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Abstract—Sparse representation based methods have demon-
strated their superior performance in target detection tasks com-
pared to more traditional approaches such as matched subspace
detectors and adaptive subspace detectors. However, the existing
sparsity-based target detection methods were mostly formulated
for and validated on a single imaging modality (sometimes with
multiple spectral bands). In many application domains, including
art investigation, multimodal data, acquired by different sensors
are readily available, and yet, efficient processing techniques for
such data are still scarce. In this paper, we propose a sparsity-
based multimodal target detection method that processes jointly
the information from multiple imaging modalities in a kernel
feature space, and making use of the spatial context. We develop
our target detector such to be robust to errors in labelled data,
which is especially important in applications like digital painting
analysis, where pixel-wise manual annotations are unreliable.
We apply the proposed method to a challenging application of
paint loss detection in master paintings and we demonstrate its
effectiveness on a case study with multimodal acquisitions of the
Ghent Altarpiece.

Index Terms—Sparse representation, target detection, paint
loss, kernel, multiple imaging modalities.

I. INTRODUCTION

D IGITAL painting analysis has made vast progress over
the recent years, powered by a wide range of new

image acquisition techniques [1]. Numerous tasks, such as
characterization of painting style and forgery detection [2, 3],
crack detection [4–7], authorship identification [8], classifi-
cation of ancient coins [9], thread count analysis (of canvas
supports) [10] and portraits [11], indexing of cultural heritage
collections [12], colorization of historical art pieces [13],
removal of canvas texture [14], source separation [15] and
inpainting [16, 17], have demonstrated the great potential of
digital image processing and machine learning in art investiga-
tion. Multimodal imaging is now routinely employed in order
to support the technical study of art works [6, 15], their restora-
tion, conservation, and even presentation. Consulting different
modalities of the same object often aids in uncovering regions
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Fig. 1. Examples of paint loss in the macrophotography after cleaning.
Left: original painting. Right: enlarged paint loss. Image copyright Ghent,
Kathedrale Kerkfabriek; photo courtesy of KIK-IRPA, Brussels.

or patterns of interest that would otherwise remain unnoticed,
offers new insights and support for specific decisions that are
taken during restoration treatments [17].

We address the problem of paint loss detection in digitized
paintings and we formalize it as a particular instance of more
general target detection from multimodal data. Our goal is
thus to discriminate paint loss pixels, i.e. the target, from the
non paint loss or background pixels in an automatic fashion.
Paint losses in oil paintings are typically caused by abrasion
or mechanical fracture and are often retouched or overpainted
during numerous restoration campaigns. Modern conservation
treatments typically require the removal of old varnish as
well as old retouches and overpaint, revealing paint loss, such
as in the examples shown in Fig. 1. The paint loss regions
can vary significantly in size, from very tiny areas to larger
holes or areas of missing paint, and typically have complex
and irregular shapes. Detection of such paint loss areas is
of great importance to conservators in estimating the extent
of the damage within the painting, which is required for
documentation purposes on one hand, but is also a crucial step
in the virtual inpainting of the painting’s digital counterpart.
The latter can act as a simulation within a decision-making
process before the actual restoration. Digitized scans of works
of art are often taken in different modalities during treatment,
as shown in Fig. 2. This allows painting conservators to locate
various areas of interest, such as overpaint and retouchings,
as well as paint losses, in a more reliable way. In general,
locating these areas is a very tedious procedure, especially
in larger paintings, and is often only done approximately or
in relatively small areas. Despite its importance, the problem
of automatic paint loss detection has received little attention
in the literature so far. Besides our earlier preliminary results,
reported in two conference abstracts [18, 19], we are not aware
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Fig. 2. Examples of imaging modalities acquired at different restoration stages of the Ghent Altarpiece depicting a detail of the panel Prophet Zacharias.
(a) Macrophotography before cleaning. (b) Macrophotography after cleaning. (c) infrared macrophotography before cleaning. (d) Infrared reflectography after
cleaning. (e) X-radiography before cleaning. Image copyright Ghent, Kathedrale Kerkfabriek; photo courtesy of KIK-IRPA, Brussels.

Fig. 3. Scatter plot of RGB values of randomly selected paint loss and
background pixels in a macrophotograph after cleaning, shown in Fig. 2 (b)
(red: paint loss; blue: background).

of any elaborate technical studies on this subject.
The detection of paint loss areas is particularly challenging

due to their large variation in shape, size and intensity as well
as their complex background, as illustrated in Fig. 2 (b). The
scatter plot in Fig. 3 depicts the distribution of RGB values for
randomly selected paint loss and background pixels extracted
from the painting in Fig. 1. Clearly, it is not trivial to separate
these two classes of pixels based on their color alone. We shall
make use of multimodal data, such as the examples illustrated
in Fig. 2, and our method will be formulated such to admit an
arbitrary amount and type of imaging modalities, as they can
differ from one painting to another.

Detecting paint loss areas can be seen as an instance of
the more general target detection problem, where the pur-
pose is to distinguish a particular target of interest from the
background. More specifically, the target can be a signal in
a communication channel, landmines in hyperspectral images,
vehicles and pedestrians in videos or thermal images, etc. The
background can consist of interfering communication channels
or the union of different non-target background classes. When
only the background information is known, the corresponding
problem is called anomaly detection. For the task of paint loss
detection, some prior information of target and background is
typically available in the form of labelled samples that can
be used to model and estimate the statistical characteristics of
both classes. In the next section, we will refer to the general

formulation of target detection. Generally, target detection
can be formulated as choosing between the two competing
hypotheses H0 : “target absent” and H1 : “target present”.
It is important to understand that in different applications the
targets’ appearance may have different correlations with the
background. For the tasks of vehicle or pedestrian detection
in video sequences, the target and the background are usually
in different, yet relatively well separated subspaces, showing
substantially different characteristics, and typically one cannot
be represented by the other. On the contrary, in radar systems,
where the background is a structured interference in the com-
munication channel, the observed target signal is represented
by a sum of the ideal target signal, background interference
and noise. In other words, in the former type of the detection
problem, the observed target replaces the background while
in the latter one the observed target is a combination of an
ideal target and the background. The application that we shall
address is of the former type, and in particular relates to the
detection of target pixels in images. Although the framework
that we develop will be for compactness represented for this
particular case (target replaces the background), the whole
approach can be readily extended to the second case as well
(where the target is a combination of the background and
“pure” target pixels). The appropriate remarks in this respect
will be given at the corresponding places in the paper.

