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Purpose: Echo planar imaging (EPI) is commonly used to acquire the many volumes 
needed for high angular resolution diffusion Imaging (HARDI), posing a higher risk 
for artifacts, such as distortion and deformation. An alternative to EPI is fast spin 
echo (FSE) imaging, which has fewer artifacts but is inherently slower. The aim is to 
accelerate FSE such that a HARDI data set can be acquired in a time comparable to 
EPI using compressed sensing.
Methods: Compressed sensing was applied in either q-space or simultaneously in 
k-space and q-space, by undersampling the k-space in the phase-encoding direction 
or retrospectively eliminating diffusion directions for different degrees of undersam-
pling. To test the replicability of the acquisition and reconstruction, brain data were 
acquired from six mice, and a numerical phantom experiment was performed. All 
HARDI data were analyzed individually using constrained spherical deconvolution, 
and the apparent fiber density and complexity metric were evaluated, together with 
whole-brain tractography.
Results: The apparent fiber density and complexity metric showed relatively minor 
differences when only q-space undersampling was used, but deteriorate when k-space 
undersampling was applied. Likewise, the tract density weighted image showed good 
results when only q-space undersampling was applied using 15 directions or more, 
but information was lost when fewer volumes or k-space undersampling were used.
Conclusion: It was found that acquiring 15 to 20 diffusion directions with a full 
k-space and reconstructed using compressed sensing could suffice for a replicable 
measurement of quantitative measures in mice, where areas near the sinuses and ear 
cavities are untainted by signal loss.
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1 |  INTRODUCTION

Higher order diffusion MRI uses models of diffusion that can 
give more insight into the local microstructure and fiber or-
ganization in a voxel and, therefore, has become prevalent in 
research. Examples of such models are high angular resolu-
tion diffusion imaging (HARDI),1-3 and diffusion spectrum 
imaging (DSI).4 Other models attempt to directly estimate 
the microstructure of the underlying tissue also outside of 
white matter, such as NODDI5 and CHARMED,6 SANDI7 
and CODIVIDE8 (which uses spherical encoding), searching 
and testing appropriate models for diffusion-weighted MRI 
(DWI) data.9,10 These higher order models require between 
40 and 500 DWI volumes,11 and hence, a long acquisition 
time. To accelerate the acquisition, DWI data are usually ac-
quired using a spin-echo EPI sequence which is susceptible 
to image distortions due to eddy currents. Additionally, the 
long readout time and low bandwidth in the phase encoding 
direction makes the sequence sensitive to susceptibility arti-
facts, introducing further signal displacement, especially near 
cavities, such as the sinuses and ears.12

These artifacts can be avoided by using a fast spin echo 
sequence (FSE),13,14 where multiple spin echoes are acquired 
within each repetition time (TR) to fill the k-space. The num-
ber of spin echoes generated per TR is called the echo-train 
length (ETL), and a higher ETL allows a faster acquisition. 
However, diffusion-weighted FSE (DW-FSE) measurements 
also suffer from several drawbacks. Most importantly, it is 
substantially slower as EPI, and the ETL is limited due to the 
fast signal decay caused by T2 relaxation and the diffusion la-
beling. Multi-shot techniques are thus often used, especially 
at high b-values.

A second issue with DW-FSE is its sensitivity to phase er-
rors, which leads to severe ghosting. These large phase shifts 
can be caused by motion during the diffusion sensitization 
phase, and violate the Carr-Purcell-Meiboom-Gill condi-
tion15 in DW-FSE. A second problem is caused by slight er-
rors in the slice excitation pulse or slice refocusing gradients, 
which produces a phase oscillation between the odd and even 
echoes.16 Third, as with an EPI sequence, a multi-shot se-
quence may suffer from phase incoherencies between shots. 
Several techniques have been developed to tackle these three 
problems. For example, the multi-shot Cartesian FSE se-
quence developed by Mori and van Zijl16 has proven to solve 
all three problems.

If the phase errors are corrected, DW-FSE sequences 
result in measurements of diffusion nearly untainted by in-
homogeneity and distortion, but at the price of a longer acqui-
sition time and a lower signal-to-noise ratio (SNR) compared 
to EPI acquisitions. DW-FSE has been applied in a clinical 
context in the spine19 and oral cavities, which have tissue/
air boundaries,20 and in stroke.21 It is occasionally used in 
preclinical settings22 and ex vivo imaging.23,24

To reduce the acquisition time of DW-FSE diffusion to 
an acceptable level for single-shell HARDI acquisitions, 
compressed sensing (CS) can be used25-27 to reconstruct data 
from incoherently undersampled data.

HARDI requires dense sampling of both k- and q-space 
and CS can either be used to reconstruct MRI images from 
undersampled k-space, to reconstruct the orientation distribu-
tion function (ODF) from undersampled q-space, or to recon-
struct both from undersampled k- and q-space.

