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Abstract—In this paper, we present a novel approach for
designing local image descriptors that learn from data and
from hand-crafted descriptors. In particular, we construct a
learning model that first mimics the behaviour of a hand-crafted
descriptor and then learns to improve upon it in an unsupervised
manner. We demonstrate the use of this knowledge-transfer
framework by constructing the learned BRIEF descriptor based
on the well-known hand-crafted descriptor BRIEF. We imple-
ment our learned BRIEF with a convolutional autoencoder archi-
tecture. Evaluation on the HPatches benchmark for local image
descriptors shows the effectiveness of the proposed approach
in the tasks of patch retrieval, patch verification, and image
matching.

Index Terms—local image descriptors, autoencoders, unsuper-
vised deep learning, knowledge transfer

I. INTRODUCTION

Local feature descriptors play a crucial role in many image
processing tasks, such as object tracking, object recognition,
panorama stitching, and image retrieval. In the past decade,
the approach to designing local feature descriptors has shifted
from using hand-crafted features to the (deep) learning ap-
proach. While many advancements in the learning approach
have lead to better performance on benchmarks [1], [2], hand-
crafted descriptors still outperform the learned ones in many
cases of practical interest and are often a descriptor of choice
in practice [3].

According to recent studies [4], this is largely due to
the fact that descriptor learning is typically approached as
a standalone problem, without considering a broader image
processing task where it should be integrated. Moreover, most
of the descriptor learning approaches are supervised methods,
relying on relatively many annotated examples. Such specific
labeled datasets are often not available. Unsupervised methods,
by definition, do not suffer from this problem.

Other reasons why hand-crafted descriptors are still pre-
ferred over the learned ones in practice include their inter-
pretability and robustness to relevant distortions, which is a
shortcoming of the current learned descriptors.

In this paper, we present a novel framework for constructing
a learning model that first mimics the behaviour of a hand-
crafted descriptor and then learns to improve upon it in an
unsupervised manner. Two important assets of the proposed
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approach compared to most of the current descriptor learning
methods are: (1) improved explainability, inherited from a
chosen hand-crafted descriptor that it builds upon, and (2) no
need for excessive labeled datasets. Compared to the hand-
crafted descriptor, we achieve better performance and avoid
the need for various ad-hoc choices of the parameters. Due to
the unsupervised nature of our method, the descriptor can be
fine-tuned for various applications without the specific labeled
dataset for that application.

The framework that we present is a form of knowledge
transfer. Knowledge transfer is a term used in machine learning
community where a neural network is bootstrapped from an
initial training based on, for example, a small or a private
dataset [5]. In the case of our framework, this bootstrapping
process is performed by training the network using a hand-
crafted descriptor as a ground truth. The network is then
further trained in an unsupervised manner as part of an autoen-
coder. This idea is partially motivated by the work from [6]
where, in a different context, the authors discuss unrolling an
iterative inverse-imaging problem into a convolutional neural
network. They argue that for networks designed in this way,
the performance of the properly trained network cannot be
worse than that of the original algorithm which is its special
case. In the same way, we claim that our learned autoencoder-
based local image descriptor, with proper training, will be
superior to the hand-crafted one that served as its initialisation.
We support this claim by the results of a thorough evaluation
on standard benchmarks for patch descriptors [1].

Our method is a general framework for transferring the
knowledge from an arbitrary local image descriptor. In this
paper, we use the framework to transfer the knowledge from
the BRIEF descriptor [7], which enjoys popularity as a compu-
tationally simple and efficient descriptor. However, our method
can be applied on other descriptors too, as we will explain in
the Section III.

To summarise, our main contributions are twofold:
• We propose a framework for the transfer of knowl-

edge from a hand-crafted descriptor to an unsupervised-
learning–based descriptor. At the time of writing, no
such framework has been reported, to the best of our
knowledge.

• Within this framework, we propose an elegant method for
implementing a learned BRIEF.



In the following section, we discuss the related work and
preliminaries, and introduce the notation. In Section III we first
introduce our framework for knowledge transfer from hand-
crafted to learning-based descriptors, and then we apply this
framework to implement a learned BRIEF. In Section IV we
evaluate the performance of our learned BRIEF in comparison
with the original BRIEF descriptor. Section V concludes the
paper and discusses the future work.

