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ABSTRACT

Sparse subspace clustering (SSC) has achieved the state-of-
the-art performance in clustering of hyperspectral images.
However, the computational complexity of SSC-based meth-
ods is prohibitive for large-scale problems. We propose a
large-scale SSC-based method, which processes efficiently
large-scale HSIs without sacrificing the clustering accura-
cy. The proposed approach incorporates sketching of the
self-representation dictionary reducing thereby largely the
number of optimization variables. In addition, we employ a
total variation (TV) regularization of the sparse matrix, re-
sulting in a robust sparse representation. We derive a solver
based on the alternating direction method of multipliers (AD-
MM) for the resulting optimization problem. Experimental
results on real data show improvements over the traditional
SSC-based methods in terms of accuracy and running time.

Index Terms— Sparse subspace clustering, sketching,
hyperspectral image, large-scale data

1. INTRODUCTION

Hyperspectral images (HSIs) contain hundreds of spectral
bands in the visible and infrared parts of the spectrum (400-
2500 nm). As different materials usually show different
spectral reflectance patterns, HSIs have become a powerful
and valuable tool in remote sensing. HSI clustering aims at
grouping similar pixels into different clusters without using
any labelled samples. Two most widely used clustering meth-
ods are fuzzy c-means (FCM) [1] and k-means [2] due to
their simplicity. However, their performance is sensitive to
the initialization and to noise.

Sparse subspace clustering (SSC) approach [3] provides
the current state-of-the-art performance in the clustering of
HSIs [4–9]. SSC models a high-dimensional data space as a
union of low-dimensional spaces. The key idea is that a sparse
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representation of a data point from this union of subspaces
selects a few points from the same subspace [3]. Technical-
ly, the sparse coefficients are identified by solving the sparse
coding problem under the self-representation dictionary. The
coefficient matrix lends itself readily to the construction of the
similarity matrix, which is further applied within the standard
spectral clustering framework [10].

As the SSC model calculates the sparse coefficients inde-
pendently for each pixel, its performance is sensitive to noise.
Recent methods alleviate this problem by introducing differ-
ent spatial constraints [4–9] on the coefficient matrix, pro-
moting its smoothness, resulting in the improved clustering
accuracy.

However, the application of any of these SSC-based meth-
ods on large-scale HSIs is practically infeasible due to the
high computational complexity, resulting from iterative op-
timization. The time complexity in each iteration excedes
O(n3), where n is the number of pixels in the HSI, which ren-
ders SSC inappropriate for large-scale data. In recent years,
some general large-scale methods based on SSC have been
proposed for the clustering tasks in computer vision [11, 12]
but were not reported yet on HSIs. In [11], SSC was first ap-
plied on a small amount of selected samples, and the rest were
grouped by sparse representation classification with a dictio-
nary constructed by the selected samples. The sketched SSC
model of [12] uses a clever random projection technique to
compact the self-representation dictionary. Despite the scala-
bility of those methods, their clustering performances on HSIs
turns out to be poor. This is attributed to the complex spatial
structure of HSIs, spectral noise and spectral variability.

To address these problems, we propose a sketched SSC
model with total variation (TV) spatial regularization, termed
Sketch-SSC-TV. The employed sketching technique com-
presses the large self-representation dictionary to a much
smaller one, which significantly reduces the number of opti-
mization variables, and enables the application on large-scale
HSIs. In addition, a spatial constraint in the form of TV-norm
on the coefficient matrix is incorporated to promote the con-
nectivity of neighbouring pixels and piecewise smoothness of



clustering maps. In order to solve the resulting optimization
problem, we derive an iterative solver based on the alternating
direction method of multipliers (ADMM) [13]. Experimental
results on the small HSI and large-scale HSI demonstrate the
superior performance of our method over the traditional SSC-
based methods and the related state-of-the-art large-scale
clustering methods.

The rest of this paper is organized as follows, Section 2
briefly introduces the SSC model for HSI clustering. Section
3 describes the proposed Sketch-SSC-TV model and the opti-
mization problem. Section 4 presents the experimental results
on real HSI data and Section 5 concludes the paper.