MRI images are compressible in wavelet bases,28,29 
and their extensions such as curvelets30 and shearlets.31,32 
Minimization of the total variation has also been used as an 
extra condition.33,34 CS undersampling schemes are usually 
“density-weighted,” acquiring more data in the center com-
pared to the edges of k-space.

Alternatively, undersampling can be applied in q-space, 
using fewer diffusion directions than conventionally needed 
to fit a diffusion model. An ODF or fiber orientation distri-
bution function (FOD) can be modeled by a sparsifying trans-
form, such as spherical ridgelets.35 Michailovich et al36,37 
developed a method to apply CS on HARDI data, using 
spherical ridgelets to sparsely represent the ODF and total 
variation in the diffusion image space.

This work also focuses on the specific problems of pre-
clinical research, and its need for replicable measurements. 
An example of this is constrained spherical deconvolution 
(CSD) analysis, which offers a broader framework for quan-
tification, for example, for estimating the fiber density and 
cross-section38 between populations, or for analysis of the 
connectivity.39 Preclinical small-animal research routinely 
uses advanced MRI applications but is often inherently 
slower than clinical scanners. For instance, parallel imaging 
cannot be used due to the small coil size, while T1 relaxation 
times are longer at high fields,40 calling for a longer TR and 
thus, acquisition time.41

The goal of this study is to apply and investigate different 
strategies of CS to FSE HARDI acquisitions both on a nu-
merical phantom and in in vivo mouse brains, with the aim to 
get replicable diffusion metrics at the speed of an EPI acqui-
sition, that is, 20-25 min,42,43 The strategies comprised un-
dersampling in q-space alone, or combined q-space/k-space 
undersampling, using both data with a fully sampled k- and 
q-space, allowing for easy retrospective undersampling of 
the q-space and data, which was subsampled in q-space and 
mildly subsampled in k-space. Heavy EPI distortion artifacts 
associated with the often-higher main magnetic field make 
distortion correcting methods less effective. However, im-
ages need to be quantifiable and reproducible to be useful for 
scientific research. The apparent fiber density (AFD),44 fiber 
complexity,45 and tractography were analyzed, all derived 
from a CSD, rather than comparing, for example, the mean 
squared error of the data or FODs since there is no noiseless 
measurement that can be used as a valid standard. A viable 
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FSE sequence, would reduce the influence of inhomogeneity 
artifacts commonly found in certain brain regions when using 
EPI.

2 |  METHODS

2.1 | FSE sequence

In our study, we used the double navigator technique as im-
plemented by Mori and Van Zijl.16 This sequence has pre-
viously been used at our institution,22 but was modified in 
this work to allow different incoherent subsampling along 
the phase encoding direction for each volume. Their method 
uses variable crushers along the echo train17 to dephase the 
stimulated echo component and suppress unwanted echoes, 
which results in a stable phase for both the odd and the even 
echoes. A phase oscillation between the odd and even echoes 
occurs in FSE-DWI due to imperfect refocusing pulses and 
for the phase difference between shots due to motion.18 One 
odd and one even echo without phase encoding were used 
as navigators to estimate and correct this phase difference 
between the echoes in the same ETL, as well as those and 
between different shots. To preserve the signal at the high  
b-values used for HARDI acquisitions, an ETL of 4 echoes 
was used, excluding the two navigator echoes, which were 
placed at the end of the echo train. To reduce the signal loss 
due to T2 relaxation, the 180° pulses within the ETL were 
spaced as closely together as possible.

2.2 | Compressed sensing

2.2.1 | Sampling and undersampling in 
q-space

The fully sampled single-shell HARDI data consisted of 60 
diffusion directions on a whole sphere in q-space, determined 
by an electrostatic repulsion scheme,46,47 using MRtrix 3.0_
rc3.48 Diffusion directions were ordered such that the q-space 
was filled as uniformly as possible upon truncation of the total 
scheme. Next, the q-space was retrospectively undersampled 
by selecting the n first diffusion volumes.48 Five different 
subsets of the 60 directions were used, shown in Figure 1,  
consisting of 46 directions, 20 directions, 15 directions, 12 
directions and 10 directions. A b value of 2500 s/mm2 was 
employed for all acquisitions.

To reconstruct undersampled q-space data, an algorithm 
developed by Michailovich et al36,37 was used. This algorithm 
uses 3D shearlets to reconstruct the ODF from a limited num-
ber of samples, enforcing sparsity within the measurements 
of a voxel. It enforces an additional total variation constraint 
over the image space of the shearlet components. The method 

was shown to perform very well in the SPArse Reconstruction 
Challenge (SPARC) at MICCAI in 2014.49 Since a continu-
ous ODF is constructed, new diffusion-weighted images can 
be resampled from the results.