II. RELATED WORK

The traditional approach to designing local image descrip-
tors is using hand-crafted features. The most well-known
hand-crafted descriptors include SIFT [8], HOG [9], SURF
[10], BRIEF [7], ORB [11], which continue to be relevant to
modern approaches with implementations being available in
the computer vision libraries such as OpenCV. In recent years,
the development of deep learning techniques has resulted in
numerous learned descriptors [4], [12]–[17]. These descriptors
are mostly learned in a supervised fashion with the labels on
pairs of patches, indicating their similarity or dissimilarity.

While a few learned descriptors show high performance on
benchmarks [1], [2], the established hand-crafted descriptors
such as SIFT are consistently chosen over the learned de-
scriptors in practical contexts [3]. One explanation for this
preference could be that the literature typically approaches
descriptor learning as a standalone problem and neglects the
challenges of integrating that solution as a component of a
broader image processing task [4].

Since supervised methods are dependent on labeled data,
it is often unfeasible to create a descriptor for a specific
image processing task. In contrast to supervised methods,
unsupervised methods such as autoencoders are a viable option
since they do not depend on labeled data.

The application of autoencoders to the problem of descriptor
learning was first proposed by Chen et al. [18]. In our previous
work [19], [20], we proposed autoencoder-based patch descrip-
tors designed for applications with many patch comparisons
within a single image.

While these autoencoder-learned descriptors showed
promising results, they lacked explainability, which renders
them less attractive for some applications, especially in high-
stakes scenarios. Moreover, the computational complexity
and especially memory requirements may be prohibitive for
some real-time processing tasks with high resolution images.

In this paper, we present a novel method that enables
the transfer of knowledge from a hand-crafted descriptor to
an unsupervised-learning–based descriptor through the use of
autoencoders. By transferring knowledge from a hand-crafted
into a learning-based descriptor, we expect that the learning
process will be biased in a way such that the final descriptor
will be an optimised variant of the original hand-crafted
descriptor which is already well understood. A descriptor gen-
erated through this learning approach has a further advantage
in that it can be fine tuned for a specific task.

In the following, we design a learned BRIEF descriptor,
which keeps the lightweightedness of BRIEF while having

improved performance by training it as part of the autoencoder.
Moreover, in contrast to the original BRIEF, the learned
BRIEF achieves rotational and translational invariance.

A. BRIEF descriptor

BRIEF (Binary Robust Independent Elementary Features)
is a binary local image descriptor that, for an input patch,
calculates its binary code [7]. The code is calculated as follows
(see Figure 1-a (top)). First, the input patch is smoothed
in order to decrease the sensitivity to noise. The smoothing
is done using an averaging kernel of size 9 × 9. Then, a
binary feature vector is created, composed of the binary test
responses. A binary test τ between pixels coordinates x and
y on a patch p is defined by:

τ(p;x, y) =

{
1 p(x) ≥ p(y)
0 p(x) < p(y)

(1)

The image patch is then encoded as the nd-dimensional bit
string:

fnd
(p) =

∑
1≤i≤nd

2i−1τ(p;xi, yi). (2)

The pairs of pixel coordinates (xi, yi) are drawn from a
Gaussian distribution around the centre of the patch: (X,Y) ∼
i.i.d Gaussian(0, 1

25s
2), where s × s is the size of the patch.

In the case of OpenCV implementation of BRIEF, these
pairs of coordinates are then hard-coded and used across all
configurations of the descriptor.

B. Autoencoders

Autoencoders [21] are unsupervised neural networks used
for learning compact representations of data. An autoencoder
consists of two parts, an encoder and a decoder, and is
trained by setting the target output values to be equal to the
input values, while imposing constraints on the middle layer.
Formally, an autoencoder with encoder E and decoder D is
trained to minimise the loss function J w.r.t. weights wE ,wD
and biases bE ,bD of the encoder and decoder, respectively:

min
wE ,bE ,wD,bD

J(P, EwE ,bE ,DwD,bD ) = (3)∑
p∈P
L(p,DwD,bD (EwE ,bE (p))) (4)

where p ∈ P is a data sample (in our case an image patch)
and L is some metric. Autoencoders working with image data
usually consist of convolutional layers, with an optional fully-
connected layer at the end of the encoder and the beginning
of the decoder. The output neuron at location (i, j) in the k-th
channel of the l-th convolutional layer is calculated as x(l,k)ij =∑

c∈C
∑s(l)

u=1

∑s(l)

v=1 w
(l,k,c)
uv x

(l−1,c)
(i+u)(j+v)+b

(l,k), where C is the
set of input channel indices, w(l,k,c) are the weights of the
convolutional kernel for the l-th layer and k-th channel applied
on the c-th input channel, b(l,k) is the bias for the l-th layer of
the k-th channel, and s(l) is the size of the convolutional kernel
for the l-th layer. The output of the i-th neuron of the l-th fully-
connected layer is calculated as xli =

