enhancements can be also observed in other three data sets.
In the multi-view subspace clustering methods, HMSC out-
performs SSMLC and MSC and produces higher OA, κ and
NMI. Specifically, Compared with SSMLC, HMSC yields the
improvements of OA by 15.05%, 22.56%, 15.8% and 8.13%,
respectively, in Indian Pines, Pavia University, Salinas A
and Houston. Compared with MSC, we obtain better cluster
performance with OA gains of 25.46%, 16.72%, 23.5% and
5.26%, respectively, in Indian Pines, Pavia University, Salinas
A and Houston. These observations verify the importance

of incorporating the spatial information of data in subspace
clustering methods, which promotes the spatial correlations in
the subspace representations. Although the multi-view cluster-
ing methods SSMLC and MSC cluster data by using multi-
view data, the spatial correlations of pixels in each view are
not taken into consideration, resulting in the unsatisfactory
performance. We utilize both the local and nonlocal spa-
tial information and integrate them elegantly into a hybrid-
hypergraph based regularization, achieving significant perfor-

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. Salinas A image. (a) Ground truth and clustering maps of (b) FCM,
(c) k-means, (d) CFSFDP, (e) SSC, (f) L2-SSC, (g) JSSC, (h) SSMLC, (i)
MSC, (j) HMSC.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. Houston image. (a) Ground truth and clustering maps of (b) FCM,
(c) k-means, (d) CFSFDP, (e) SSC, (f) L2-SSC, (g) JSSC, (h) SSMLC, (i)
MSC, (j) HMSC.

mance improvements. Indian Pines is known as a challenging
hyperspectral data in classification task due to noise, large
intra-class spectral variability and high inter-class similarity
[65], which results in the poor performance (often OA is less
than 70%) in most of the clustering algorithms. However, our
multimodal clustering method produces far better performance
than the competitors with overall accuracy of 94.28% and
class-specific accuracies of 91.24%, 100%, 100% and 91.53%
in Table I.
3) Our multi-view clustering method HMSC shows better
clustering performance in terms of OA, κ and NMI than that of
all the single-view clustering methods in the four datasets. The
single-view clustering methods can obtain significantly differ-
ent results in the two data sources. For instance, the OA of SSC
in V1 is 64.28% in Pavia University while the OA of SSC in
V2 is 81.33%. This is caused by the diverse information in V1
and V2. The data V1 (HSIs) provides rich spectral information
while the data V2 captures the important spatial information
of HSIs in Indian Pines, Pavia University and Salinas A or
altitude information of the ground objects in Houston. In the
Indian Pines and Pavia University datasets, most of the single-
view clustering methods, including FCM, k-means, CFSFDP,
SSC, L2-SSC and JSSC, yield better performance in V2 than
that in V1, which demonstrates the superior discriminability
of spatial feature. In the Salinas A data set, all the single-
view clustering methods perform similarly in both data sources
with comparable clustering results. In the Houston dataset, the
spectral information captured in V1 is able to differentiate
the ground objects better than the altitude information in
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Fig. 8. The effect of the local and nonlocal hypergraph regularization in the
four data sets.
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Fig. 9. The effect of multi-scale local hypergraphs in the four data sets.

V2, which is evidenced by the superior performance in V1.
The proposed HMSC exploits the complementary information
from both data sources, and thus produces excellent results
that outperform all the single-view clustering methods in
both data sources. The multi-view clustering methods SSMLC
and MSC also employ both data sources. However, their
clustering performance is less stable and sometimes shows
lower accuracy than the classical methods such as the results
in Pavia University and Salinas A.
4) The clustering maps in Figs. 4–7 present the visual results
of all the clustering methods in the four data sets, respectively.
Note that for each method the clustering map using the data
source that produces the highest accuracy is reported. The
results reveal that the clustering maps of HMSC always match
the best to the corresponding ground truths, which is consistent
to the quantitative evaluations in Tables I–IV. The clustering
methods FCM, k-means, CFSFDP, SSMLC and MSC treat
each data points independently without considering the impor-
tant spatial correlations between data points during the clus-
tering process, and thus cannot preserve well the homogeneity
of ground objects, resulting in the deteriorated clustering maps
that are significanlty affected by impulse noise. Such effect is
less pronounced in the clustering maps of L2-SSC, JSSC and
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Fig. 10. Performance comparisons between using normal graph and hyper-
graph in the proposed model.

Indian Pines Pavia University Salinas_A Houston
60

65

70

75

80

85

90

95

100

V1

V2

V1+V2

O
A

 (
%

)

Fig. 11. The performance of using hybrid-hypergraph in single data source.