2.2.2 | Undersampling in k-space

Undersampling in k-space is applied only in the phase-en-
coded direction, by randomly sampling a predetermined 
number of lines from a probability function for each volume. 
Phase encoding was done in the anterior-posterior (A-P) di-
rection to reduce motion-like artifacts when undersampling 
the k-space. The sampling probability function is symmet-
rical around the center of k-space, with the sampling prob-
ability being 1 in a region around the center, and decreasing 
according to a power law in the periphery. In this work, 75% 
of k-space was sampled with 20% of the total k-space sam-
pled fully in the center and a quadratic power law, which has 
been shown to result in images with an optimal reconstruc-
tion quality as measured using peak SNR in ex vivo FSE 
measurements.50,51

To reconstruct the images from undersampled k-space 
data, a SENSE-like52 self-calibrating extension of the 
COMPASS algorithm is used.53,54 Briefly, this method uses 
a split Bregman algorithm to apply L1 regularization on the 
shearlet coefficients and total variation of the image.31,32 Coil 

F I G U R E  1  The q-space sampling scheme. The diffusion 
directions that were sampled with the different color-coded 
undersampling strategies. 10 directions = black, 12 directions = 10 
directions + orange, 15 directions = 12 directions + purple,  
20 directions = 15 directions + green, 46 directions = 20 directions + 
blue, 60 directions = 46 directions + red. Note that the directions are 
projected on a half-sphere here, but are recorded on a full sphere
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sensitivity maps are estimated using the image of the fully 
sampled data of all the b0 images and by promoting smooth-
ness by using a finite differences operator in the regulariza-
tion term.

2.3 | Phantom experiment

A phantom, 96 × 96 voxels, consisting of two straight fib-
ers crossing at a 90° angle and a circular fiber intersecting 
both straight fibers was used, based on the developed by 
Michailovich et al. and described more in detail there.36,37 In 
the crossings, one of the straight fibers has twice the intensity 
as the other fiber. The FSE sampling, both with and with-
out k-space undersampling, was simulated using the same 
timing and sampling settings as for the in vivo experiments. 
T2 decay was simulated using a mono-exponential function 
using a T2 value of 45 ms for all fibers.55 Rician noise was 
added to obtain SNR = 10. Sampling and subsampling of 
q-space was done as in the in vivo experiments. In addition, 
specific sets of 10, 12, 15, 20, and 46 directions were gener-
ated using MRtrix and used.

2.4 | Acquisitions

A total of six male black mice of 3 months old were scanned 
with a 7T Pharmascan scanner (Bruker, Ettlingen, Germany). 
A cross-coil setup was used with a quadrature volume coil 
for excitation and a 2 × 2-array mouse-head surface receiver 
coil. From all animals, we acquired a fully sampled k-space 
FSE HARDI acquisition consisting of 46 diffusion direc-
tions, within an acquisition time of 1 h 15 min, which was 
used as a standard. For two animals, the remaining 14 direc-
tions of the total scheme of 60 were acquired, which took 
about 22 min, but these were not acquired for all animals due 
to time constraints. For another three animals, data consisting 
of 20 directions and 75% of the total k-space, incoherently 
undersampled, was also acquired, which took about 22 min.

The acquisition parameters were: effective echo time  
(TE) = 22.5 ms, TR = 3000 ms, field of view (FOV) = (2.02 
× 2.02) mm2, resolution = (0.21 × 0.21) mm2, matrix size  
(96 × 96), ETL = 4, read-out direction was left to right, 
and receiver bandwidth was 50 kHz. The whole brain was 
acquired using 33 horizontal slices with a slice thickness 
of 0.20 mm and an interslice distance of 0.21 mm. Bipolar 
trapezoid diffusion gradients were used, with δ = 4 ms and  
Δ = 12 ms, for b = 2500 s/mm2. The first volume and every 
sixth volume thereafter was a b0 image. The SNR of the raw 
data, calculated using the noise maps generated during the 
denoising step, was SNR = 4.18 ± 0.11.

The animals were brought under anesthesia using 3.5 % 
isoflurane (Abbott, Maidenhead, UK) with a 30% N2/70% O2 

mixture at a flow rate of 600 ml/min and were kept under an-
esthesia using ~1.8% isoflurane during the scan. A breathing 
rate of ~120 breaths/min was maintained and measured using 
a pressure-sensitive pad. Body temperature was measured 
using a rectal probe and kept constant at (37.0 ± 0.2) °C using 
warm air and a feedback unit (SA Instruments, Stony Brook, 
NY, USA). Monitoring was done using PC-sam monitoring 
software (SA Instruments). All experimental procedures 
were performed following European guidelines (2010/63/
EU) and were approved by the University of Antwerp Ethics 
Committee for Animal Experiments (approval number 
2014-04).