∑s(l)
u=1(w

l
iux

l−1
u + bliu),
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(a) Step 1 – implementing BRIEF as a CNN.
Original BRIEF implementation (top) and
our proposed as a CNN (bottom).

fixed learned
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(b) Top: Step 2 – learning to invert a descriptor into its patch by training the decoder part
of the autoencoder. The encoder is here set to be the network from step 1, implementing
BRIEF. Bottom: Step 3 – training the whole autoencoder on a general dataset of patches.

Fig. 1. Visualisation of the proposed knowledge transfer and improvement framework from a BRIEF descriptor to an autoencoder-learned descriptor.

where wl and bl are the weight matrix and the bias vector of
the l-th layer respectively, and s(l) is the size of the l-th layer,
i.e., the number of output neurons in the layer.

III. PROPOSED METHOD

A. Framework for knowledge transfer from hand-crafted
descriptors

The first contribution that we present in this paper is a
framework for the transfer of knowledge from a hand-crafted
descriptor to the unsupervised-learning–based descriptor. The
framework we propose consists of four steps (steps 1–3 shown
in Figure 1):
Step 1 – Construct and optimise a neural network EwE ,bE

that mimics patch encoding produced by the hand-crafted
descriptor H. For a set of patches P and loss function L where
the loss function depends on the activation function chosen for
the last layer, solve:

min
wE ,bE

J(P, EwE ,bE ) =
∑
p∈P
L(H(p), EwE ,bE (p))

Step 2 – Set EwE ,bE to be the encoder E of an autoencoder,
and train the decoder DwD,bD , minimising the loss between
its output and the input patch:

min
wD,bD

J(P,DwD,bD ) =
∑
p∈P
L(p,DwD,bD (E(p)))

Step 3 – Train the whole autoencoder, consisting of the
encoder EwE ,bE and the decoder DwD,bD :

min
wE ,bE ,wD,bD

J(P, EwE ,bE ,DwD,bD ) =∑
p∈P
L(p,DwD,bD (EwE ,bE (p)))

Step 4 – Fine-tune the whole autoencoder on a dataset PSpec

specific to the desired application:

min
wE ,bE ,wD,bD

J(PSpec, EwE ,bE ,DwD,bD ) =∑
p∈PSpec

L(p,DwD,bD (EwE ,bE (p)))

The first step is specific to the hand crafted descriptor that
is chosen for knowledge transfer, and may involve creating
specific neural network architectures that are functionally
similar to the hand-crafted descriptor. In some cases, as we
will show is the case with BRIEF in subsection III-B, it is
possible to completely implement the hand-crafted descriptor
using standard neural network layers (convolutional, fully-
connected). In other cases, it may be necessary to make the
network learn to output the descriptor using training. In this
case, the network would be trained on a set of input patches
until its output was sufficiently close to the output of the hand-
crafted descriptor.

In the second step we train the decoder network to learn
to reconstruct the patch from its encoding, similarly to what
Mahendran et al. [22] did, but using a simple CNN without
any regularisation. We found that, for reconstructing BRIEF,
this setup achieves a good starting point for the training of the
complete autoencoder, as we will discuss in subsection III-B.

Next, in the third step, we simultaneously train both the
encoder and decoder parts of the autoencoder. We train the
autoencoder on the same general dataset of patches used in
both Step 1 and Step 2. In order for the learned descriptor
to achieve rotation and translation invariance, it is possible to
add geometric noise to the input patches while keeping the
output patches the same. We further discuss the effect of the
geometric noise adding in the Section IV.



In the final, fourth step, the autoencoder is fine-tuned from
the previous step on an application-specific set of patches.

