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Abstract— In this paper, we propose a Variational Auto-
Encoder able to correctly reconstruct a fine mesh from a very
low-dimensional latent space. The architecture avoids the usual
coarsening of the graph and relies on pooling layers for the de-
coding phase and on the mean values of the training set for the
up-sampling phase. We select new operators compared to previ-
ous work, and in particular, we define a new Dirac operator which
can be extended to different types of graph structured data. We
show the improvements over the previous operators and compare
the results with the current benchmark on the Coma Dataset.

1 Introduction
Meshes provide a compact graphical 3D-representation of a
surface, and Geometric Deep Learning [11] seizes the additional
graphical information to extend the traditional deep learning
framework to non-Euclidean domains. This is of interest both
for supervised tasks, typically classification, and unsupervised
tasks such in generative modelling.

Recently, Variational Auto-Encoders (VAE) [55] have been
successfully combined with Chebnets [33] to approximate the
distribution of the Coma Dataset[77], assumed to be governed
only by 8 latent variables, and in producing realistic new
meshes of human facial expressions. To create the VAE bot-
tleneck they use progressive down-sampling and up-sampling
of the nodes, which is a standard way to leverage the structure
of the graph.

In Surface Networks [66], Kostrikov et al. only rely on differ-
ential operators to enforce the local structure of the graphs and
combine the graph features using 1×1 Convolutions. This type
of architecture is as versatile as a multilayer perceptron, and is
grouped in residual blocks [44] to allow for deeper networks.

To reduce the dimensionality and create the latent variables,
Surface Networks use global pooling on the graph features
which are then symmetrically recreated by expanding the latent
variables onto the graph. While adequate on a toy dataset, this
architecture struggles to reproduce finer meshes with a larger
amount of nodes. Furthermore, storing data dependent opera-
tors poses huge memory requirements.

In this article we exploit the fixed graph structure of a dataset
by initiating the decoder with the mean values of the training
set. The initialised decoder is able to generate fine smooth
meshes which were unachievable with the previous architecture
from [66], and we demonstrate its effectiveness by accurately
encoding the Coma dataset.

Additionally, we replace the original cotangent Laplacian
with an adjacent version, and introduce a new version of the
Dirac operator, which squares to the normalized Laplacian and
can be used for any chordal graph. As the adjacency matrix
is shared, we can then use the same operator for all the sam-
ples. This not only relieves the memory burden but prevents
the network from overfitting.

2 Operators
A mesh is a data structure comprising the embedding of the
nodes φ : V→ R3, and a list of triangular faces F. Given a node
v, its dual area a(v) is a third of the area A of the surrounding
triangles.

Let W be the symmetric matrix of cotangent weights and a
be the diagonal matrix of the dual areas. The degree matrix D
is a diagonal matrix such that Di,i =

∑
jWi,j . The normal-

ized graph Laplacian with cotangent weights, commonly used
in mesh processing, is defined as: ∆ = a−1(D −W ).

The symmetric Laplacian is defined instead as
∆̃ = 1 − L̃ = 1 − D1/2W̃D1/2, where W̃ is the adjacency
matrix and L̃ will be referred as the adjacency Laplacian.

The Dirac operator introduced by [22] is a discrete differen-
tial operator on quaternion-valued functions (the embedding is
immersed in their imaginary part) between the graph and the
dual graph. The dual graph is constructed from the faces of the
original graph, where two connected (dual) nodes correspond
to two adjacent faces.

On an oriented triangular mesh, the Dirac operator is defined
on a quaternionic function λ : V→ H as follows:

(Diφλ)F = −
e(1,0) · λ(v2) + e(2,1) · λ(v0) + e(0,2) · λ(v1)

2A(F )
,

where e(i,j) = φ(vi)−φ(vj) is an edge of F = (v0, v1, v2) ∈ F
and · is the quaternionic multiplication.

In the neural network it is used in combination with its ad-
joint operator DiA = a−1DitA which maps the values on the
dual nodes back to the original graph.

It can be shown that <(DiAφDiφ) = ∆.
The symmetric Laplacian is defined as

∆̃ = 1 − L̃ = 1 − D1/2W̃D1/2, where W̃ is the adjacency
matrix and L̃ will be referred as the adjacency Laplacian.

