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Abstract—In this paper, we propose an efficient method for
learning local image descriptor and its inversion function using
a variational autoencoder (VAE). We design a loss function of the
VAE specifically for this purpose, which, on one hand, incentivises
the similarities between input patches to be preserved in latent
space, and on the other hand, ensures good reconstruction of
the patches from their encodings in latent space. Our proposed
descriptor demonstrates better patch retrieval compared to the
reference autoencoder-based local image descriptor, and also
shows improved reconstruction of patches from their encodings.

Index Terms—local image descriptors, variational autoen-
coders, unsupervised deep learning

I. INTRODUCTION

Local image descriptors are a crucial component of many
image processing tasks, such as object tracking, object recog-
nition, image denoising, image stitching, and image retrieval.

Traditionally, local image descriptors have been designed
using hand-crafted features, such as SIFT [1], HOG [2],
GLOH [3], SURF [4], and BRIEF [5]. In recent years, the
development of deep learning techniques has led to a new
generation of learned local image descriptors [6]–[9], showing
excellent results [10].

Most of these learning approaches are supervised methods,
relying on relatively many annotated examples. Such specific
labeled datasets are often not available. In contrast to super-
vised methods, unsupervised methods such as autoencoders
and variational autoencoders, by definition, do not depend on
labeled data. Autoencoders have already been used to learn
local image descriptors [11]–[14], showing promising results.
However, the fundamental problem with autoencoders is that
their latent space may not be continuous or may not allow
for easy interpolation. These issues undermine the descriptors
similarity preservation property. Variational autoencoders [15]
have been created to tackle this problem in general, but have
not been applied to the problem of learning local image
descriptors.

Inverting local image descriptors has been an active research
topic in the past decade, starting with the prominent work by
Weinzaepfel et al. [16] on reconstructing an image from its
SIFT descriptors. The authors used a database of descriptors
and their corresponding patches to search for the nearest
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neighbor to the query descriptor, and then take the patch
connected to the retrieved nearest neighbor. Further works on
inverting other descriptors followed, including inverting binary
descriptors [17] and inverting HOG [18]. A more recent paper
by Mahendran et al. [19] considers inverting descriptors back
into patches using deep learning.

In this paper, we propose an unsupervised method that
specialises in learning both a descriptor function that maps
image patches to their encodings and an inverting function that
decodes these encodings back to the original image patches.
To the best of our knowledge, we are the first to present a
descriptor that is optimised for being inverted. Our method
is based on variational autoencoders, in which we modify
the loss function to achieve better invertibility. Due to their
unsupervised nature, VAEs do not require a labeled dataset.
Moreover, the nature of variational autoencoders makes them
intrinsically well suited for learning both the encoding function
and its inversion. The existing autoencoder-based descriptors
[11]–[13] do not present inverting results. Our experimental
results show clearly a better inversion ability of the proposed
method compared to the reference autoencoder-based approach
[12]. To our knowledge, there are no other works using
variational autoencoders to learn local image descriptors.

In the following section, we give a brief introduction to the
classical and variational autoencoders. We describe our method
in Section III and present the results of our experiments in
Section IV with discussion. Section V concludes this paper.

II. PRELIMINARIES

Autoencoders are unsupervised neural networks used for
learning efficient representations of data [20]–[22]. An au-
toencoder consists of two parts, an encoder and a decoder,
and is trained by minimising the reconstruction error between
the input and output, while imposing some constraints (usually
dimensionality) on the middle layer.

The application of autoencoders to the problem of descriptor
learning was first proposed by Chen et al. [11]. In our previous
work [12], [13], we proposed autoencoder-based patch descrip-
tors designed for applications with many patch comparisons
within a single image. These approaches, however, have no
way of enforcing the continuity of the latent space and thus,
are unable to guarantee that the learned encodings are useful,



i.e., that they posses the similarity preserving property – a key
property for local image descriptors.

To tackle the problem of a lack of continuity in the latent
space, Kingma et al. have proposed variational autoencoders
(VAEs) [15]. Similar to classical autoencoders, VAEs con-
sist of an encoder and a decoder, with a middle layer on
which a dimensionality constraint is imposed. In contrast to
classical autoencoders, however, variational autoencoders are
probabilistic models that assume a prior distribution of the
latent space, giving significant control over how we want to
model the latent distribution. The data x has a likelihood
p(x|z) (the decoder distribution) that is conditioned on latent
variables z. The posterior (typically Gaussian) is approximated
with a family of distributions q(z|x) (the encoder distribution).
Apart from minimising the reconstruction loss, VAEs also
minimise the Kullback–Leibler (KL) divergence between the
true posterior p(z) and its approximation q(z|x). Given a
dataset X = {x(1), x(2), ..., x(n)}, the goal of a VAE is to
minimise the negative log-likelihood lower bound:

L(θ, φ;x(i)) =
− Eqφ(z|x(i))[log pθ(x

(i)|z)] +DKL[qφ(z|x(i))||pθ(z)], (1)

where the encoder and decoder distributions are parametrised
by φ and θ, respectively.

The first term promotes a good reconstruction of the input
data samples, while the second term enforces that the dis-
tribution of the latent space is as close as possible to the
multivariate Gaussian distribution. Higgins et al. [23] have
previously proposed a modification to the loss function from
Equation (1) that adds more weight on the second term,
sacrificing the reconstruction capabilities of the VAE in order
to make the latent space smoother and to allow for its better
disentanglement. In the next section, we describe our method
where we add more weight to the reconstruction term to allow
for a better reconstruction of the patches, while still keeping
the second term as a form of regularisation that adds more
smoothness to the latent space than the classical autoencoders.