After the training is complete, the decoder part of the
network can be discarded, and we are left with the encoder
network, which is our local image descriptor.

In this paper, we demonstrate our framework using BRIEF
as the hand-crafted descriptor from which we transfer the
knowledge into a neural network.

B. Implementing learned BRIEF using the proposed
framework

We now discuss how we implemented the learned BRIEF
descriptor using the proposed framework.

We mostly focus on describing Step 1, since it is specific to
the BRIEF descriptor. This step involves realising the original
BRIEF descriptor as a convolutional neural network. In the
case of BRIEF, in order to achieve a network that mimics
the descriptor’s output, this step does not necessitate training
the network but simply setting the weights and biases of
the network to match BRIEF’s behaviour. The architecture
of this neural network is comprised of several convolutional
layers that implement BRIEF’s average blurring, and one fully-
connected layer that implements BRIEF’s binary tests, i.e., the
intensity comparisons between different pixels.

In the original implementation of BRIEF, the average blur-
ring is performed with a 9×9 averaging kernel, i.e., in the deep
learning terminology, a convolutional layer with one kernel of
the size 9×9. In our implementation, we use four convolutional
layers, each with one 3 × 3 averaging kernel, instead of a
single layer with a 9 × 9 averaging kernel. This architecture
is commonly used in modern CNNs and yields a sufficiently
similar blurring to the blurring used in BRIEF. The activation
functions of the convolution layers are rectifier linear units
which have no effect at this point (since all the values of the
kernel are greater than zero), but serve as non-linearity during
the retraining of the network.

The binary pixel tests are implemented as a fully-connected
layer (preceded by flattening the output from the previous
convolutional layer in raster-scan fashion). Binary pixel test
τ defined in (1) can be reformulated as:

[σ(p(x)− p(y))] ,

where σ(·) is the sigmoid function and [·] denotes rounding
to the nearest integer. The proof follows:

[σ(p(x)− p(y))] =

[
1

1 + e−p(x)+p(y)

]
={

[A], A ∈ [0.5, 1) for p(x) ≥ p(y)
[A], A ∈ (0, 0.5) for p(x) < p(y)

={
1 p(x) ≥ p(y)
0 p(x) < p(y)

= τ(p;x, y)

From this formulation, we can see that the binary test
vector can be calculated with a fully-connected layer whose
weight matrix w is built as follows. For all the binary tests
τ(p;xi, yi) indexed with i, 1 ≤ i ≤ nd, we set the weights

wixi
= 1, wiyi

= −1, wij = 0, j 6= xi, j 6= yi. In other words,
each neuron of the output of the fully-connected layer (i.e.,
each neuron of the binary code) is connected with exactly two
neurons of the input of the fully-connected layer (two pixels on
which the binary test will be applied), one with the weight +1,
and the other with the weight −1, see Figure 1-a (bottom). The
biases are set to 0. What is left is to set the activation function
of this fully-connected layer to sigmoid, and the output of the
whole network (when rounded to the nearest integer) will be
the BRIEF descriptor of the input patch.

For Step 2, we use a decoder network consisting of a fully-
connected layer (to mirror the network from Step 1), and
several convolutional layers followed by upsampling until we
reach the output of half of the size of the original patch.
Learning to decode into a downsampled patch makes the
autoencoder more resistant to Gaussian noise and, to some
extent, to geometric noise. Step 3 involves training with
artificial geometric noise added to the input patches while
leaving the output patches the same. This should further
increase descriptor’s resilience to geometric noise such as ro-
tation, translation, and shearing. Our results from the HPatches
benchmark in the following section show that this step is quite
effective in making our descriptor resistant to these kinds of
geometric noise. The descriptor obtained from this step only
differs in its weights from the BRIEF descriptor implemented
as a CNN (from Step 1). In the final step, one would then
apply further training with respect to a particular dataset,
such as MRI images or multimodal macro photography. These
applications, however, are beyond the scope of this paper and
have been left to future work.