As an alternative to the Dirac operator, we introduce the adja-
cent Dirac operator and we define it only through the adjacency
matrix as D̃i = 2D1/2Diφ̃ where φ̃ maps each cycle (triangle)
to {v0, v1, v2} and where

v0 = (
1√
2
, 0, 0), v1 = (0,

1√
2
, 0), v2 = (0, 0,

1√
2

).

Like the extrinsic version, defining D̃i
A

= D̃i
T

it can be
shown that

<(D̃i
A
D̃i) = ∆̃.

This operator can also be applied to more general chordal
graphs.

3 Architecture
The Variational Auto-Encoders [55] are composed of an encoder
and of a decoder, both approximated with neural networks. The



Decoder takes a noisy version of the encoded samples dur-
ing training which makes it more robust while respecting the
probabilistic interpretation of the model (the reparameteriza-
tion trick).

The networks are composed of ResNet blocks with “1 × 1
convolution” layers, concatenation and multiplication with the
operators, which in the encoder are then followed by max-
pooling and dense layers to get the means and variances of the
codes.

The variational loss is the opposite of the ELBO [55]:

L = −ELBO = − log pθ(x|z)︸ ︷︷ ︸
reconstruction loss

− log pθ(z) + log qφ(z|x)︸ ︷︷ ︸
regularization terms

.

3.1 Decoder
We observe that Surface Networks fail to converge on high-
resolution meshes and are attracted to the barycenter of the
sample. As the graph structure is only communicated through
the use of the operators as matrix multiplication we infer that
the residual blocks struggle to enforce information from the ad-
jacent nodes.

To overcome this, we propose to initialize the decoder with
a smooth mesh so that smoothness could easily be preserved.
To take full advantage of the fixed structure we decide to use
the mean shape, the mean embedding over all the nodes of the
training set.

The mean shape and the latent variables are given to the de-
coder as a multimodal input. The proposed architecture joins
the two initial inputs with a tensor multiplication as in Fig. 11.
When decoding with the original operators we use the mean
operator which is similarly calculated.

Figure 1: Proposed architecture of the Decoder. The 1 × 1 Convolution can be
seen as a dense layer on the feature graphs and is preceded by Batch Normal-
ization. The arrow in the bottom represents a Resnet block.

4 Experiments and Conclusion
The Coma Dataset [77] is composed of temporal sequences of
extreme facial expressions by 12 subjects, recorded as meshes
on a common graph.

Table 11 shows that the adjacent versions of the operators of-
fer a clear improvement over the ones previously used. In par-
ticular the adjacent Laplacian approaches the performance of
the method of [77], while having less weights. It also compares
favourably to all the other approaches listed in a recent paper
[88].

Since the original operators are calculated from the samples,
they are able to express more information, but this also leads
to instability in some areas (Fig.22). One explanation is that the
nets are harder to optimize when their layers use operators who
depend on the samples themselves.

When using the adjacent operators, the latent space is robust
and able to represent the semantic information of the meshes.
We show that by sampling the latent space (Fig. 33). A more ex-
tensive experimental evaluation is currently under submission
in [99].

Table 1: Euclidean error and percentage of correct (<1 mm) node reconstruc-
tions by operator. The adjacent operators outperformed the ones used previ-
ously and approaches the benchmark. The vanilla Surface Networks did not
converge.

Networks Operator Error (mm) % correct # Weights

Proposed

Di 1.90± 0.15 21.9 28,660
D̃i 1.47± 0.10 42.3 28,660
∆ 2.08± 0.36 21.5 28,660
L̃ 1.10± 0.05 57.7 28,660

DEMEAa ∆̃ 1.49 / /
Comab ∆̃ 0.845± 0.99 72.6 33,856

a As reported in [88] (no confidence interval was provided).
b As reported in [77].

Figure 2: The same mesh reconstructed by the ∆ and L̃. The warmer colors
highlight the larger errors. Using ∆, those errors are often around the neck.

Figure 3: Generated meshes using D̃i. The expressions above are sampled in
the latent space from a normal distribution centered at 0 with σ = 0.3. All
meshes are realistic and mix traits and expressions from various subjects.

We introduced a new decoder for a Variational Auto-Encoder
which is able to learn fine meshes without intermediate graph
coarsening, by combining spectral methods, residual nets and
global pooling. New operators do not need preprocessing or
high memory requirements and show a tangible improvement
over the previous work, approaching recent benchmarks that
employ graph down- and up-sampling. The resulting model is
light, easy to train and deploy.
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