Well-known statistical detectors include the Neyman-
Pearson detector [20, 21], spectral matched filters [22],
matched subspace detector [23], and adaptive subspace de-
tectors [24]. These methods calculate a detection statistic,
which is then compared to a threshold value to determine
whether a target is present. Typically, the explicit distribution
characteristics of the target and background are assumed and
then likelihood ratio (LR) or the generalized likelihood ratio
test (GLRT) are employed to develop the detectors. However,
the assumptions with respect to the probability distribution
and covariance matrix of both the target and background may
not always be representative for real world data, leading to a
deteriorated performance in practice.

Methods based on sparse representation, which are widely
employed in applications such as face recognition [25], hy-
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perspectral image (HSI) classification [26], HSI unmixing
[27] and denoising [28], have been increasingly used in
target detection too following the seminal work [29]. Recent
representatives include [30–33]. The common underlying idea
is that each test sample can be sparsely represented as a linear
combination of a few prototype samples (commonly referred
to as atoms) from a well-designed dictionary. When the dic-
tionary atoms are selected from labelled training samples, the
sparse coefficients of a test sample provide directly the infor-
mation about the likely class labels. This approach is known as
sparse representation classification (SRC) [25]. Sparsity-based
target detection methods have been successfully employed
in a wide range of tasks, including landmine detection [29]
and vehicle detection [30, 31] from HSIs, defect detection in
semiconductor units [32] and detection of underwater targets
with sonar images [33, 34].

The target detection methods described above were mostly
formulated and validated on a single imaging modality (typ-
ically with multiple spectral bands). Nowadays, multimodal
data are routinely acquired by various sensors and leveraging
their complementary information can help in discriminating
better between target and background. Existing multimodal
learning algorithms have demonstrated superior performance
in clustering [35, 36], classification [37–39], image super-
resolution [40], source separation [15] and event detection [41]
tasks. In this paper we first introduce a general sparsity-based
multimodal target detection method, which we then tailor for
the task of paint loss detection. The information from multiple
imaging acquisitions is projected to a high-dimensional kernel
feature space, which facilitates discriminating between target
and background and at the same time avoids the need of
constructing dictionaries in the explicit projected feature space.
In addition, we make use of the spatial context to model the
spatial dependencies among neighbouring pixels. An important
aspect of our work is dealing with erroneous labelled data.
To increase the robustness to errors in labelled data, we
propose a simple and elegant multi-pass scheme, which makes
the detection more robust to imperfect training. As a case
study, the proposed method is evaluated on a very high-
resolution multi-modal data set comprising digital scans of the
Ghent Altarpiece, acquired during the restoration/conservation
treatment of this masterpiece. The main contributions of the
paper can be summarized as follows:

1) A multimodal target detection method based on sparse
coding is proposed that makes effective use of the rich
information from multimodal data to discriminate better
between the target and the background. An effective
method based on a kernel function is devised to im-
plicitly project the fused features to a high-dimensional
feature space where the target and background classes
can be better separated by extracting the intrinsic non-
linear information from the complex data structure.

2) The spatial dependencies among the neighbouring pixels
are exploited by applying a smoothing filter on the
residual maps derived from a kernel sparse represen-
tation problem, improving thereby the accuracy and
the reliability of the detection. While discontinuity-

adaptive filtering has been widely employed in image
enhancement, we show how it can significantly improve
the performance of sparsity-based target detection, by
filtering appropriately the class-specific residuals of the
sparse approximation.

3) We design and thoroughly evaluate a multi-pass strategy
in our multimodal target detection approach to alleviate
the adverse effect of erroneous labeled training sam-
ples, which contaminate the constructed dictionaries. At
the same time, this approach lowers the computational
complexity, avoiding the need to store and process large
dictionaries all at once.

4) The proposed method is tailored to the specific task of
paint loss detection in paintings for which we extended
the detection method to automatically discard cracks (as
an unwanted pseudo-target class). To our knowledge,
this is the first technical paper (apart from our earlier
conference abstract) to address this important problem
in digital painting analysis. The case study on the
Ghent Altarpiece illustrates clearly the effectiveness of
our method in this task and its superior performance
compared to existing statistical and sparse-representation
based target detection methods. We also prove a wider
applicability of the proposed method to other detection
tasks.

The rest of this paper is organized as follows. Section II
reviews briefly the relevant classical target detectors. Section
III presents the proposed target detection method in general,
and Section IV describes an extended formulation to a specific
task of paint loss detection. Experimental results and analysis
with a case study on the Ghent Altarpiece are presented in
Section V. This Section includes also a generalization study
with a different detection task, namely target detection in a
hyperspectral image. The conclusions are drawn in Section
VI.

II. TARGET DETECTION BASED ON SPARSE CODING

Here we review briefly classical matched subspace detec-
tion, and then we turn to sparsity based detectors and their
representatives. We refer to the detection of target pixels in
images. For compactness, the indices denoting the spatial
location of pixels are suppressed. Let x ∈ Rm denote an input
sample. In particular, in the following analysis this is a vector
composed of pixel values in m image channels.

A. Matched Subspace Detectors

Matched Subspace Detectors (MSD) [23] assume two lin-
early independent subspaces: the background and the target
subspace, and formulate the detection problem as follows:

H0 : x = Bβ0 + n, target absent
H1 : x = Tα1 + Bβ1 + n, target present (1)

where B and T are two matrices that describe the background
and target subspaces, (composed of the eigenvectors of the
background and target covariance matrices), and α1, β0 and
β1 are unknown coefficient vectors. The noise n is drawn from
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the normal distribution N [0, σ2I] with unknown σ and thus
the detection problem stated above becomes:

H0 : x ∼ N [Bβ0, σ
2I], target absent

H1 : x ∼ N [Tα1 + Bβ1, σ
2I], target present (2)

Under this model, the resulting GLRT yields

TMSD(x) =
xT (I−PB)x

xT (I−PTB)x
(3)

where PB and PTB are the projection matrices associated
with the background subspace and the target-and-background
subspace, respectively:

PB = B(BTB)−1BT (4)

PTB = [T,B]([T,B]
T

[T,B])−1[T,B]
T
. (5)

When TMSD(x) is larger than a prescribed threshold δ, the
test sample is labelled as target; otherwise, it is labelled as
background.