We set binary cross-entropy as the loss function L. We use
Adadelta optimiser for all neural networks in this paper. The
networks are trained on a dataset of 80k 56× 56 patches that
were extracted from the images from the Imagenet dataset
using FAST (Features from Accelerated Segment Test) algo-
rithm for feature detection [23]. The ratio between training,
validation, and test set is 8 : 1 : 1. Our implementation is
written in Keras and is publicly available.1

IV. RESULTS

We evaluate the performance of our learned BRIEF in
comparison with the original BRIEF descriptor, as imple-
mented in the OpenCV library. The evaluation is performed
on HPatches [1], a comprehensive benchmark for evaluating
local image descriptors’ performance on three different tasks
(patch retrieval, image matching, and patch verification), each
with varying difficulty levels (’easy’, ’hard’ and ’tough’ –
referring to the amount of geometric noise, as defined in [1]).
We consider all tasks and difficulty levels. Table I summarises
the results on all three tasks in terms of the mean Average
Precision (mAP)2, and in the following we discuss them more
in detail.

1https://github.com/nimpy/learned-brief
2For a formal definition of mAP, we refer the reader to paper of Balntas

et al. (author of the HPatches dataset) [1].

https://github.com/nimpy/learned-brief


TABLE I
EVALUATION ON HPATCHES DATASET

Original BRIEF Learned BRIEF
Patch retrieval (mAP) 0.21 0.29
Image matching (mAP) 0.070 0.081
Patch verification (mAP) 0.68 0.68

The patch retrieval task tests how well a descriptor can
match a query patch to a pool of patches extracted from
many images, including many distractors. Figure 2 shows the
performance of BRIEF and learned BRIEF for different sizes
of test dataset (i.e., different sizes of the pools of patches
in which the matching patches are searched for), comparing
performances on all three difficulty levels. Our learned BRIEF
shows improvement over the original BRIEF for each difficulty
and for each size of pool of patches. Based on the results
from the benchmark (as shown in Figure 2), we conclude
that learned BRIEF outperforms BRIEF by a constant margin
irrespective of the amount of geometric noise. The most
influential factor is rather the size of the pool of patches –
we observe the largest improvement on smaller pools that are
typical in tasks such as panorama stitching, object tracking,
and inpainting. Learned BRIEF remains superior to BRIEF
also on large pools of patches and after a certain pool size
(above ∼10000 patches) the improvement stabilises.
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Fig. 2. Performance comparison on patch retrieval task between BRIEF and
learned BRIEF.

The image matching task tests to what extent a descriptor
can correctly identify correspondences in two images based
on a pair of patches – one patch from each of the images.
Our results for this task are shown in Figure 3. Similar to the
previous task, the amount of geometric noise is varied. The
results show that learned BRIEF also outperforms BRIEF on
the image matching task. We observe again that the amount
of geometric noise does not influence the improvement. In all
cases, learned BRIEF outperformed the original BRIEF.

The patch verification task measures the ability of a de-
scriptor to classify whether two patches match, i.e., whether

m
A

P
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Fig. 3. Performance comparison on image matching task between BRIEF
and learned BRIEF.

they are extracted from the same measurement, as defined in
the benchmark. On this task, we observe equal performance
of both descriptors.

We show in Figure 4 examples of retrieved patches, com-
paring learned BRIEF with BRIEF. These patches have been
taken from a subset of the HPatches dataset. We compare the
encoding of a query patch (showed larger in the figure), with
the encodings of other patches, using both the original BRIEF
descriptor and our learned BRIEF. We have observed that in
most cases, the first patch retrieved by our descriptor is a
much better match than the first patch retrieved by the orig-
inal BRIEF. Furthermore, we have observed that the original
implementation generally retrieves a visually dissimilar patch
within the first five retrieved patches. This characteristic was
not present in learned BRIEF.

V. CONCLUSION AND FUTURE WORK

In brief, we introduced in this paper a framework for
transferring knowledge from a hand-crafted descriptor to an
unsupervised-learning–based descriptor. We demonstrated the
use of this framework by creating the learned BRIEF de-
scriptor based on the BRIEF hand-crafted descriptor. Further-
more, we proposed an elegant implementation of BRIEF as
a convolutional neural network. Using HPatches benchmark
for evaluating local image descriptors, we showed that our
learned BRIEF descriptor outperforms consistently the original
BRIEF.

This paper acts as a proof of concept of our framework
for knowledge transfer from hand-crafted descriptors, showing
that a learned descriptor created in this way can outperform its
hand-crafted counterpart. In the future, we will investigate this
framework’s applicability to other hand-crafted descriptors,
including the widely used SIFT descriptor, which is still
among the best performing ones.
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