2.5 | Image reconstruction and processing

A diagram of the workflow for preprocessing and process-
ing is presented in Figure 2. Images were reconstructed from 
undersampled k-space data using the algorithm described 
in Section 2.2.2,53 taking about 55 s/vol using a 3.40 GHz 
intel i7-3770 processor and matlab (The MathWorks, Natick, 
MA). Fully sampled k-space data were denoised by using 
redundancy in the data and identifying and removing the 
noise-containing principal components.56,57 After subsequent 
image reconstruction, the FMRIB Software Library v6.0 
(FSL)58 was used to perform motion, eddy current artifact, 
and slice-wise-outlier detection and correction.59,60 Data 
quality reports were generated61 and data were checked visu-
ally to verify that no obvious artifacts, such as ghosting, were 
present. Diffusion directions were adapted according to the 
motion parameters.

The bias-field was estimated using the first b0 image and 
applied to all volumes of the scan, using the N4ITK algo-
rithm62 implemented as part of the Advanced Normalisation 
Tools version 2.1.0 (ANTs).63 A brain mask was drawn 
manually on the debiased b0 image using Amira 5.4 (FEI 
Company, Hillsboro, OR, USA).

All data were reconstructed to 60 diffusion-weighted im-
ages (Figure 1), using the diffusion directions and CS recon-
struction algorithm described above,37 which took 100-200 s  
data set, depending on the number of directions used as input. 
Additionally, the data from the 46 directions was resampled 
to the same 60 directions using the same algorithm but with-
out enforcing sparsity, and is referred to as “standard” ac-
quisition in this work. Since no ground truth is known, the 
parameters of the algorithm cannot be trained to minimize 
the minimum squared error. In our experiments, we found 
that manual tuning to the point that no noise-induced or over-
fitting artifacts are perceivable yields satisfactory results and 
that the sensitivity of the result to the exact parameter set-
ting is very low in this regime. This finding is reminiscent 
of the popular L-curve approach for parameter tuning.64 Its 
significance is that a fixed set of parameters may be expected 
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to give satisfactory results for data acquired under similar 
circumstances.

After preprocessing of the HARDI data, MRtrix 3.0_rc348 
was used to perform CSD1,2 and further analyze the data. The 

analysis is done for each subject separately, to investigate the 
replicability of the measurement. The fiber response func-
tion was estimated using the method of Tournier,65 and FODs 
were estimated up to the 8th harmonic order.

2.6 | Quantitative ROI-based analysis

In the phantom, two single fiber ROIs were drawn, one 
containing a straight fiber and the other o-containing the 
circular fiber. ROIs were also drawn for the crossing of the 
two straight fibers, and for the crossing of the curved fiber 
with the straight fiber. The phantom and ROIs are shown in  
Figure 3.

For the in vivo data, seven ROIs were drawn on the “stan-
dard” image. Four single fiber ROIs were drawn, located in 
the posterior forceps of the corpus callosum (CC), the genu 
of the CC, the most ventral part of the optic tract, and the 
olfactory fiber. Furthermore, two crossing fiber regions were 
drawn, on the boundary between the CC and the fornix, 
and on the boundary of the CC and the cingulum. Last, a 
ROI was drawn in the somatosensory cortex, a gray matter 
area. All ROIs were drawn as defined in the Paxinos atlas  
(3rd edition).66 The AFD44 of the three primary fixels and 
complexity values per voxel45 were calculated and averaged 
for each ROI. The AFD was calculated as the integral of the 
FOD lobe of a specific fixel, while the complexity represents 
the importance of the largest lobe within the entire FOD, and 
is a value between 0 (a single lobe) and 1 (all lobes are of 
equal importance). The FODs of k-space undersampled data 
were coregistered to the FODs of the fully sampled k-space,67 
and the fixel-fixel correspondence between the standard ac-
quisition and every other acquisition strategy was determined 
for each animal.

2.7 | TDI images

For one of the subjects with both full and partial k-space ac-
quisition, 5 000 000 tracts were traced for each reconstructed 
data set using the IFOD2 algorithm,68 and the corresponding 
track density weighted images (TDI) at 1/10 of the original 
resolution were generated.69

3 |  RESULTS

3.1 | Phantom analysis results

The results from the phantom experiment indicate that the 
AFD value of fixels with fibers decreases when fewer di-
rections are used, while it increases for fixels without fib-
ers. The variation becomes larger when fewer data are used. 

F I G U R E  2  Schematic overview of the preprocessing and 
processing steps. Boxes with full lines indicate steps, boxes with dotted 
lines indicate on which data the step was executed, bold text indicates 
metrics used for evaluation
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However, the effect is smaller for the straight fiber ROIs 
(Figure 4A,C) as for those with a curved fiber (Figure 4B,D). 
In the crossing of the two straight fibers, the value of the 
primary fixels remains stable when using more as 12 direc-
tions while the tertiary fixel has a greater AFD value and 
variation. The crossing between the straight and curved fiber 
is affected the most by subsampling q-space, and has a lower 
AFD value for the two primary fixels but an increase of the 
AFD value of the tertiary AFD value and the variation.