HMSC due to the exploitation of spatial constraints, which
effectively increases the spatial dependencies among similar
data points in the clustering model.

D. The effect of local and nonlocal hypergraph regularization

The superiority of our model partially benefits from the
introduction of the proposed hybrid-hypergraph regularization,
where the hybrid hypergraph consists of a series of local
spatial hypergraphs and spatial-wise nonlocal hypergraph. We
analyse here the effect of local and nonlocal hypergraph
regularization to the overall accuracy of HMSC. In this sub-
section, we conduct experiments by adopting only one type of
hypergraph, i.e., local or nonlocal hypergraphs in the HMSC,
and report the overall accuracies in Fig. 8. The experimental
results reveal that the local spatial regularization results in
much higher accuracies than the nonlocal spatial regularization
in Indian Pines, Pavia University and Salinas A. The derived
OAs also outperform most of the clustering methods in Tables
I–II. While in the Houston, the nonlocal spatial regularization
plays the dominant roles and yield better clustering results than
that with local hypergraph regularization. The results in Fig.
8 conclude that the hybrid-hypergraph regularization yields
consistently the best performance in the three experimental
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Fig. 13. The effect of K in the nonlocal hypergraph to the overall accuracy.

settings (local, nonlocal and hybrid), which demonstrates the
effectiveness of the hybrid hypergraph in our model.

E. The effect of multi-scale local hypergraphs

The adaptive super-pixel segmentations provide four seg-
mentation maps at four scales, which are further utilized to
construct the multi-scale local spatial hypergraphs. The afore-
mentioned analysis indicates the superiority of using the multi-
scale local hypergraphs. We investigate here the contribution
of local hypergraph regularization at each scale to the overall
accuracy of our model in the four data sets by fixing nonlocal
hypergraph. We denote by Scale-1, Scale-2, Scale-3 and Scale-
4 the cases using local hypergraphs in the HMSC model
with segmentation numbers n1, n2, n3 and n4, respectively,
and Multi-scale the case using all the local hypergraphs. The
results in Fig. 9 suggest that the Scale-1 hypergraph always
results in superior performance in terms of OA over the
other three scales, and a higher level segmentation (more fine
segmentation) leads to a reduced clustering performance. This
is reasonable because finer segmentation results in more super-
pixels and each super-pixel may only include parts of the
pixels belonging to a ground object, which dilutes the local
spatial correlations to a certain degree. The results in Fig. 9
also show that the combined multi-scale local hypergraph
regularization yields the best result, which is mainly attributed
to the joint contribution of the multi-scale local hypergraphs,
demonstrating the efficacy of our approach.

F. The effect of hypergraph
To study the influence of hypergraph on the performance

of our method, we conduct experiments by replacing the
adopted hypergraph with a normal graph where the weights
of connected edges between nodes i and j are calculated
by Wi,j = exp(−‖xi−xj‖

2

σ ). The connectivities of edges in
normal graph are obtained by using the same super-pixel
segmentation and KNN results as in the hypergraph. The
clustering results are shown in Fig. 10. Generally, hypergraph
results in higher accuracies than the normal graph in our
model. The OA improvements using hypergraph are significant
in the data sets Indian Pines, Pavia University and Houston,
and in Salinas A, results are comparable, demonstrating the
benefit of using hypergraph. It should be noted that even with
normal graph our model outperforms the compared methods
in most cases as seen in Tables I–IV.

G. The performance in single data source
We conduct experiments in this subsection to evaluate the

performance of using hybrid-hypergraph regularization with
single data source. In the single-source setting, we aim to min-
imize the objective function ‖Xt−XtAt‖2F+λ1tr(AtLthA

tT ).
The clustering results for four data sets are shown in Fig. 11,
where V1 and V2 denote the clustering result with HSI and
generated features, respectively, and V1+V2 is the multimodal
clustering result. In Fig. 11, we obtain the same conclusions
as discussed in the previous part. Firstly, the accuracy with V2
is much higher than that with V1 in Indian Pines and Pavia
University, showing the spatial feature is more discriminative
than the original spectral information. Secondly, in Salinas A
both data sources perform similarly. Thirdly, the hyperspectral
data differentiates the ground objects better than the LiDAR
data in Houston. Lastly, the multimodal clustering result
outperforms the results using single data source, which verifies
the benefit of our multimodal clustering model. Moreover, we
also observe that the accuracies obtained in each data source
often exceed the accuracies of the competitors in Tables I–IV,
which mainly benefits from the adopted hybrid-hypergraph
regularization.