2. THE SSC MODEL OF HSI CLUSTERING

We denote by Y ∈ RB×MN the flattened 2-D matrix from
the original 3-D HSI data cube with a size of M × N × B,
where M and N represent the height and the width of the
HSI, respectively, and B denotes the number of bands. Each
vector yi ∈ RB represents the spectral signature of each pixel
in HSI. We assume that there are c classes in the data, and
each class is seen as a cluster. With the assumption of SSC
that each pixel in a union of subspaces can be represented as a
linear or affine combination of others from the same subspace
with sparsity constraint, the sparse matrix C ∈ RMN×MN

can be calculated by:

argmin
C

‖C‖1 +
λ

2
‖Y −YC‖2F

s.t. diag(C) = 0, 1TC = 1T , (1)

where ‖C‖1 =
∑

i

∑
j |Cij |; 1 is an all-one vector; diag(C)

is a diagonal matrix whose entries outside the main diago-
nal are zero and λ is a parameter, which controls the balance
between the data fidelity and the sparsity of the coefficient
matrix. The first constraint is introduced to avoid the triv-
ial solution of representing a sample by itself and the second
constraint indicates the case of affine subspace.

The model in (1) can be solved by the ADMM algorithm
[13]. As matrix C interprets the relationship between pixels
according to the subspace preserving property of SSC, i.e. a
non-zero entry Cij indicates that the samples yi and yj are in
the same class. Thus, the similarity matrix W ∈ RMN×MN

is constructed by W = |C| + |C|T . Clustering results are
obtained by employing the similarity matrix W within the
spectral clustering [10]. Specifically, the Laplacian matrix
L ∈ RMN×MN is first formed by

L := D−W (2)

where D ∈ RMN×MN is a diagonal matrix with Dii =∑
j Wij [14]. Afterwards, the c eigenvectors {vk}ck=1 of

L corresponding to the c smallest eigenvalues of L are
calculated via singular-value decomposition (SVD). Final-
ly, the clustering result is obtained by applying the ma-

trix V = [v1, ...,vc] ∈ RMN×c to the k-means clustering
method.

3. PROPOSED METHOD

A Sketch-SSC-TV model is proposed for the clustering of
large-scale HSIs. Instead of the independent sparse coding
in SSC, we incorporate a TV spatial constraint to promote
the connectivity between neighbouring pixels, which guaran-
tees the robustness to noise and spectral variability. Com-
pared with the traditional SSC-based methods, a sketching
technique is employed in the clustering model, resulting in
a scalable clustering method.

3.1. Sketch-SSC-TV model

The optimization problem in (1) actually cannot be efficiently
solved in practice due to its prohibitively high computation-
al complexity. The traditional SSC-based methods [4–9] also
suffer from the same problem. Their key obstacle is the need
to calculate and save the inverse of the entire large matrix
(YTY + µI) ∈ RMN×MN in memory, whose computation
complexity reaches toO((MN)3), which is infeasible for the
large-scale data sets. Inspired by the sketching technique in
[12], we replace the self-representation dictionary Y with a
compact dictionary D ∈ RB×n := YR with a random ma-
trix R ∈ RMN×n, which significantly reduces the number
of optimization variables in the sparse matrix. In addition,
we exploit a TV-norm based spatial regularization on the s-
parse matrix to strengthen the dependency between the pixels
in the local regions, avoiding independent sparse coding of
SSC. This yields a more robust clustering performance. The
proposed Sketch-SSC-TV model with respect to sparse ma-
trix A ∈ Rn×MN is given by

argmin
A

1

2
‖Y −DA‖2F + λ‖A‖1 + λtv‖A‖TV , (3)

where λ and λtv are the penalty parameters for the sparsity
level and spatial smoothness, respectively, and the TV norm
is defined by:

‖A‖TV = ‖HxA
T ‖1 + ‖HyA

T ‖1, (4)

where Hx and Hy are the forward finite-difference operators
in the horizontal and vertical directions, respectively, with pe-
riodic boundary conditions. The constraint diag(C) = 0 in
(1) is removed as identity matrix is not a trivial solution in (3).

Note that the sketched dictionary size n usually is far s-
maller than MN , and empirically can be set to the value less
than 100. Thus the number of optimization variables in sparse
matrix is significantly reduced from (MN)2 to MNn. The
resulting model can be efficiently solved by ADMM which is
introduced next.



The sparse matrix A, cannot be applied directly in the
same way as in the traditional SSC-based methods for con-
structing the similarity matrix W, because now A is not a
square matrix. We construct W via k nearest neighbours
(KNN) with A. In order to reduce the computation burden,
approximate nearest neighbours (ANN) [15] is applied. Fi-
nally, the similarity matrix W is plugged in the spectral clus-
tering framework to obtain the clustering results.