The effect on the complexity measure is shown in  
Figure 4E, and generally shows an increase in the complexity 
of single fibers when fewer directions are used, and a decrease 
for the crossing fiber ROIs. The variation of the complex-
ity measure increases when fewer directions are used. In all 
cases, undersampling of k-space has a negligible effect on the 
AFD and complexity metric.

A comparison of the AFD and complexity results between 
undersampling the 60 directions and using dedicated schemes 
with the desired number of directions are in Figure 5. It can 
be seen the dedicated q-space sampling schemes perform 
better in the ROIs with curved fibers (Figure 5B,D), but the 
primary fixel has lower AFD values in the ROIs with straight 
fibers (Figure 5A,C).

Results for additional noise levels are shown in Supporting 
Information Figure S1,which is available online, and gener-
ally show larger variations at lower SNR levels, and lower 
AFD values in actual fiber fixels for higher SNR when 

q-space subsampling is applied, while the tertiary fixel shows 
higher values.

3.2 | Visual inspection of b0 images

An example of an average b0 image of a fully sampled  
k-space, an undersampled k-space, and a fully sampled  
k-space without the phase correction is shown in Figure 6. 
Phase errors are visible when the correction is not applied  
(Figure 6A,D), as indicated with the red arrow. However, 
after the phase correcting step, these errors are substantially 
reduced (Figure 6B,E). For the images reconstructed from 
undersampled k-space data, some residual blurring remains. 
No deformation artifacts are visible in regions where these 
are typically observed when an EPI acquisition is employed, 
such as the olfactory bulb, and signal from regions deep in 
the brain is not lost (Figure 6D-F).

3.3 | ROI-based analysis

Figure 7 shows the average AFD value for the three prin-
cipal fixels according to the standard acquisition, for both  
q-space undersampled experiments (Figure 7A) and com-
bined k-space and q-space undersampling (Figure 7B). In 
single fiber regions (ie, posterior forceps and genu of the 

F I G U R E  3  The phantom, which 
consisted of two straight fibers in a X 
configuration, and surrounded by a circular 
fiber. ROIs for the curved fiber (purple), 
crossing of the two straight fibers (blue) 
and the crossing of a straight and the curved 
fiber (red) are indicated. A different ROI for 
the straight fiber is not visible on this slice
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CC, the optic tract, and the olfactory fiber), the secondary 
and tertiary lobes of the FOD have higher AFD values when 
fewer diffusion directions are used, though the effect is lim-
ited. AFD values of fibers that would be difficult to tract 
using an EPI sequence, such as those in the olfactory bulb 
and of the optic tract at the bottom of the brain, are well rep-
licated and indicative of a single fiber. In the ROIs contain-
ing two important fibers, the AFD value of the tertiary lobe 
becomes higher when the number of diffusion directions 
used decreases, while the two main fibers remain of about 

equal importance. However, it should be noted that this ter-
tiary lobe is not found in all voxels, and the data shown for 
this lobe is based on limited statistics. Finally, measures of 
the cortical ROI show only a slight increase in AFD when 
more undersampling is used. Overall, the data from the dif-
ferent acquisition strategies show a consistent change in the 
magnitude of the AFD and replicability.

The effect of additional k-space undersampling (Figure 7B)  
is similar but much larger. Increased q-space undersampling 
lowers AFD for all primary fixels of single fiber ROIs except 

F I G U R E  4  Results for all sampling strategies in the phantom, with SNR = 10. The AFD per fixel is shown for a straight fiber (A), a curved 
fiber (B), two straight fibers crossing at 90° (C), and a curved and straight fiber crossing (D). E shows the complexity metric for all four ROIs. 
Error bars indicate the SD over the ROI
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the olfactory bulb, and increases AFD for secondary and ter-
tiary fixels in all ROIs except the optic tract.

Figure 8 shows how the complexity measure responds to 
different degrees of undersampling for the ROIs. The complex-
ity measure behaves as should be expected, with low values 
in single fiber regions, higher values when crossing fibers are 
present, and the highest complexity found in the cortex. The 
complexity metric remains very stable when only q-space un-
dersampling is used (Figure 8A). Only for the very well-defined 
posterior forceps, undersampling q-space leads to an increase of 
the complexity measure and its group-based SD.

When combined with k-space undersampling (Figure 8B), 
the complexity is in general higher when less data are used 
for the single-fiber bundles, especially for the posterior for-
ceps and the genu of the CC. The complexity remains stable 
in crossing-fiber regions and the somatosensory cortex.

