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ABSTRACT
In this paper, we propose a Variational Auto-Encoder able to
correctly reconstruct a fine mesh from a very low-dimensional
latent space. The architecture avoids the usual coarsening of
the graph and relies on pooling layers for the decoding phase
and on the mean values of the training set for the up-sampling
phase. We select new operators compared to previous work, and
in particular, we define a new Dirac operator which can be
extended to different types of graph structured data. We show
the improvements over the previous operators and compare the
results with the current benchmark on the Coma Dataset.

Index Terms—Variational Autoencoder, Geometric Deep Learning,
Mesh processing

I. INTRODUCTION

The increasing amount of data has been a crucial factor for
the recent success of deep learning and the availability of new
types of data offers now many challenges and opportunities for
research. For example, Geometric Deep Learning [22] extends the
traditional deep learning framework to non-Euclidean domains
such as graphs, and in particular, meshes. Meshes provide a
compact graphical representation of surfaces collected from 3D-
scans. The node connectivity reflects the surface geometry while
their embedding (i.e. the coordinate values of the nodes) describes
the shape of objects.

As meshes convey visual information, a natural use of machine
learning is to produce new credible samples by reconstructing the
joint distribution of all the variables (the embedding). Most of the
time a direct calculation is computationally untreatable and thus,
in deep learning, generative models are used to approximate the
distribution. Variational Auto-Encoders (VAE) [88] are a class of
probabilistic graphical models able to learn complicated sample
distributions in an unsupervised manner. This is accomplished
by inferring a latent representation that is assumed to govern the
distribution of the observed data. The latent variables are modeled
with a prior on a small latent space, and can be seen as a robust
compression of the samples’ information.

A recent benchmark has been set by Rajam et al. [1111] where
they successfully encode the Coma Dataset, introduced in the
same paper, in just 8 latent variables. They did so by using
Chebyshev polynomials [55] of the Laplacian and combining it
with graph down-sampling for the encoder and up-sampling for
the decoder. The progressive down-sampling and up-sampling of
the nodes is the current standard to naturally leverage the structure
of the graph. The dataset is defined on a common graph which

is critical when using spectral methods [22], and their work was
competitive in reconstruction against the linear 3D Morphable
Models [11] normally used there, while allowing for non-linear
shape generation and interpolation.

In Surface Networks [1010], Kostrikov et al. introduce a network
influenced by PointNet [1616] for a task of temporal prediction
where they only rely on differential operators to enforce the
local structure of the graphs and 1 × 1 Convolution to mix the
graph features. The selected operators are the Laplacian with
cotangent weights and the Dirac operator introduced in [33] and
are calculated from the samples during the preprocessing phase.
This type of architecture comes with some benefits due to its
versatility: as it is closer to a standard multilayer perceptron, it is
very natural to adapt standard practice like Batch normalization
[77] and ResNets [66] and this allows for deeper networks compared
to standard spectral approaches. In the same paper they also
introduce a VAE version of the network which was used to
reconstruct meshes sampled from the MNIST dataset and prove
the stability of the operators given different samplings.

In spirit of the PointNet approach, Surface Networks use global
pooling on the graph features to reduce the dimensionality and
create the latent variables while, symmetrically, recreating the
features by expanding the latent variables onto the graph. While
adequate on a toy dataset, this architecture struggles to reproduce
finer meshes with a larger amount of nodes. Furthermore, storing
data dependent operators (the Dirac in particular) poses huge
memory requirements.

In this article we show how to exploit the fixed graph structure
of a dataset by initiating the decoder with the mean values of
the training set. Starting with an initial shape provides spatial
context without having to parametrize the deformation in the
preprocessing phase [1313, 1414] nor its degrees of freedom [1212].
The resulting output is also free from artifacts that typically
need post-processing such as in [44]. The initialised decoder is
able to generate fine smooth meshes which were unachievable
with the previous architecture from [1010], and we demonstrate its
effectiveness by accurately encoding the Coma dataset.