Adaptive Subspace Detectors (ASD) [24] adapt the matched
subspace detectors to unknown noise covariance matrices. The
detection model is formulated as follows:

H0 : x = v, target absent
H1 : x = Tθ + σv, target present. (6)

T is again the target matrix, whose columns are linearly
independent vectors that span the target space. The scaled
backround noise v under H1 allows to model elegantly sub-
pixel targets where part of the background is not masked by
the target. Under these hypotheses, the GLRT of ASD results
in the following detector:

TASD(x) =
xTΣ−1T(TTΣ−1T)−1TTΣ−1x

xTΣ−1x
, (7)

where Σ is the estimated background covariance matrix. When
the target subspace T is specified by the direction of a single
vector t, the particular version of ASD is called adaptive
cosine estimator (ACE) [42]:

TACE(x) =
(tTΣ−1x)2

(tTΣ−1t)(xTΣ−1x)
. (8)

B. Sparse Representation-based Target Detectors

Similarly to the matched subspace detectors, sparse repre-
sentation based target detectors (STD) [29, 30], also model a
test sample to lie in a union of background and target sub-
spaces. Unlike MSD, the STD model imposes no assumption
about the particular target and background distributions. The
STD model in [29] starts from a general assumption that if
x is a background pixel, its spectrum approximately lies in a
lower-dimensional subspace spanned by background training
pixels {db

i}i=1,...Nb
, and similarly if x is a target pixel, its

spectrum approximately lies in a lower-dimensional subspace
spanned by the target training pixels {dt

i}i=1,...Nt
. Formally:

H0 : x = Dbαb + n1, x is a background pixel
H1 : x = Dtαt + n2, x is a target pixel, (9)

where Db ∈ Rm×Nb and Dt ∈ Rm×Nt are the background
dictionary and the target dictionary, the columns of which are
the background training samples and the target training pixels,
respectively. αb ∈ RNb and αt ∈ RNt are sparse vectors,
the entries of which are the abundances of the corresponding
dictionary atoms, and n1 and n2 are (arbitrarily distributed)
noise vectors. Similarly to the MSD model, an unknown test
sample is modelled to lie in the union of the two subspaces,
and is thus represented by a linear combination

x = Dbαb + Dtαt = Dα (10)

where x = Dα, and D = [Dt,Db] is a composite dictionary
consisting of both the background and target samples. The
sparse vector α = [αb,αt] is estimated as follows

α̂ = arg min
α
‖x−Dα‖2 s.t. ‖α‖0 < K0, (11)

where ‖α‖0 denotes the number of non-zero elements in α,
and the constant K0 is the maximum sparsity level. This
recovery problem implicitly leads to a competition between
the two subspaces [29], i.e., to a competition between the
two hypotheses in (9). For the background pixels, ideally the
estimated α̂t part will be a zero vector and α̂b a sparse vector.
The opposite is true for the target pixels. Hence, the detector
output is defined as the difference between the two residuals
rb(x) = ‖x−Dbα̂b‖2 and rt(x) = ‖x−Dtα̂t‖2:

TSTD(x) = rb(x)− rt(x) (12)

The class label is then obtained by comparing the value of
TSTD to a prescribed threshold δ. In case δ = 0, the STD
method reduces to the SRC method.

The approach of [30] extends the STD detector cleverly
to a more general case where the target pixels are a mixture
of “pure” target and background pixels. This situation arises
in the case of subpixel target detection, which is common
in hyperspectral imaging, due to the relatively small spatial
resolution. In this case, the model in (9) is extended as

H0 : x = Dbαb + n1, target absent
H1 : x = Dbγb + Dtγt + n2, target present (13)

Correspondingly, the target residual rt in (12) is obtained as
rt(x) = ‖x−Dγ̂‖2, and the sparse codes α̂b and γ̂ = [γ̂b, γ̂t]
are estimated separately solving the problems of the type (11).
For details, the interested reader is referred to [30]. Since we
are not dealing with subpixel classification in our application,
we shall not discuss this model further. It should be noted,
however, that the multimodal sparse detector that we develop
in the next section, starting from the original STD model, can
also equivalently be developed starting from the model in (13).

III. KERNEL-DOMAIN MULTIMODAL STD

We develop here a general multimodal target detection
method based on sparse coding, which makes use of the
information coming from multiple imaging modalities in a
kernel feature space and takes into account the inherent spatial
context of the input image. The overall method comprises two
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parts: data preprocessing and target detection. In the following,
we describe first the formation of the test samples from the
input multimodal data, then we present the proposed target
detection in a kernel feature space, and finally incorporate
this method into a multi-pass scheme to mitigate the effect
of unreliable label data.

A. Data preprocessing

Typically, multi-modal imaging data is acquired by dif-
ferent devices and the acquired images often have different
resolutions. We are interested in target detection up to pixel-
level accuracy. Thus pixel-perfect alignment of the different
image modalities is required. We use for this purpose a joint
photometric and geometric image registration technique [43]
and denote by X i ∈ RM×N×di(i = 1, 2, ..., n) the i-th
available image modality, where M and N are the spatial
dimensions of the data.

We concatenate all the imaging modalities X i to form a 3-
D data cube X ∈ RM×N×m with m =

∑n
i=1 di, and denote

by X ∈ Rm×MN the corresponding data reshaped to a 2-D
matrix. Each column in this matrix is a vector of pixel values
at a given spatial location in all the modalities. To increase
robustness to noise, we assign to each pixel also the values of
pixels from a small w × w spatial window around it. These
vectorized pixel values across all the modalities constitute a
new sample x ∈ Rd, where d = mw2, and we suppress the
location index for compactness and clarity.

B. Target detection in kernel feature space

The target and background classes in the fused data space
may be difficult to separate by linear detectors such as ACE,
MSD and STD. An efficient way to approach this problem
is to project the data into a higher-dimensional feature space
by using a non-linear mapping function, where the structure
of the non-linear data becomes more apparent and different
classes become better separated. A non-linear mapping with
a kernel function can effectively group data points within the
same distribution and make them linearly separable [44–48].
We project the fused data sample x to a high-dimensional
feature space, F , by an implicit mapping function φ : Rd →
F ⊂ Rd̂. The kernel function, κ : Rd × Rd → R is defined
as the inner product:

κ(x,y) = 〈φ(x), φ(y)〉, (14)

We utilize a commonly used radial basis function (RBF) with
the Gaussian kernel:

κ(x,y) = exp(−‖x− y‖2

σ
), (15)

where σ > 0 is a parameter to control the width of the RBF.
While the sparsity detector STD described in Section II

models the data linearly, we use the kernel function to first
map the observed test sample into a high-dimensional feature
space. The two competing hypotheses are now expressed as:

H0 : φ(x) = φ(D0)α0 + φ(n0), background pixel
H1 : φ(x) = φ(D1)α1 + φ(n1), target pixel (16)

Fig. 4. Smoothing of the residual cube.

where φ(D0) and φ(D1) are the background and target
subspaces in F , respectively, and α0 and α1 are the cor-
responding sparse coefficients, which are obtained by solving
the following optimization problem:

α̂ = arg min
α=[α0;α1]