3.4 | TDI images

The TDI results for a single representative animal are 
shown in Figure 9, for two levels in the brain. The top level  

F I G U R E  5  Results for subsampling from a diffusion table with 60 directions and diffusion tables with the desired number of directions, using 
a fully sampled k-space and SNR = 10. The AFD per fixel is shown for a straight fiber (A), a curved fiber (B), two straight fibers crossing at 90° 
(C), and a curved and straight fiber crossing (D). E shows the complexity metric for all four ROIs. Error bars indicate the SD over the ROI
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(Figure 9A-J) is located near the dorsal edge of the lateral 
ventricles, which are clearly visible as black space between 
the CC, external capsula, and fornix. Caudal to this is the 
superior colliculus and cerebellum, with its laminar structure. 
The other level (Figure 9K-T) is at the interface of the den-
tate gyrus and habenular nuclei, which are shown in green 
on both sides of the 3rd ventricle and indicated with a white 
arrow on Figure 9K, and with the fimbria of the hippocampus 
just anterior of this. The fibers are quite well defined for the 
standard, 46 diffusion directions, and 20 directions. Using 15 
directions, some degradation is visible (eg, Figure 9N, the 
right-hand side of the external capsula), which worsens when 
fewer data are used. For example, the brachia of the inferior 
colliculus, visible as blue lines running in the H-F direction 
just anterior of the cerebellum and indicated with a red arrow 
on Figure 9L can be clearly differentiated on images K-O but 
is less well defined in images P-T. The reconstructions from 
incomplete k-space data clearly demonstrate a lower quality 
(Figure 9G-J, Q-T), with fibers also present in the ventricles 
and no lamellar structure in the cerebellum, and the olfactory 
fibers not well defined. Only for the undersampled k-space 
and 20 directions (Figure 9G,Q), the ventricles and cortex 

remain relatively free of tracked fibers, and the important 
structures remain recognizable. Additional examples of TDI 
images, at the level of the anterior commissure and caudate 
putamen can be found in Supporting Information Figure S2.

4 |  DISCUSSION

In this work, the combination of a DW-FSE sequence and 
CS was tested as a strategy to obtain HARDI data, which 
is almost free from deformation and inhomogeneity arti-
facts within a reasonable time frame and with an isotropic 
resolution. Undersampling for CS was applied either only in  
q-space or in k-space and q-space. Evaluation of the acquisi-
tion was done on a local scale by investigating several prop-
erties of the resulting FOD analysis in several ROIs, while 
evaluation on a macroscopic scale was done by constructing 
TDI images.

As shown in Figure 6, the phase correction reduces blur-
ring and ghosting, and the olfactory bulb and regions deep 
in the brain near the ears are not affected by inhomogene-
ity artifacts (Figure 6B,E). While the crushers need to be 

F I G U R E  6  The b0-images. Representative slices of a b0 image of the FSE acquisition. A,D, Images from completely sampled k-space without 
the phase correction being applied. Ghosting is clearly present in A, for example, around the ventricles (red arrow). B,E, Full k-space image with 
phase correction applied, as used in the processing of the data. C,F, k-space undersampled image. No ghosting or incoherent artifacts are apparent, 
but the image is blurrier as a result of the undersampling in a single direction
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set during protocol optimization, there is no need for any 
additional steps during the acquisition itself. The blurring 
in Figure 6C,F is caused by the inefficient implementation 
of the undersampling. While undersampling only along the 
phase-encoded direction is technologically easy to imple-
ment and adapt,70-72 it causes artifacts that are not entirely 
incoherent and are difficult to distinguish from real signal for 
the CS reconstruction algorithm. CS could be more success-
ful if it was done in two dimensions using a more dedicated 
sequence, for example, by using a radial acquisition73 or a 
PROPELLER acquisition.74,75 In the case of undersampled 
k-space data, the CS reconstruction will simultaneously act 
as a denoiser. Shearlet-based denoising of DWIs has been in-
vestigated before.76

An alternative way for reducing the acquisition time is by 
using partial Fourier sampling, which can attain a speed-up 

factor similar to that presented here using CS, but partial 
Fourier sampling causes image degradation as well.77 While 
CS offers more possibilities for further acceleration, for ex-
ample, 2D subsampling or simultaneous k- and q-space re-
construction, partial Fourier sampling is a viable alternative 
to CS in k-space as it was applied in this research.