3.2. Optimization

To solve the model in (3), we first introduce three auxiliary
variables B,Z ∈ Rn×MN and U ∈ R2MN×n and derive the
equivalent formulation:

argmin
B,A,Z,U

1

2
‖Y −DB‖2F + λ‖Z‖1 + λtv‖U‖1

s.t. A = B,A = Z,HAT = U (5)

where H = [Hx;Hy] is the TV operator in spatial direction
of HSIs.

We can solve the optimization problem (5) by minimizing
the resulting augmented Lagrangian function as follows:

1

2
‖Y −DB‖2F +λ‖Z‖1+λtv‖U‖1+

µ

2
‖A−B+

Y1

µ
‖2F

+
µ

2
‖A− Z+

Y2

µ
‖2F +

µ

2
‖HAT −U+

Y3

µ
‖2F (6)

where Y1,Y2 ∈ Rn×MN and Y3 ∈ R2MN×n are the La-
grange multipliers, and µ is a weighting parameter. To this
end, we can solve the following subproblems iteratively based
on ADMM.

1) Update B: The subproblem for B is given by:

argmin
B

1

2
‖Y −DB‖2F +

µ

2
‖Ak −Bk +

Yk
1

µ
‖2F . (7)

A closed form solution can be easily obtained by setting the
first-order derivative to zero:

Bk+1 = (DTD+ µI)−1(DTY + µAk +Yk
1 ). (8)

2) Update A: The subproblem for A is given by:

argmin
A

1

2
‖A−Bk+1 +

Yk
1

µ
‖2F +

1

2
‖A− Zk +

Yk
2

µ
‖2F

+
1

2
‖HAT −Uk +

Yk
3

µ
‖2F (9)

By setting the first-order derivative to zero, we can obtain:

Ak+1 = F−1

[
G

2 + (F(Hx))2 + (F(Hy))2

]
(10)

where G = F(Zk + Bk+1 − Yk
1/µ − Yk

2/µ + (UkT −
YkT

3 /µ)H), and F(·) and F−1(·) denote the FFT and the
inverse FFT, respectively.

3) Update Z: The subproblem for Z is given by:

Zk+1 = argmin
Z

λ‖Z‖1 +
µ

2
‖Ak+1 − Z+

Yk
2

µ
‖2F , (11)

which can be solved by a thresholding algorithm [13].
4) Update U: The subproblem for U is given by:

argmin
U

λtv‖U‖1 +
µ

2
‖HA(k+1)T −U+

Yk
3

µ
‖2F , (12)

which can be solved in the same way as Z.
5) Update other parameters:

Yk+1
1 = Yk

1 + µ(Ak+1 −Bk+1)

Yk+1
2 = Yk

2 + µ(Ak+1 − Zk+1)

Yk+1
3 = Yk

3 + µ(HA(k+1)T −Uk+1). (13)

The above 5 steps are iteratively updated until the stopping
criterion is satisfied.

4. EXPERIMENTAL RESULTS

We conduct experiments on two benchmark data sets: Indian
Pines and PaviaU. Indian Pines has a spatial size of 85 × 70
and contains 200 spectral bands, including 4 classes such as
corn-notill, grass-trees, soybean-notill and soybean-mintill.
The PaviaU image size is 610 × 340 × 203, including nine
classes as shown in Fig. 1 (g). The clustering methods for
comparison include a classical method k-means [2], the orig-
inal SSC method [3], the SSC-based extensions L2-SSC [6]
and the state-of-the-art large-scale clustering methods SSSC
[11] and Ske-SSC [12]. Three performance measures: over-
all accuracy (OA), Kappa coefficient (κ) and running time (t)
are used for quantitative assessment of the clustering results.
All the methods are implemented in MATLAB on a comput-
er with an Intel c© core-i7 3930K CPU with 64 GB of RAM.
The results of SSSC, Ske-SSC and the proposed method are
reported in average of 5 runs. We set empirically n = 70 and
k = 30 for our method in both data sets.

4.1. Experiments on real data

The first experiment is conducted on a small data set Indi-
an Pines, and we report the results in Table 1. The optimal
parameters of our method are λ = 10−3, λtv = 10−2. The
results reported in Table 1 indicate that the proposed method
yields the best performance in terms of OA and κ, achieving
23.35 % and 20.68% accuracy improvement over the tradi-
tional SSC-based methods. Compared with the large-scale
SSSC and Ske-SSC methods, our method obtains the signifi-
cant accuracy improvements with comparable running time.



(a) (b) (c) OA=53.41 (d) OA=33.78 (e) OA=50.63 (f) OA=61.15 (g)

Fig. 1. PaviaU image. (a) False color image, (b) Ground truth, and clustering maps of (c) k-means, (d) SSSC, (e) Ske-SSC and
(f) Sketch-SSC-TV.