H. Parameter analysis
To analyse the effect of the parameters λ1, λ2, λ3 and K to

the clustering performance, we tune one parameter while fixing
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Fig. 14. The convergence curves of the proposed model. From left to right: Indian Pines, Pavia University, Salinas A and Houston

TABLE V
THE RUNNING TIME OF DIFFERENT CLUSTERING METHODS (IN SECONDS)

Data sets FCM k-means CFSFDP SSC L2-SSC JSSC SSMLC MSC HMSC
Indian Pines 3.5 0.4 4.5 234 256 107 2999 15250 1149

Pavia University 5.8 0.4 7.0 677 6649 323 8888 46657 3461
Salinas A 0.6 0.1 6.2 397 592 202 5221 7216 2291
Houston 5.8 0.5 3.7 932 11859 237 6852 24434 1192

TABLE VI
THE CLUSTERING PERFORMANCE OF HMSC FOR THE Indian Pine IMAGE

No. Data sources OA κ NMI Time (in
seconds)

1 HSI+Gabor 88.41 0.84 0.72 1362
2 HSI+EMAPs 94.28 0.92 0.83 1149
3 HSI+RSF 93.26 0.90 0.80 1473
4 HSI+EMAPs+Gabor 94.63 0.92 0.84 1460
5 HSI+EMAPs+Gabor+RSF 95.35 0.93 0.86 1733

others in each experiment, and report the resulting overall
accuracy in the four data sets. The results with respect to
λ1, λ2 and λ3 are shown in Fig. 12 and the results with varying
K are shown in Fig. 13. In general, it is observed that the
performance are quite stable to all the parameters in a certain
range, which indicates that our algorithm is insensitive to the
parameter perturbation. Moreover, the results show significant
performance changes in a global view, indicating the efficacy
of the introduced regularizations. Notably, compared with the
base line of SSC (OA=68%, 81.33%, 87.96% and 73.18%
in Indian Pines, Pavia University, Salinas A and Houston,
respectively), most of the results from Figs. 12 and 13 yield
improved performance, which verifies the superiority of our
multimodal clustering model.

I. Convergence analysis
To investigate the convergence performance, we conduct

experiments for our method in the four data sets and plot
the values of objective function with respect to the iteration
numbers in Fig. 14. The results show that our method mostly
converges in thirty iterations, confirming the practical conver-
gence of our optimization algorithm.

J. Running time
We show in Table V the running time of different clus-

tering methods on the four data sets. The reported running

time corresponds to the whole clustering procedure for each
method. For the single-view clustering methods, the running
time corresponding to the better result among two views is
reported. The results show that k-means, FCM and CFSFDP
are more efficient than the tested subspace clustering methods.
Compared to SSC, L2-SSC and JSSC, multi-view clustering
methods SSMLC, MSC and HMSC often use more running
time. Among the multi-view clustering methods, our HMSC
is the fastest method.

K. Clustering with different data sources

We show the clustering results of HMSC on the data set
Indian Pines by using different data sources in Table VI. In
addition to EMAPs, two more features of HSI are generated
as new views of the same scene, including Gabor feature
and a representation-based spatial feature (RSF) extracted by
[66]. We utilize two-dimensional Gabor filters [67] with two
scales and four orientations on each of the first few PCs of
HSI, which contains 99% of the total variation of the data.
The filtered PCs are concatenated as the Gabor feature. RSF
is obtained by solving a representation-based optimization
problem. We set the feature dimension of RSF to 200. Other
parameters are set according to [66]. The results in Table VI
show that more data sources yield better results in terms of
OA, κ and NMI. The price is slight increases of running time,
which is acceptable. Among the results using two data sources,
the combination of HSI and EMAPs produces the highest
accuracy. Moreover, we observe that the results in Table VI
outperform all the single-view clustering results in Table I that
utilize HSI alone.

V. CONCLUSION

In this paper, a novel multi-view subspace clustering method
is proposed for the clustering of hyperspectral images. We
design a new data fusion model to leverage the complementary
information from multi-view data. This model decomposes the
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subspace representation in each view as a combination of a
global consensus low-rank matrix (shared by all the views) and
a view-specific sparse matrix, which enables the learning of a
desirable cluster structure in the low-dimensional subspaces
with flexible tolerance to the data geometric structure in
each view. We also propose a manifold-based spatial regu-
larization by embedding a hybrid hypergraph in the subspace
representation. The hybrid hypergraph consists of a series
of multiscale local hypergraphs, defined by the super-pixel
segmentations at different scales, and a nonlocal hypergraph
which is constructed by the K nearest neighbours of each
centralized square patch. Thus, the proposed regularization
encodes effectively the local and nonlocal high-order spatial
context of data. We developed an efficient algorithm to solve
the resulting model. Extensive experiments on four real data
sets demonstrate favourable performance of our method com-
pared to the current state-of-the-art in the field.
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