‖φ(x)− φ(D)α‖2 s.t. ‖α‖0 < K0, (17)

where φ(D) = [φ(D0), φ(D1)] = [φ(d1
0), ..., φ(dN1

0 ),
φ(d1

1), ..., φ(dN2
1 )]. D0 is a sub-dictionary constructed by the

selected training samples di
0 ∈ Rd from the background and

D1 is another sub-dictionary constructed by the selected target
training samples di

1 ∈ Rd. We solve this problem by the kernel
orthogonal matching pursuit (KOMP) algorithm [49]. Once the
sparse coefficients are calculated, we obtain the class-specific
residuals as follows:

ri(φ(x)) = ‖φ(x)− φ(Di)αi‖2
= 〈φ(x)− φ(Di)αi, φ(x)− φ(Di)αi〉1/2

= (κ(x,x)− 2αT
i KDi

+αT
i KDiDi

αi)
1/2, (18)

where KDi
= [κ(d1

i ,x), · · · ,κ(dNi
i ,x)]T ∈ RNi and

KDiDi ∈ RNi×Ni is a matrix with entries KDiDi(s, t) =
κ(ds

i ,d
t
i). We collect all the residuals and denote R ∈

RM×N×2 as the residual cube, where M × N is the input
image size.

Typically, the target and background are not scattered as
isolated pixels in the image but tend to form homogeneous
regions. This means that neighbouring pixels in local regions
belong to the same class with high probability and thus have
similar sparse coefficients. In order to capture this property,
we apply a smoothing filter on each layer of the residual cube
Ri ∈ RM×N (i = 1, 2). Specifically, we use a discontinuity-
adaptive filtering technique based on weighted least squares
(WLS) [50], which has been proved effective in enhancing
digital photographs. In our setting, this means replacing the
original residual cube R with its smoothed version R̄, as
shown in Fig. 4. Formally, we solve the following optimization
problem:

min
∑
i

‖Ri − R̄i‖2F + λ(‖AxDxR̄i(:)‖2 + ‖AyDyR̄i(:)‖2),

(19)

where the matrices Dx and Dy are the discrete differentiation
operators in the horizontal and vertical directions, respectively,
and Ax and Ay are the diagonal matrices that contain the



IEEE TRANSACTIONS ON IMAGE PROCESSING 6

adaptive smoothing weights in the corresponding directions.
The unique solution is given by

R̄i(:) = (I + λLg)−1Ri(:), (20)

where Lg = DT
x A2

xDx + DT
y A2

yDy is a Laplacian matrix.
Following the general edge-adaptive filtering strategy of [51],
smoothing weights are defined in terms of the discrete gradi-
ents of a reference image L, which in our case leads to:

Ax = Diag((|DxL(:)|a + ε)−
1
2 ) (21)

Ay = Diag((|DyL(:)|a + ε)−
1
2 ), (22)

where ε is a small constant, the exponent a determines the
sensitivity to the gradients of L and Diag(·) returns a diagonal
matrix with the input vector as the main diagonal. Using the
smoothed residual R̄, we construct the detector test as:

T (x) = r̄0(φ(x))− r̄1(φ(x)), (23)

where r̄i(φ(x)) is the i-th class residual of x in R̄. We
label the test sample by comparing the value of T (x) with
a prescribed threshold δ as follows:

class(x) =

{
1 T (x) > δ

0 otherwise.
(24)

The proposed approach can be readily generalized to the
case where target is a combination of background and “pure”
target pixels. In this case the hypotheses formulation (13) will
be converted to the kernel version analogously to (16). The
resulting sparse codes α̂b and γ̂ then follow from solving
a sparse coding problem of the same form as (17) with the
dictionaries Db and D, respectively, to be finally employed in
calculating the class residuals for the target and background.

C. Majority voting

The statistics of the target and background classes are in
many cases of practical interest estimated solely based on the
available annotated data. Erroneous annotations will thus have
an adverse effect on inferring discriminative characteristics of
the target class compared to the background class, especially
when the amount of training target samples is relatively small.
Thus a precise data annotation is essential to the task of target
detection, especially when only a few target pixels are present
in the input image. However, manual annotations are rarely
precise up to the pixel level. To solve this problem, instead of
a single-pass detection, we develop a multi-pass scheme where
we perform multiple detections based on different random
selections of training samples followed by a majority voting
strategy. This yields a more robust detection in the presence
of incorrectly labelled pixels.

Let K denote the number of algorithm runs, each using a
different portion of the labelled data set as training samples.
This yields K detection results for each pixel. Let Nc(x)
denote the number of times that x was assigned to class c.
We select the identity (class) of each pixel as:

identity(x) = arg max
c

Pe(Class(x) = c) (25)

Fig. 5. Examples of cracks and paint loss in old master paintings. Image
copyright Ghent, Kathedrale Kerkfabriek; photo courtesy of KIK-IRPA,
Brussels.

where Pe(Class(x) = c) = Nc(x)/K is the empirical
probability for a pixel to belong to class c ∈ {Target,Other}.

Apart from improved robustness to erroneous annotation,
the proposed majority voting scheme offers two other ad-
vantages. Firstly, this approach allows us to better deal with
cases where labelled samples are not available for the input
image, but we have access to K similar annotated images.
The majority voting process over the K runs will effectively
cope with outliers caused by larger differences in statistical
properties of some of the annotated images compared to the
input one.

Secondly, the proposed majority voting approach solves
efficiently a trade-off between the expressiveness of the dic-
tionary D (which increases with its size) and the complexity
(which also increases when D is larger). An alternative is
uniform random sampling of the training data as in [52–55],
but this approach may result in a biased estimation of the
characteristics of the involved classes. Our multi-pass scheme
does not suffer from this problem.

IV. KERNEL STD METHOD FOR PAINT LOSS DETECTION

In order to apply the developed general multimodal target
detection method to paint loss detection, we introduce an
extension to be able to distinguish paint loss from crack
patterns. Cracks are treated differently than paint loss by
restorers. Typically, paint loss will be documented and repaired
but cracks, as an ageing sign of paintings, will be preserved
without any treatment. Fig. 5 shows examples of crack and
paint loss in old master paintings. Observe that they appear
very similar. When applying directly the developed target
detection method, these cracks will be detected as target rather
than left in the background. To differentiate cracks from areas
of paint loss, we can either perform post-processing with crack
detection methods [4–7] or assign crack pixels to a particular
class. We opt for a unified framework based on a sparse repre-
sentation rather than relying on postprocessing. Therefore, we
need to extend the previously described approach to account
for an extra class.