Table 1. Clustering results for Indian Pines.

No. of
class

k-
means

SSC
L2-
SSC

SSSC
Ske-
SSC

Proposed

1 69.85 60.00 61.09 53.31 62.19 61.41
2 53.84 98.36 99.32 89.73 100 100
3 0 76.91 79.37 49.13 68.80 100
4 57.59 50.68 54.89 63.85 58.87 93.81

OA(%) 50.17 65.11 67.78 63.28 68.12 88.46
κ 0.2833 0.5296 0.5629 0.4772 0.5628 0.8342

t (sec) 3 543 624 2 3 6

We conduct the second experiment on a much larger data
set PaviaU consisting of 207400 pixels. The optimal param-
eters are λ = 5 × 10−2, λtv = 5 × 10−1. Due to the high
memory requirement of SSC and L2-SSC, they cannot be run
on our computer. The results in Table 2 demonstrate the effec-
tiveness of our method on the large-scale data sets. Compared
with SSSC, the accuracy improvement of our method is sig-
nificant. Compared with Ske-SSC, our method also achieves
much higher accuracy and comparable running time, which
mainly benefits from the exploitation of the TV-norm based
spatial regularization. Regarding the running time, k-means
is the fastest clustering method. The clustering maps in Fig.
1 indicate that the proposed method suffers from less impulse
noise than others, especially compared to the SSSC method.

Moreover, we analyse the effect of two important parame-
ters λ and λtv in our model. The results in Fig. 2 indicate that
the clustering accuracy is more stable with respect to λ than
λtv . According to the results, we recommend to set λ = 10−3

for all the data. For λtv , the value may be different for differ-
ent data sets, but the clustering accuracy is stable and superior
over other methods in a wide range.

5. CONCLUSION

In this paper, we proposed a scalable SSC-based clustering
method, which incorporates the sketching technique by a ran-

Table 2. Clustering results for PaviaU.

No. of
class

k-
means

SSC
L2-
SSC

SSSC
Ske-
SSC

Proposed

1 90.51 - - 35.60 64.88 99.78
2 43.83 - - 28.47 42.55 57.25
3 0.10 - - 11.92 20.14 19.43
4 63.67 - - 61.29 91.17 75.05
5 48.25 - - 62.05 99.79 100
6 32.89 - - 18.56 27.94 60.93
7 0 - - 5.86 0.38 0
8 94.24 - - 31.48 65.11 0.15
9 100 - - 8.91 75.73 73.75

OA 53.41 - - 30.13 49.84 58.71
κ 0.4337 - - 0.1794 0.3957 0.4858

t(sec) 17 - - 30 838 974

Fig. 2. Analysis for parameters λ and λtv . Top: Indian Pines;
Bottom: PaviaU

dom matrix and a TV-based spatial regularization. In order to
solve the resulting model, we derived an efficient solver based
on the ADMM algorithm. The experimental results conduct-
ed on both small HSI and large HSI verify that our method is
much more effective than the traditional SSC-based methods
and the related large-scale clustering methods.



6. REFERENCES

[1] J. C. Bezdek, “Pattern recognition with fuzzy objective
function algorithms,” 1981.

[2] S. Lloyd, “Least squares quantization in pcm,” IEEE
Trans. Inf. Theory, vol. 28, no. 2, pp. 129–137, 1982.

[3] E. Elhamifar and R. Vidal, “Sparse subspace clustering:
Algorithm, theory, and applications,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 35, no. 11, pp. 2765–2781,
2013.

[4] H. Zhang, H. Zhai, L. Zhang, and P. Li, “Spectral–
spatial sparse subspace clustering for hyperspectral re-
mote sensing images,” IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 6, pp. 3672–3684, 2016.

[5] H. Zhai, H. Zhang, X. Xu, L. Zhang, and P. Li, “Kernel
sparse subspace clustering with a spatial max pooling
operation for hyperspectral remote sensing data inter-
pretation,” Remote Sensing, vol. 9, no. 4, pp. 335, 2017.

[6] H. Zhai, H. Zhang, L. Zhang, P. Li, and A. Plaza, “A new
sparse subspace clustering algorithm for hyperspectral
remote sensing imagery,” IEEE Geosci. Remote Sens.
Lett., vol. 14, no. 1, pp. 43–47, 2017.

[7] S. Huang, H. Zhang, and A. Pižurica, “Joint sparsity
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