III. PROPOSED METHOD

Our main contribution is a variational autoencoder used
for simultaneous learning of local image descriptors and
their reconstruction back into image patches. Due to the
nature of their architecture, both classical and variational
autoencoders are ideal for the simultaneous learning of the
descriptor function (the encoder part of the autoencoder) and
the reconstruction function (the decoder part). However, unlike
classical autoencoders, VAEs include additional regularisation
that allows modelling the latent space to be continuous and to
be easy to interpolate across, ensuring that similar input data
samples (patches) get mapped to similar points in the latent
space (encoding), and vice versa. This similarity-preserving
property is a property of paramount importance for local image
descriptors. We also hypothesise that the additional regularisa-
tion of VAEs will allow for learning sharper reconstructions in
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Fig. 1. Architecture of the variational autoencoder we used for learning local
image descriptors.

comparison to methods based on classic autoencoders, which
we will show empirically in the Section IV.

We generalise the loss function for learning VAEs such to
enable a trade-off between learning to faithfully reconstruct
the input data samples, and preserving well patch similarities
in the latent space. We therefore extend the expression in (1)
with a weighing parameter γ, γ > 1 as follows:

L(θ, φ;x(i)) =
− γ · Eqφ(z|x(i))[log pθ(x

(i)|z)] +DKL[qφ(z|x(i))||pθ(z)],

thus increasing the influence of the reconstruction term. In
contrast to descriptors based on classical autoencoders, how-
ever, the KL term in the VAE loss function ensures the
continuity of the latent space.

Figure 1 illustrates the architecture of our variational au-
toencoder. The encoder consists of three convolutional layers
followed by the fully-connected layers for the means and
variances of Gaussian distributions. From these layers, we
sample a vector which is the encoding of the input patch.
We set the dimensionality of the latent space (and therefore,
the mean, variance, and the sampling layers) to be 128. The
decoder architecture mirrors that of the encoder. – at the
beginning there is one layer fully-connected to the sample
(encoding), followed by three transposed convolutional layers.
The dimensions of output patch of our VAE are the same as
the dimensions of the input.

We use rectified linear unit (ReLU) activation functions
after all layers, except the last layer, where we use sigmoid
activation function instead. We use Adam optimiser to learn
the weights of the VAE, which is trained on a dataset of
80k 5656 patches that were extracted from the images from
the Imagenet dataset using FAST (Features from Accelerated
Segment Test) algorithm for feature detection [24].

IV. EXPERIMENTAL RESULTS

In this section, we evaluate both the retrieval and inversion
capabilities of the proposed approach in comparison with a
reference autoencoder-based descriptor.

A. Evaluation on patch retrieval

We test the patch retrieval capabilities of our proposed
descriptor by comparing it to an existing autoencoder-based
descriptor [12]. The evaluation is performed as follows. We
select a set of query patches within a test dataset of patches.
For each query patch, we retrieve the most similar patches by
comparing their encodings as calculated by the descriptors.



We show some examples of patches retrieved in such a way
in Figure 3. The quality of patch retrieval is then evaluated
based two metrics (peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM)) between the query patches
and patches deemed most similar to the queries based on the
encodings computed with descriptors. We can therefore claim
that the proposed descriptor shows promising results at the
task for which it was designed: retrieving patches.

In this paper, we compare our method only to an
autoencoder-based descriptor, since non-autoencoder-based
descriptors have no straightforward way of being inverted and
thus give us no way of comparing their invertibility.

Fig. 2. Patch retrieval examples. Large patch is the query patch. Top rows:
AE-based descriptor from [12]; bottom rows: proposed VAE-based descriptor.

We present our results in Table I. We observe that the
descriptor proposed in this paper is outperformed by a small
margin by the descriptor from [12] in terms of PSNR, however,

TABLE I
PATCH RETRIEVAL PERFORMANCE COMPARISON

PSNR [dB] SSIM
AE-based descriptor [12] 29.2 0.32
Proposed VAE-based descriptor 29.1 0.33

when using a metric that better mimics a human’s perception
of differences between images, SSIM, the proposed descriptor
shows slightly better performance.

B. Evaluation of invertibility

Now we evaluate the extent to which the descriptor can
reconstruct the original patch from its encoding. We again
compare our descriptor to the autoencoder-based descriptor
from [12]. For a test set of patches, we measure the difference
between the original patch, and the patch reconstructed from
the encoding via the descriptor. The proposed descriptor shows
better results than the descriptor from [12] across both metrics:
PSNR and SSIM. In Figure 3, we show some examples of
patches reconstructed with the proposed VAE-based descriptor.
We can observe that the proposed descriptor outperforms the
reference method and is able to reconstruct the patches with
significant improvements in fidelity.

TABLE II
PATCH RECONSTRUCTION PERFORMANCE COMPARISON

PSNR [dB] SSIM
AE-based descriptor [12] 16.0 0.10
Proposed VAE-based descriptor 24.5 0.50

V. CONCLUSION

In this paper, we presented a novel method based on
variational autoencoders that combines the learning of the local
image descriptor with the learning of its inversion. We present
a modification to the loss function of the VAE that results
in learning better inversion, while keeping the KL term as a
regularisation that also ensures the continuity of data point
representations in the latent space. We have evaluated the
proposed descriptor’s patch retrieval abilities in comparison to
a previous autoencoder-based method. Our VAE-based method
shows improvements in terms of SSIM metric, while appearing
to perform slightly worse in terms of PSNR. We also compare
the invertibility of these two descriptors and show that the
proposed descriptor outperforms the reference descriptor from
[12] in both metrics that were assessed.
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