Here we introduce a crack compensation module. Next to
the dictionary D0 (background) and D1 (paint loss) in (16),
we now construct an additional sub-dictionary D2 for cracks,
resulting in a new dictionary D = [D0,D1,D2]. Each sub-
dictionary is constructed by the corresponding training sam-
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Algorithm 1 Main algorithmic steps for paint loss detection
1: Input: An input matrix X ∈ Rd×MN containing a set of
samples{xi}MN

i=1 in the fused data from multiple imaging
modalities; dictionary D and K0.

2: For j=1:MN

3: Calculate sparse coefficients αj for the test sample xj

by solving (26)

4: end

5: Obtain Z by (29) and R
′

by (18) and (27)

6: Calculate R̄
′

by (20) with the input R
′

and obtain M
′

by (24).

7: Obtain final detection map, M, by (30).

8: Output: Detection map M.

ples. The corresponding sparse coefficients α = [α0;α1;α2]
are obtained by solving the following optimization problem:

arg min
α
‖φ(x)− φ(D)α‖2 s.t. ‖α‖0 < K0. (26)

The two sub-dictionaries D0 and D2 form together a new
background dictionary, i.e., the classes other than the desired
target. The corresponding residual error r′0(φ(x)) is

r̄′0(φ(x)) = ‖φ(x)− φ(D0)α0 − φ(D2)α2‖2
= 〈φ(x)− φ(D0)α0 − φ(D2)α2, φ(x)

− φ(D0)α0 − φ(D2)α2〉1/2

= (κ(x, x)− 2αT
0 KD0 − 2αT

2 KD2

+ 2αT
0 KD0D2

α2 +αT
0 KD0D0

α0

+αT
2 KD2D2α2)1/2 (27)

The residual error r1(φ(x)) with respect to dictionary D1

is calculated as in (18) with i = 1. R
′ ∈ RM×N×2

denotes the residual cube where R
′
(i, j, 1) = r′0(φ(xi,j)) and

R
′
(i, j, 2) = r1(φ(xi,j)) and R̄

′
the smoothed version of R

′
.

The corresponding detector becomes:

T (x) = r̄′0(φ(x))− r̄1(φ(x)). (28)

Let M′ ∈ RM×N denote a paint loss map obtained by
applying to each pixel the classification rule (24) with T (x)
from (28). Due to the smoothing operation that was applied to
the residual cube, certain cracks crossing the paint loss regions
may be labelled as paint loss. Therefore we refine the paint
loss map using a binary crack map Z ∈ RM×N obtained by

Zi,j =

1 arg min
k=0,1,2

rk(φ(xi,j)) = 2

0 otherwise.
(29)

The final paint loss map is

M = M
′
� Z̄, (30)

where Z̄ is the complement of Z and � is an element-wise
multiplication. The proposed paint loss detection method is
summarized in Algorithm 1.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the proposed method in a real
application, detecting paint loss in the Ghent Altarpiece during
its ongoing restoration treatment.

A. Data set and experiment setting

The Ghent Altarpiece, also known as The Adoration of the
Mystic Lamb, is by art scholars considered as one of the
most influential masterpieces in the history of art [56]. This
monumental polyptych on wood panels was painted by the
brothers Hubert and Jan van Eyck in 1432. Digitized images
of the Ghent Altarpiece are publicly available in very high res-
olution on the website Closer to Van Eyck: Rediscovering the
Ghent Altarpiece1, which is the result of an interdisciplinary
research project, with the goal to investigate the structural
condition of the Ghent Altarpiece and determine whether a full
restoration of Van Eyck’s polyptych was necessary [17]. Dur-
ing the following conservation campaign, several multimodal
acquisitions at different stages of the project were captured to
document the surface of the altarpiece, including macropho-
tography and infrared macrophotography, both at a resolution
of 7.2 µm, infrared reflectography and X-radiography. Several
images were selected to test the performance of our method,
and all annotations on the images used in our experiments were
made by painting conservators currently treating the Ghent
Altarpiece.

We use the following methods as reference for comparison:
MSD, ACE (a special case of ASD), SVM with the RBF
kernel, STD, SRC and two recent methods: multimodal feature
learning (MFL) [41] and matched subspace classifier (MSC)
[34]. MFL learns discriminative features from multimodal
data and feeds the learned features into an SVM classifier
to identify the target. MSC learns separately a background
dictionary and a target dictionary with the K-SVD algorithm
to model the associated background and target subspaces, and
formulates a sparsity-based detector based on the resulting
dictionaries. For paint loss detection, we set the window size to
3× 3 and δ to zero in our proposed method. These parameter
values were optimized experimentally and their choice does
not appear critical in a rather wide range (see Fig. 9). We
utilize the macrophotography during treatment as the reference
image L in (21) and (22), and set λ = 0.4, a = 0.9 and
ε = 0.0001 empirically. For STD, we report the optimal results
by tuning δ. When δ = 0, STD reduces to SRC. We thus refer
to our method with kernel function and spatial filtering as
SRC-KF.

We adopt the overall accuracy (OA) and the Kappa coeffi-
cient (κ) as the quantitative measures, and we also report the
Producer’s and User’s Accuracies. Let ni,j be the number of
samples in class i that are labelled as class j by the detector.
Producer’s Accuracy and User’s Accuracy for the i-th class
are then pi = ni,i/ni,+ and ui = ni,i/n+,i, respectively.
ni,+ =

∑
j ni,j is the number of samples in class i and

n+,i =
∑

j nj,i is the number of samples that are identified
as class i. Producer’s Accuracy indicates the class-specific

1http://closertovaneyck.kikirpa.be/
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TABLE I
RESULTS OF DIFFERENT METHODS ON THE IMAGE PATCH OF John the Evangelist.

Methods MSD ACE STD SVM SRC MFL MSC SRC-KF

Producer’s Accuracy P 48.10 37.98 74.16 62.81 76.78 66.21 56.11 82.05
N 83.49 91.15 89.00 93.86 87.39 92.04 93.70 92.61

User’s Accuracy P 46.53 56.65 66.77 81.10 64.45 74.18 72.60 76.84
N 84.43 83.18 92.07 85.64 92.69 88.57 87.84 94.56

OA 75.39 78.98 85.60 84.60 84.96 85.27 85.10 90.19
κ 0.3119 0.3297 0.6078 0.6051 0.6012 0.6016 0.5391 0.7289

Fig. 6. Selected image patch from John the Evangelist in the Ghent Altarpiece. (a) Macrophotography after cleaning (b) Ground truth and detection maps
of different methods obtained by (c) MSD, (d) ACE, (e) STD, (f) SVM, (g) SRC, (h) MFL, (i) MSC and (j) SRC-KF. Paint loss is marked in red. Image
copyright Ghent, Kathedrale Kerkfabriek; photo courtesy of KIK-IRPA, Brussels.