Additionally, the proposed operators only depend on the com-
mon adjacency matrix: we replace the original Laplacian with
an adjacency version, generalizing the approach of [99], and
introduce a new version of the Dirac operator which squares to
the normalized Laplacian and can be used for any chordal graph.
As the adjacency matrix is shared, we can then use the same
operator for all the samples. This not only completely solves the
memory burden but prevents the network from overfitting.



Hence, we develop a viable approach for reconstructing fine
meshes from a very low dimensional latent space without in-
termediate graph coarsening. The results are encouraging, in
comparison with the best reported ones based on alternative
architectures with graph coarsening.

In Section IIII, we review the previous architecture from [1010]
and its previously used operators. In Section IIIIII, we present the
proposed decoder and define the adjacency Dirac Operator. We
evaluate the performance on the Coma Dataset in Section IVIV and
conclude the paper in Section VV.

II. PRELIMINARIES
II-A. Operators

A mesh is a data structure comprising the embedding of the
nodes φ : V→ R3, and a list of triangular faces F. Given a node
v, its dual area a(v) is a third of the areas A of the surrounding
triangles. Let W be the symmetric matrix of cotangent weights
and a be the diagonal matrix of the dual areas. The degree
matrix D is a diagonal matrix such that Di,i =

∑
jWi,j . The

normalized graph Laplacian with cotangent weights, commonly
used in mesh processing, is defined as: ∆ = a−1(D −W ).

The symmetric Laplacian is defined instead as
∆̃ = 1 − L̃ = 1 − D1/2W̃D1/2, where W̃ is the adjacency
matrix and L̃ will be called the adjacency Laplacian.

While most of the spectral methods rely on some version of the
Laplacian, the Dirac operator was shown to be a valid alternative
for high curvature surfaces [1010].

The Dirac operator introduced by [33] is a discrete differen-
tial operator on quaternion-valued functions (the embedding is
immersed in their imaginary part) between the graph and the
dual graph. The dual graph is constructed from the faces of the
original graph, where two connected (dual) nodes correspond to
two adjacent faces. Note that the dual graph of the dual graph is
(isomorphic to) the graph itself.

On an oriented triangular mesh, the Dirac operator is defined
on a quaternionic function λ : V→ H as follows:

(Diφλ)F = −
e(1,0) · λ(v2) + e(2,1) · λ(v0) + e(0,2) · λ(v1)

2A(F )
,

where e(i,j) = φ(vi)−φ(vj) is an edge of F = (v0, v1, v2) ∈ F
and · is the quaternionic multiplication.

In the neural network it is used in combination with its adjoint
operator DiA = a−1DitA which maps the values on the dual
nodes to the original graph.

It can be shown that <(DiAφDiφ) = ∆.

II-B. General architecture and Encoder
The Variational Auto-Encoders are composed of an encoder

and of a decoder, both approximated with neural networks.
The Decoder takes a noisy version of the encoded samples
during training which makes it more robust while respecting the
probabilistic interpretation of the model (the reparameterization
trick) [88].

The networks are mainly composed of “1×1 convolution” lay-
ers, concatenation and matrix multiplication with the operators,
so that we get the following combined output:

xt+1
j =

∑
i

Stj,ix
t
i +Rtj,i∆x

t
i (1)

when we use the Laplacian acting on the feature vector xti and

xt+1
j =

∑
i

Stj,ix
t
i +Rtj,iDi · yti

yt+1
j =

∑
i

T tj,iy
t
i + V tj,iDi

A · xti
(2)

when using the Dirac, where yt+1
j are the values of the dual

nodes and S,R, T, V are learned weight matrices.
The combined layers in Eq (22) form a ResNet block. To

compare the two structures and have the same number of pa-
rameters, the Laplacian layers are repeated twice in each block.
The net is trained using Batch normalization as preactivation,
ELU activation and the Adam optimizer.

The encoder starts by expanding the (x, y, z) coordinates into
32 graph features with 1 × 1 convolutions, and is composed
of a sequence of two blocks which are collapsed into real
values through global average pooling. Finally the means and the
variances of the posteriors are approximated with dense layers.