Due to time constraints during acquisition, data from 
46 directions were resampled to 60 directions and used as 
a “standard” in this work. However, 60 directions are com-
monly acquired to improve the SNR of a 8th order CSD anal-
ysis, and such a full set of 60 directions was acquired for two 
animals. Supporting Information Figure S3 shows the AFD 
values found for a single animal using this “standard” scan, 
using the acquired 60 directions, and using the acquired 60 
directions interpolated to the theoretical 60 directions. There 
is no effect of the interpolation on the AFD values. There is, 

F I G U R E  7  AFD values for the 
three most prominent fixels per ROI. 
A, For q-space undersampling (n = 6). 
B, For combined k-space and q-space 
undersampling (n = 3). Error bars indicate 
the SD between the animals. Single fiber 
ROIs should have a high AFD value in the 
primary voxel only, crossing fiber regions 
should still have a lower AFD value in 
the tertiary fixel, and the cortical ROI 
should have a low, isotropic AFD. The 
somatosensory cortex is abbreviated as 
SomatoSens. ctx in the legend
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in general, a minor decrease of the AFD of the primary fixel, 
and a minor increase of the AFD values of spurious fixels 
when using 46 directions compared to 60 directions. Thus, 
while the overall SNR of the measurement using 46 direc-
tions is lower compared to 60 directions, it can act as a valid 
reference measurement.

Understanding the behavior of the AFD under differ-
ent acquisition and reconstruction conditions is important 
since it can be used to derive several other quantitative 
measures.38,39 The results from the phantom experiment 
indicate that when fewer directions are used, the CS re-
construction recognizes parts of the noise as signal, which 
results in the CSD algorithm finding a larger tertiary fixel. 
In crossing fiber regions, the primary fixel is less affected 
as the others, thus, explaining the decreasing complexity 
metric.

In the in vivo results, an increase of the AFD value of fix-
els without corresponding fibers is also observed. However, 
the primary fixel of the in vivo results are less affected by 
the undersampling of q-space, except for the forceps major, 
which is the strongest fiber and approaches the single fiber 
of the phantom best. The replicability of the measurement 
decreases, indicated here by the larger AFD SDfrom the an-
imal group. Much like the b-value can influence the metrics 
acquired in DTI, here as well an effect of the acquisition strat-
egy on the metrics is observed.

The reconstructions of the data that were also under-
sampled in k-space are of lower quality as those with 
only q-space undersampling, with higher complexity val-
ues and AFD values of secondary and tertiary fixels, and 
lower AFD values in primary fixels. The different effect 
of k-space subsampling between the phantom and the in 

F I G U R E  8  Complexity index values 
per ROI. A, For q-space undersampling  
(n = 6). B, For combined k-space and 
q-space undersampling (n = 3). Error 
bars indicate the SD between the animals. 
Single fiber regions should have a lower 
complexity as crossing fiber regions, 
which should have a lower index as the 
cortical ROI. The somatosensory cortex is 
abbreviated as SomatoSens. cortex in the 
legend
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vivo acquisitions can be explained by the simple geometry 
of the phantom, which is ideally suited for CS. It should 
be noted that acquiring 15 diffusion directions with a full 
k-space takes about as long as acquiring 20 directions with 
an undersampled k-space. In this case, the full k-space 
sampling is a better strategy as undersampling k-space and 
acquiring more direction, both according to the quantita-
tive values and according to the TDI results (Figure 9D,N 
vs G,Q, respectively). It is noteworthy that fewer spurious 

fibers are visible on the data using 46 dimensions with 
compressed sensing (Figure 9B,L) compared to the stan-
dard data (Figure 9A,K). This can be explained by the de-
noising properties of CS.

The results here indicate that FSE diffusion in combination 
with CS can be used to reduce the long acquisition time. The 
acquisition of 15 diffusion directions took just over 20 mi , about 
the same time as that of 60 directions with an EPI sequence.42,43 
As in the original paper presenting the spherical ridgelet-based 

F I G U R E  9  A-T, Representative slices of the tract density images, in a single animal. The number of diffusion volumes used is indicated 
above the image, with “k + q” indicating k-space undersampling was used as well
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reconstruction of ODFs,36 it was found that acquiring 15 to 20 
directions allows for a reconstruction with an acceptable loss of 
information, both in the quantitative measures (AFD and com-
plexity) and in the TDI images, thus, entirely removing the time 
penalty. Using fewer directions had the most obvious effect in the 
TDI images, where the quality became unacceptably low.

The method is applicable throughout the brain, as can be 
seen from the results of the ROI in the lower visual tracts, fur-
thest from the coil and located lower as the amygdala, and the 
ROI in the olfactory bulb. Both the olfactory bulb and amyg-
dala are very relevant in preclinical research, olfaction being 
the primary sense rodents depend on, while research involv-
ing the amygdala, which plays an important role in fear and 
stress, models, for example, post-traumatic stress disorder.78 
The olfactory bulb is also relevant in translational research to 
humans,82 with its importance shown in neurodegenerative 
diseases, for example, Parkinson disease.79-81 Experiments 
where diffusion imaging is applied to the olfactory bulb83-85 
or amygdala78,86 are scarce, because of the difficulties in im-
aging it using an EPI sequence, with no examples of HARDI 
models being applied in mice yet.