Fig. 7. Selected image patch from the panel Prophet Zacharias in the Ghent Altarpiece. (a) Macrophotography after cleaning (b) Ground truth and detection
maps of different methods obtained by (c) MSD, (d) ACE, (e) STD, (f) SVM, (g) SRC, (h) MFL, (i) MSC and (j) SRC-KF. Paint loss is marked in red.
Image copyright Ghent, Kathedrale Kerkfabriek; photo courtesy of KIK-IRPA, Brussels.
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TABLE II
RESULTS OF DIFFERENT METHODS ON THE IMAGE PATCH OF Prophet Zacharias.

Methods MSD ACE STD SVM SRC MFL MSC SRC-KF

Producer’s Accuracy P 12.83 19.19 25.61 7.85 55.32 7.37 32.89 46.19
N 97.56 99.03 97.84 99.10 89.72 99.28 96.47 97.57

User’s Accuracy P 5.96 19.13 13.06 30.91 6.12 42.71 11.50 19.29
N 98.95 99.04 99.10 91.49 99.41 93.15 99.18 99.35

OA 96.56 98.09 96.99 90.78 89.32 92.56 95.72 96.96
κ 0.0657 0.1818 0.1564 0.0975 0.0908 0.1034 0.1484 0.2563

accuracies and User’s Accuracy reveals what percentage of the
samples that are identified as one class is correctly identified as
that class. OA and κ are computed as OA = 1

nt

∑
i ni,i and

κ = ( 1
nt

∑
i ni,i −

1
n2
t

∑
i ni,+n+,i)/(1 − 1

n2
t

∑
i ni,+n+,i),

where nt =
∑

i,j ni,j is the total number of test samples.
Unless it is explicitly stated otherwise, all the reported results
represent the average performance of ten runs. The training
samples are randomly selected from the regions annotated
by experts. We also report the results of digital inpainting
starting from the different detection masks. The inpainting
results allow additional insights into the actual quality of the
detected paint loss maps.

B. Paint loss detection results

1) Experiment 1: An image patch of size 300 × 300 was
selected from the panel John the Evangelist. We use three
imaging acquisitions in this experiment: infrared macropho-
tography and macrophotography before and after cleaning.
Fig. 6 (a) shows the macrophotography after cleaning and
Fig. 6 (b) shows a manual expert labeling of the paint loss,
which we refer to as the ground truth. The size of the paint
loss areas as well as their color intensity vary significantly. The
number of training samples for each class is set as 80. Table
I reports the comparative results of different methods, where
”P” means positive, i.e., paint loss, and ”N” means negative,
i.e., background. Visual results are shown in Fig. 6.

The proposed method SRC-KF yields the best performance
in terms of OA and κ. The improvement in OA is around 4.6%
relative to STD and more than 5.2% relative to SRC. MFL
employs the representation coefficients as the input to SVM
and shows an improved OA compared to using the original
data. Although MSC adopts dictionary learning strategy to
formulate the background and target subspaces, it performs
comparable to SRC and STD, both of which use labeled
training samples to construct the dictionary. It can be observed
that the detection map of SRC-KF in Fig. 6 (j) contains less
noise-like erroneous detections compared to the other methods
and lies visually much closer to the ground truth in Fig. 6 (b).

2) Experiment 2: We select another image patch of size
300 × 300 from the panel Prophet Zacharias with the same
imaging acquisitions as in Experiment 1. The macrophotog-
raphy after cleaning, shown in Fig. 7, is more challenging
than in the first experiment as the color intensity distribution
of paint loss overlaps substantially with that of some painted
areas. We set the number of training samples to 40 per class.
The optimal results for each method are reported in Table II.

The proposed method SRC-KF achieves the best perfor-
mance in terms of κ. ACE yields the best OA but the
corresponding κ value is much lower compared to SRC-KF.
In this experiment, since the area occupied by paint loss is
relatively small compared to the background, the OA measure
fails to provide a fair quantitative evaluation: even when all
the paint loss is labelled as background, the OA can still be
high. But the value of κ becomes zero. Compared to OA, the κ
evaluation is more relevant in this case. The results in Table II
show that SRC-KF yields a significant improvement over SRC
in terms of κ. The detection maps of SVM, SRC and MFL
in Fig. 7 (e)-(h) display large number of false positives, while
MSC (Fig. 7 (i)) fails to detect even the largest paint losses,
which demonstrates the difficulty of our task on this image.
The proposed method SRC-KF still detects most of the paint
losses that were indicated by the expert and the false detections
align mostly with widened cracks, which also present the areas
of missing paint.

3) Experiment 3: We select a 300 × 300 patch from the
central panel Adoration of the Mystic Lamb with the same
imaging acquisitions as in the previous two experiments.
Fig. 8 (a) and (b) show the macrophotography during treatment
and expert annotation of the paint loss. This dataset is very
challenging as it shows very high similarities between target
and some background areas in terms of color. The number of
training samples is set to 40 per class.

We report the results in Table III and Fig. 8. Clearly, our
method outperforms all the reference ones both in terms of
OA and κ. Observe that STD, MSC and SRC-KF, which are
based on sparse representation, perform better than the other
methods. Although SRC can be viewed as a special case of
STD with δ = 0, its performance here is much worse, which
can be attributed to mixed target and background subspaces.
Our method, even with this fixed threshold δ, yields the result
that adheres best with the ground truth in Fig. 8 (b) and
is much less contaminated by sparse erroneous detections
compared to all other methods.

4) Experiment 4: We train the methods on one panel
and apply them to detect paint losses in another panel. In
particular, we use 40 training samples per class from the
dataset Prophet Zacharias from Experiment 2 and we run the
detections on the dataset John the Evangelist from Experiment
1. Table IV shows the detection results. Our method yields
the best performance both in terms of OA and κ. All the
methods that employ sparse representation: STD, SRC, MFL,
MSC and SRC-KF show better results compared to SVM. It
is also observed that all the performances drop as expected



IEEE TRANSACTIONS ON IMAGE PROCESSING 10

TABLE III
RESULTS OF DIFFERENT METHODS ON THE IMAGE PATCH OF THE Adoration of the Mystic Lamb.