Variational Auto-Encoders maximize the (marginal) likelihood
pθ(x) and minimize the KL divergence between the posterior
pθ(z|x) and its approximation qφ(z|x), which is inferred by the
encoder. This is done by maximizing the evidence lower bond
ELBO [88]. The ELBO is calculated as follows:

ELBO = log pθ(x|z)︸ ︷︷ ︸
reconstruction loss

+ log pθ(z)− log qφ(z|x)︸ ︷︷ ︸
regularization terms

.

III. METHOD

Surface Networks proved to be stable on different samplings
[1010] but it was only able to reconstruct the gray level of the Mnist
Dataset. Reconstructing a fine mesh is a much harder challenge
because in order to obtain good global performances (on a node-
wise statistics) the network has to learn how to exploit all the
information of the surrounding nodes. Visually, this translates
into smooth reconstructions, where the neighbourhood of a node
is encouraged to be as flat as possible.

Fig. 1. Even after a long
training and an added dense
layer to enable a direct influ-
ence of the latent variables to
the nodes, the reconstruction
of the original architecture is
not smooth.

Fig. 2. A smooth recontruc-
tion of a mesh using the new
decoder and D̃i as operator.



Our proposed Decoder has a simple and effective solution,
which naturally extends the previous architecture. Furthermore,
our proposed operators are common to all the samples, avoiding
preprocessing and high memory requirements, making for a
model which is very easy to deploy.

III-A. Decoder

We observe that Surface Networks fail to converge on high-
resolution meshes and are attracted to the barycenter of the
sample. As the graph structure is only communicated through
the use of the operators as matrix multiplication we infer that
the residual networks (which allow for a slow activation of the
inner layers) struggle to activate the operators and thus enforce
local information. On the other hand upsampling using an initial
dense layer, helps recover the shape but also highlights that the
local property of smoothness cannot be easily learned (Fig. 11). To
overcome this, we propose to initialize the decoder with a smooth
mesh so that smoothness could easily be preserved. To take full
advantage of the fixed structure we decide to use the mean shape,
the mean embedding of the nodes over the entire training set. This
is possible when meshes are consistently sampled and ordered,
even if they have different shapes.

The mean shape and the latent variables are given to the
decoder as a multimodal input. The proposed architecture joins
the two initial inputs with a tensor multiplication as in Fig. 33.
The intuitive idea is that the latent variables would have a linear
impact on learned features of the mean shape, giving more or less
importance to different representations. When decoding with the
original operators we use the mean operator which is similarly
calculated. In this way, the decoder is independent from the latent
variables and allows us to generate samples directly from random
noise.

The decoder is then composed of a 1× 1 convolution for the
mean shape and a dense layer for the latent variables, joined with
tensor multiplication and followed by three blocks. The final 1×1
convolution reconstructs the (x, y, z) coordinates. The number of
features is 32.

Fig. 3. Proposed architecture of the Decoder. The 1×1 Convolution can
be seen as dense layer on the feature graphs and is preceded by batch
normalization. The arrow in the bottom represents half a block, and we
denote with � and [ ] respectively, the element-wise product and feature
concatenation.

III-B. Adjacency operators
As an alternative to the extrinsic Dirac operator, we introduce

the adjacency Dirac operator and we define it only through the
adjacency matrix as D̃i = 2D1/2Diφ̃ where φ̃ maps each cycle
(triangle) to {v0, v1, v2} and where

v0 = (
1√
2
, 0, 0), v1 = (0,

1√
2
, 0), v2 = (0, 0,

1√
2

).

Like the extrinsic version, defining D̃i
A

= D̃i
T

it can be shown
that

<(D̃i
A
D̃i) = ∆̃.

This operator can also be applied to more general chordal graphs.
Thus, we replace Di in Eq (22) with the adjacency Dirac operator
D̃i and compare the results. Similarly, we replace ∆ in Eq (11)
with L̃ = ∆̃ + 1. This leads to a more flexible version of
Graph Convolutional Networks [99], which uses a renormalized
Laplacian in a similar way, but with the added benefits coming
from Resnets.

IV. EXPERIMENTAL RESULTS
Here we report the results on the Coma Dataset [1111] which is

composed of temporal sequences of extreme facial expressions
by 12 subjects, recorded as meshes. The test dataset has been
extracted uniformly from all the subjects as explained in the
interpolation experiment [1111].