Manganese enhanced MRI and volumetry have been used 
as quantitative measures instead,87-92 but neither can be used 
to investigate brain wide structural connectivity, and manga-
nese enhanced MRI is more invasive. fMRI has been applied 
in the amygdala,93,94 and recently fMRI of the entire olfactory 
system has been achieved,95 which would be complemented 
by the technique presented in this research. It should be noted 
that CSD is not well suited for investigating gray matter 
areas, but other techniques, such as listed in the Introduction 
section,5-8,10 or a multi-shell multi-tissue analysis96 would be 
more useful for such a purpose.

While CS was used here to speed up the FSE sequence, 
it could also be used in combination with an EPI sequence. 
Undersampling the q-space and reconstructing the ODFs 
using CS can be done simultaneously with multislice imag-
ing97 on clinical scanners, further reducing the acquisition 
time. The q-space CS technique used here was applied earlier 
in humans and validated in a numerical phantom.36

There are still shortcomings in this study. The sequence 
is limited to low ETL values, since part of the signal is 
rejected by the crushers, which are needed to correct 
the motion and FSE-induced phase errors. Using lower  
b-values and a higher bandwidth, this ETL could possibly 
be improved. The rejections of part of the signal also re-
sults in a low SNR of the diffusion weighted images, which 
is adequate but near the limit of what can be used for a 
meaningful analysis.98 Cross terms between the imaging 
and diffusion gradients have not been taken into account, 
by either the reconstruction algorithm or MRtrix, which 
could have an influence on the AFD values.99 The recon-
struction using separate steps for reconstruction in k-space 

and q-space is still inelegant, and could be improved if an 
algorithm for the implementation of a simultaneous k- and 
q-space reconstruction was used. However, to our knowl-
edge, such an algorithm does not yet exist except in the 
context of DSI,100,101 where the accelerated acquisition 
would still take more time as with the method presented 
here. Preliminary results by the authors show that a simi-
lar approach to that of Golkov et al102 might be feasible in 
our data, but several practical hurdles remain, such as the 
investigation and possible incorporation of the effects of 
motion, eddy currents, and cross-terms. A different pos-
sibility for tackling these problems in the future would be 
deep learning methods that work well with few q-space 
samples.103-105

While the 60 directions used in this study were ordered 
such that the q-space would be optimally covered by a given 
subset upon truncation, q-space undersampling was done 
using subsets of these 60 directions. As indicated by the 
results of the phantom experiment, calculating a dedicated 
q-space sampling scheme for the number of acquired direc-
tion could improve the q-space coverage, although it would 
not erase the effect of subsampling completely.

While the replicability was tested by repeating the experi-
ment on several animals, a test-retest within the same animal 
was not done, as the protocol was too demanding to allow 
scanning the same animal twice in a short time frame.

5 |  CONCLUSIONS

Preclinical DWI scans using the FSE sequence were acquired 
faster by using comCS, either in q-space only or in q-space 
and k-space simultaneously. The in vivo and phantom experi-
ments show that using only q-space undersampling is useful 
for HARDI acquisitions using CSD, even when only 15 or 20 
diffusion directions are used. However, additional undersam-
pling in k-space in vivo has a detrimental effect on the meas-
ures, which can be explained by the fact that the implemented 
undersampling in k-space was performed only along a single 
dimension. The results from the in vivo experiment were rep-
licable. This method can be used in preclinical research tar-
geted at regions that are difficult to image using traditional 
EPI, such as the olfactory bulb or near the ear cavities. While 
tested for animals in this research, the same method could be 
used to speed up human FSE diffusion scans, or any EPI scan.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

FIGURE S1 Results for all sampling strategies in the phan-
tom, for different SNR levels. The AFD per fixel is shown 
for A, a straight fiber, B, a curved fiber, C, two straight fibers 
crossing at 90°, D, a curved and straight fiber crossing. E, 
The complexity metric for all four ROI’s. Error bars indicate 
the standard deviation over the ROI. A higher SNR generally 
results in a larger standard deviation, and very low AFD val-
ues become larger, although the mean of AFD values above 
the noise floor remains unaffected

FIGURE S2 Representative slices of the tract density images, 
in a single animal. The top half shows the brain at the level 
of the anterior commissure (white arrow), while the lower 
half shows the caudate putamen (red arrow). The number of 
diffusion volumes used is indicated above the image, with “k 
+ q” indicating k-space undersampling was used as well
FIGURE S3 The effect of using 46 directions vs 60 direc-
tions, and the effect of interpolation in q-space: the results of 
the ROI analysis for a single animal, using the 60 directions as 
they were acquired and affected by motion (squares), after in-
terpolating the acquired directions back to the theoretical di-
rections (triangles), and using only 46 directions interpolated 
to 60 directions without applying CS regularization (circles)
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