Methods MSD ACE STD SVM SRC MFL MSC SRC-KF

Producer’s Accuracy P 48 38.09 58.52 45.36 70.17 50.16 50.65 79.32
N 81.53 89.45 88.23 91.81 75.66 90.91 88.40 86.61

User’s Accuracy P 41.76 48.45 55.95 72.65 42.43 67.44 52.61 60.65
N 86.04 85.13 89.33 77.73 90.88 82.58 87.57 94.31

OA 74.74 79.04 82.21 76.70 74.55 79.52 80.75 85.14
κ 0.2796 0.2944 0.4594 0.4113 0.3687 0.4431 0.3961 0.5905

Fig. 8. Paint loss detection on a part of the central panel the Adoration of the Mystic Lamb in the Ghent Altarpiece. (a) Macrophotography after cleaning (b)
Ground truth, and detection maps of (c) MSD, (d) ACE, (e) STD, (f) SVM, (g) SRC, (h) MFL, (i) MSC and (j) SRC-KF. Paint loss is marked in red. Image
copyright Ghent, Kathedrale Kerkfabriek; photo courtesy of KIK-IRPA, Brussels.

TABLE IV
RESULTS BY USING THE TRAINING SAMPLES FROM Prophet Zacharias TO DETECT PAINT LOSS IN John the Evangelist.

Methods MSD ACE STD SVM SRC MFL MSC SRC-KF
OA 72.79 68.83 81.62 63.41 81.36 80.33 81.52 85.43
κ 0.2188 0.0716 0.4569 0.067 0.3851 0.3461 0.3737 0.5058

Fig. 9. The influence of the parameters δ (a) and w (b) on the overall accuracy
for the dataset John the Evangelist.

compared to when using the training data from the input image
in Experiment 1. The performance decrease of sparsity-based
detectors is much less than ACE and SVM.
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Fig. 10. Contributions of different parts in the proposed method on the OA
(left) in John the Evangelist and κ (right) in Prophet Zacharias.

C. Parameter study

We investigate empirically the influence of the threshold δ
and the window size w on the detection performance. The
experiments are conducted on the dataset John the Evangelist.
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Fig. 11. (a) Overall accuracy with different sets of imaging modalities. (b) Effect of the training sample size on the overall accuracy. (c) Effect of the crack
compensation on the overall accuracy.

We vary δ in the range -1 to 1 with a step size of 0.02, and
w within {1, 3, 5, 7, 9}. The results are reported in Fig. 9. It
can be seen that the values 0 ≤ δ ≤ 0.03 yield the best
performance, which is also very stable in this whole range.
The performance drops significantly only when δ exceeds 0.5
or when it becomes negative (for δ < −0.5 the performance
decreases severely). Setting δ = 0 yields nearly optimal and
stable detection performance. Regarding the window size, the
performance is rather stable and w = 3 yields the highest OA.
Incorporating spatial context from a relatively small window
(w = 3) improves the detection accuracy compared to using
the test pixel alone (w = 1). However, when w becomes too
big, the performance deteriorates. For the painting scans in
our dataset, w = 3 is the best choice.

D. The effect of spatial filtering

To investigate the effect of spatial filtering, we conduct a
comparative evaluation of SRC, SRC-F, SRC-K and SRC-
KF on two datasets. SRC-F and SRC-K are reduced versions
of the proposed method: SRC-F employs spatial filtering
but no kernel projection, and SRC-K incorporates the kernel
projection but without spatial filtering. The results are shown
in Fig. 10 in terms of OA and κ measures. Both of these
indicate clearly the importance of spatial filtering. Specifically,
in the analysed datasets, the use of spatial filtering led to
more than 4% improvement in OA, and with kernel versions
this improvement was nearly 5%. A similar conclusion can be
drawn when inspecting the κ values in the right of Fig. 10.
The use of spatial filtering doubles the kappa coefficient. This
proves the huge benefit of the proposed spatial smoothing of
the residuals in the sparse representation.

E. The effect of multiple imaging acquisitions

Here, we study the effect of using different sets of imag-
ing acquisitions on the detection performance. The empirical
analysis is conducted on part of John the Evangelist described
under Experiment 1. Three schemes are described in Table
V and their corresponding performance in terms of overall
accuracy is reported in Fig. 11 (a). The number of training
samples is set to 40 per class. The results show that for
almost all the methods, the performance is improved with an

increasing number of imaging acquisitions, except for ACE.
This demonstrates clearly the benefit of using multiple imaging
acquisitions/modalities in this task. The proposed SRC-KF
consistently achieves the best performance in all the three
schemes.

F. The effect of training sample size

To examine the effect of training sample size on the de-
tection performance, we vary the number of training samples
from 10 to 160 per class. Fig. 11 (b) reports the OA of the
detection on the dataset John the Evangelist. Generally, the
performance improves with larger training sample sizes for all
the methods. SRC-F consistently achieves better results than
SRC with an average improvement of 4%, which can also be
observed for the kernel version. For most of the methods, the
OA increases rapidly with the number of training samples up
to about 80 samples per class, while for larger sample sizes
the slope is less steep. This is different for MSD and ACE,
where OA first increases gradually and then rises quickly with
larger sample sizes.

G. The effect of crack compensation

This experiment investigates the contribution of the crack
compensation strategy on the paint loss detection performance.
The same dataset as in Experiment 1 is used. We denote by
SRC-N the method which incorporates the spatial information
by using a smoothing filter but without crack compensa-
tion, and by SRC-NK its kernel version. Table VI gives the
taxonomy of all the analysed variants of the method with
the corresponding abbreviations. The results in Fig. 11 (c)
reveal that the improvement of SRC-KF over SRC follows
from all the three key components: kernel projection, spatial
smoothing and crack compensation strategy. While the biggest
improvement in OA originated from using the spatial filtering
(2.6%), a considerable improvement (1.5%) arose from the
crack compensation. The crack compensation improved also
the performance without kernel projection (for about 1.1%).
This illustrates the effectiveness of the crack compensation in
the modified model.
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TABLE V
EXPERIMENTAL SETTINGS WITH DIFFERENT SETS OF IMAGING ACQUISITIONS.

Schemes Number of
acquisitions Imaging acquisitions

1 1 macrophotography after cleaning;

2 3 infrared macrophotography and macrophotography before cleaning,
macrophotography after cleaning;

3 5 infrared macrophotography, infrared reflectography, macro and X-radiography
photography before cleaning, macrophotography after cleaning.

TABLE VI
SPECIFICATION OF DIFFERENT METHODS.

Methods SRC SRC-
N

SRC-
F

SRC-
K

SRC-
NK

SRC-
KF

Smoothing filter No Yes Yes No Yes Yes
Kernel space No No No Yes Yes Yes

Crack compensation No No Yes No No Yes

Fig. 12. Comparison between the results by “Single-pass”, “Single-pass+”
and “Multi-pass” in the data John the Evangelist (left) and Prophet Zacharias
(right).