Fig. 4. Reconstructions from extreme expressions of one of the subjects.
From top to bottom: Inputs, ∆, Di, D̃i, L̃. The reconstruction is generally
harder the more extreme the expressions.

This dataset shares the same graph structure, is consistently
sampled and, at the same time, particularly challenging. Extreme



expressions often have high curvatures which are harder to
approximate and the unnatural stretching creates more variability
compared to other datasets of recorded faces.

We report experimental results that compare the reconstruction
error, using the original Dirac and Laplacian operators and their
adjacency versions, and we visually test their ability to generate
new samples.

In general, all the operators correctly reconstruct the subject
and expressions (Fig. 44), with some difficulties for the Dirac
Operator. The original Laplacian is able to correctly recreate
many details of the more extreme expression but its performance
is severely affected from the errors in the neck (Fig. 55).

Fig. 5. The same mesh reconstructed by the ∆ and L̃. The warmer colors
highlight the larger errors.

The Laplacian networks have been trained for 1000 epochs,
while the Dirac networks, whose layers are harder to compute,
have been trained for an equivalent amount of time (around 200
epochs). The memory cost of the experiment with the original
operator (120 Gigabyte in case of the Dirac operator) was
considerable. This is not a problem with the adjacency versions.

We refer to the method of Ranjan et al. [1111] as Coma,
and we use the same performance metrics as in that work:
the percentage of reconstructed nodes within a millimeter of
euclidean error and the average euclidean error of the nodes.
Table II shows that the adjacency versions of the operators offer
a clear improvement over the ones previously used. In particular
the adjacency Laplacian approaches the performance of Coma,
while having less weights. It also compares favourably to all the
other approaches listed in a recent paper [1515].

Since the original operators are calculated from the samples,
they are able to express more information, but this also leads to

Fig. 6. Generated meshes using L̃. The expressions above are sampled in
the latent space from a normal distribution centered at 0 with σ = 0.3. All
meshes are realistic and mix traits and expressions from various subjects.

TABLE I
EUCLIDEAN ERROR AND PERCENTAGE OF CORRECT (<1 MM) NODE

RECONSTRUCTIONS BY OPERATOR. THE ADJACENCY OPERATORS
OUTPERFORM THE ONES USED PREVIOUSLY AND APPROACH THE

BENCHMARK. THE VANILLA SURFACE NETWORKS DID NOT
CONVERGE.

Networks Operator Error (mm) % correct # Weights

Proposed

Di 1.90 ± 0.15 21.9 28,660
D̃i 1.47 ± 0.10 42.3 28,660
∆ 2.08 ± 0.36 21.5 28,660
L̃ 1.10 ± 0.05 57.7 28,660

DEMEAa ∆̃ 1.49 / /

Comab ∆̃ 0.845 ± 0.99 72.6 33,856
a As reported in [1515] (no confidence interval was provided).
b As reported in [1111].

some instability. This might be the cause of the gap between the
training and validation losses when using the original operators,
which, with the adjacency versions, present hardly any discrep-
ancy. One explanation is that the nets are harder to optimize when
their layers use operators who depend on the samples themselves.

When using the adjacency Laplacian, the latent space is robust
and able to represent the semantic information of the meshes.
This can be shown by sampling the latent space (Fig. 66) and by
interpolating two different subjects and expressions (Fig. 77).

Fig. 7. The upper left and lower right are a reconstruction of two subjects,
the other meshes have been generated by linearly interpolating them in
the latent space. The generated interpolation is gradual and without any
deformities.

V. CONCLUSIONS
In this paper we introduced a new decoder for a Variational

Auto-Encoder which is able to learn fine meshes without interme-
diate graph coarsening, by combining spectral methods, residual
nets and global pooling. New operators do not need preprocessing
or high memory requirements and show a tangible improvement
over the previous work, approaching recent benchmarks that
employ graph down- and up-sampling. The resulting model is
light, easy to train and deploy. Future work might determine more
effective methods to combine the starting smooth mesh with the
latent variables.
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