H. The effect of majority voting

Annotating manually paint loss in very-high resolution
images of paintings at pixel precision is very difficult. Even
for experts, some areas are ambiguous due to their color,
low contrast, tiny cracks or scanning artefacts. In order to
alleviate the adverse effects of improper annotations, which are
inevitable, we introduced in Section III-C a multi-pass strategy
with majority voting instead of the classic single detection
approach. Here we evaluate this multi-pass strategy on parts
of the panels John the Evangelist and Prophet Zacharias
(multimodal datasets described in Section V-B). To avoid
a biased performance caused by the random sampling, the
averaged result over 10 simulations, denoted as “Single-pass”,
is compared to the result of “Multi-pass” for all the methods.
In addition, we conduct the experiments with the “Single-
pass+” scheme that employs at once all the training samples
that are used by the “Multi-pass” scheme. The number of
training samples is kept the same as in Section V-B. The results
reported in Fig. 12 show that Single-pass+ always outperforms
the Single-pass scheme regardless of the particular detection
method. For most of the analysed methods, the multi-pass
scheme still yields better performance, while it is also more ef-
ficient in terms of space complexity and avoids computational

bottlenecks. For our approach, the multi-pass scheme yields
a clear improvement over both Single-pass and Single-pass+
schemes on all the tested data sets.

I. Paint loss detection and inpainting in practice

In practice, when processing large images of paintings, we
need to deal with scarce annotations from different places in
the painting that a user labels at randomly picked locations. In
this experiment, we are detecting paint loss in a larger region
from the panel Prophet Zacharias by using the training data
from two small image patches from other locations in that
panel. The size of the test image is 869× 667. Three imaging
acquisitions listed as Scheme 2 in Table V are used. The
macrophotography during treatment is shown in Fig. 13 (a).
We use 40 training samples per class. The detection results are
shown in Fig. 13. Clearly, SRC suffers from impulse noise
in the detection map and also many cracks are incorrectly
labelled as paint loss. These adverse effects are much less
pronounced in our result.

We also evaluate the detection results by running digital
inpainting with different detection maps and comparing the
results with the physical restoration. Fig. 13 shows the inpaint-
ing results obtained with the method [57], for the detection
maps of SRC and SRC-KF, in comparison with the physical
treatment by restorers. Clearly, the inpainting result on the
SRC mask (Fig. 13 (d)) shows excessive smoothing on the
face and beard, and loss of the detailed textures of the painting.
This is due to excessive false detections in the SRC detection
mask which are filled by other image patches during the
inpainting. This is also the reason why the majority of cracks
are missing. The inpainting on the SRC-KF mask, shown in
Fig. 13 (e), preserved the textures and crack pattern nicely, in
close resemblance to the physical treatment by restorers. The
color-tone difference is due to the different imaging conditions.
The results in this experiment show the importance of accurate
paint loss detection for virtual restoration of paintings.

J. Generalization analysis

We also evaluate our method in a different detection task
on a public hyperspectral image in the field of remote sensing.
The dataset known as Hyperspectral Digital Imagery Collec-
tion Experiment (HYDICE) Urban image was captured by the
HYDICE sensor during a flight campaign over Copperas Cove,
near Fort Hood, TX, USA. It has a spatial size of 307×307 and
contains 210 bands. After removing the bands 1-4, 76, 87, 101-
111, 136-153 and 198-210, which are seriously polluted by the
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Fig. 13. (a) Input image from the panel Prophet Zacharias in the Ghent Altarpiece; detection maps obtained by (b) SRC and (c) SRC-KF; inpainting results
(d) with SRC detection mask and (e) with SRC-KF detection mask; (f) Physical treatment by restorers. The right bottom corner in all the figures shows the
details in the blue box. Image copyright Ghent, Kathedrale Kerkfabriek; photo courtesy of KIK-IRPA, Brussels.

TABLE VII
RESULTS OF DIFFERENT METHODS ON HYDICE Urban IMAGE.

Methods MSD ACE STD SVM SRC MFL MSC SRC-KF

Producer’s Accuracy P 66.73 54.41 80.57 74.09 73.91 77.16 77.78 89.42
N 92.37 90.79 98.65 99.30 99.18 98.04 98.55 98.79

User’s Accuracy P 55.85 46.87 92.54 96.26 95.59 89.24 92.08 93.24
N 94.66 92.98 95.90 93.70 93.83 95.24 95.15 97.80

OA 88.81 86.03 95.39 94.08 94.10 94.34 94.68 97.11
κ 0.5369 0.4225 0.8321 0.7993 0.7971 0.7928 0.8096 0.8927

atmosphere and water absorption, the remaining 162 bands
are used in the experiments. Fig. 14 (a) shows in a false-color
representation a part of this image with a size 150×160×162
that we used as the test data. It contains seven distinct land-

cover classes: “roof”, “parking lot”, “grass”, “trees”, “sparse
vegetation”, “asphalt road” and “concrete road” [58], with its
spatial arrangement (ground truth detection map) shown in
Fig. 14 (b). In this study, we focus on the detection of asphalt
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Fig. 14. Detection results on the HYDICE Urban image. (a) False color image (b) Ground truth of asphalt road and detection maps obtained by (c) MSD,
(d) ACE, (e) STD, (f) SVM, (g) SRC, (h) MFL, (i) MSC and (j) SRC-KF.

road. Due to the high dimensionality of this data, we set
w = 1 and directly utilize spectral signatures as the input for
all the methods. The number of target and background training
samples is set to 40. The results are reported in Table VII and
Fig. 14. Our method yields the best detection performance
in terms of the quantitative performance measures and visual
assessment. MSD and ACE obtain worse results compared to
others, both quantitatively and visually. Fig. 14 shows that all
other reference methods also identified wrongly parts of the
background as the target. The detection result of our method
agrees best with the ground truth detection map, showing the
effectiveness of the proposed approach in this detection task.

VI. CONCLUSION

In this work, we address the challenging problem of paint
loss detection in digitized paintings. We first propose a generic
multimodal target detection method based on sparse represen-
tation, where spatial features of various imaging modalities
are fused in a kernel feature space by means of a kernel
function. The spatial context is further exploited by applying
a smoothing filter on the representation residuals. In addition,
a majority voting strategy is introduced that overcomes the
unavoidable problem of imperfect annotations. We tailor this
generic target detection method to the problem of paint loss
detection in paintings and we introduce a crack compensation
strategy to meet the requirements posed by the conservation
practice. Overall, this improves both the detection accuracy
and inpainting performance. Experimental results on images
acquired during the ongoing restoration-conservation treatment
of the Ghent Altarpiece indicate the effectiveness of the
proposed method, and its potential to support the conservation
practice. A generalization study, consisting of target detection
on remote sensing data, demonstrates the broad applicability
of the proposed method.
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[5] B. Cornelis, T. Ružic, E. Gezels, A. Dooms, A. Pižurica,
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