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ABSTRACT

In the restoration process of classical paintings, one of the tasks is to map paint loss for documentation and
analysing purposes. Because this is such a sizable and tedious job automatic techniques are highly on demand.
The currently available tools allow only rough mapping of the paint loss areas while still requiring considerable
manual work. We develop here a learning method for paint loss detection that makes use of multimodal image
acquisitions and we apply it within the current restoration of the Ghent Altarpiece.

Our neural network architecture is inspired by a multiscale convolutional neural network known as U-Net.
In our proposed model, the downsampling of the pooling layers is omitted to enforce translation invariance
and the convolutional layers are replaced with dilated convolutions. The dilated convolutions lead to denser
computations and improved classification accuracy. Moreover, the proposed method is designed such to make
use of multimodal data, which are nowadays routinely acquired during the restoration of master paintings, and
which allow more accurate detection of features of interest, including paint losses.

Our focus is on developing a robust approach with minimal user-interference. Adequate transfer learning is
here crucial in order to extend the applicability of pre-trained models to the paintings that were not included
in the training set, with only modest additional re-training. We introduce a pre-training strategy based on
a multimodal, convolutional autoencoder and we fine-tune the model when applying it to other paintings. We
evaluate the results by comparing the detected paint loss maps to manual expert annotations and also by running
virtual inpainting based on the detected paint losses and comparing the virtually inpainted results with the actual
physical restorations. The results indicate clearly the efficacy of the proposed method and its potential to assist
in the art conservation and restoration processes.

1. INTRODUCTION

Digital painting analysis is a growing field of research, rapidly gaining interest from the image processing and
machine learning communities. Typical tasks include artist identification,1 forgery detection,2,3 crack detection,4

paint loss detection,5 and virtual inpainting.6,7

Paint loss is often the result of flaking and drying of paint due to aging, although rough handling can also
cause it. When restoring a painting, regions of paint loss are inpainted by the conservators. For this, it is needed
to know and document the exact areas of paint loss. Currently, this documentation involves a lot of manual work
since available software can only give a coarse estimation of the paint loss areas. The documentation process is
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Figure 1: Multi modal image acquisitions and examples of paint loss in the macrophotgraphy during treatment.
Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb; photo courtesy of KIK-IRPA, Brussels.

therefore rather tedious, and would benefit from an improved automated mapping of paint loss regions. Restorers
usually detect these regions visually, by inspecting the painting itself and sometimes also by looking in parallel at
digital acquisitions in other modalities, such as infrared and X-ray images. These additional imaging modalities
provide supplementary information and enable a better assessment of the features of interest, including lacunas
and larger paint losses.

Research on automatic paint loss detection is limited, especially when using the multimodal images as input.
Huang et al.5 showed promising results using sparse representation classification (SRC), surpassing common ma-
chine learning approaches like linear regression classification and support vector machines in this task. However,
this method is computationally intensive, which makes processing of larger images very challenging, especially
in cases where user feedback is desirable. In our previous work8 we proposed a novel neural network architecture
for image segmentation that was optimized to employ the spatial context and multimodal data. Since this is
a supervised deep learning approach, it requires a large amount of annotated data samples, which may be im-
practical. In addition, the annotations may not always be reliable, depending on the patience of the user, which
further suggests the need to limit the necessary amount of labeling by the user.

In this paper, we propose a semi-supervised deep learning approach for paint loss detection, which does not
rely heavily on large amounts of labels. We make use of transfer learning such that the pre-trained model can
be reliably applied to new images with relatively few extra annotations.

As a case study, we use the panels of the Ghent Altarpiece,9 a monumental polyptych made by the brothers
van Eyck in the 15th century. The application of our paint loss detection is demonstrated on images taken during
the conservation/restoration of this masterpiece. We evaluate the results in two ways: by comparing the detected
paint loss maps to manual expert annotations and by running virtual inpainting based on the detected paint losses.
The results of automatic virtual inpainting of the detected paint losses show close resemblance with the actual
physical restoration, which indicates that paint losses have been accurately detected. Quantitative evaluation
is conducted by comparing the detected paint loss areas with manual expert detection. Both quantitative
and qualitative results show clearly the excellent performance of the proposed approach in comparison with the
existing method and indicate its potential to assist in the actual conservation/restoration treatment of paintings.

2. PRELIMINARIES

In this Section, we review the main concepts behind the U-Net10 architecture and convolutional autoencoders11

that will serve as a basis for developing our model. In particular, we shall describe our previously reported
translation invariant version of the U-Net architecture TI-U-Net8 and the related concept of dilated convolu-
tions.12 In this paper, convolutional autoencoders are used to pretrain our architecture with the goal of limiting
the necessary user interference. We shall also explain the basic concepts behind the chosen virtual inpainting
approach that will be employed later on to evaluate the results of our paint loss detection method by simulating
the actual painting restoration.
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Figure 2: A schematic overview of the proposed model, showing how the weights of the encoder are transferred
per layer from the autoencoder to the TI-UNet with dilated convolutions. Left: the autoencoder where the
amount of filters per layer (k) is kept constant over the whole network. Right: the translation invariant UNet
(TI-UNet), shown with same amount of filters per layer (k) and with the reach of the kernels of the dilated
convolutions illustrated on the far right. The orange arrows indicate the transfer between the corresponding
layers.

2.1 Translation invariant U-Net

A state-of-the-art deep learning model for image segmentation U-Net,10 is a convolutional neural network whose
architecture is similar to autoencoders13 with additional layers called skip-connects. Skip-connects add shortcuts
between the encoder and decoder such as to combine lower-level, higher-resolution information of the encoder
with higher-level, lower-resolution information of the decoder. This way a big receptive field that captures more
global contextual information is combined with local spatial information.

Our baseline architecture,8 illustrated on the right-hand side of figure 2, efficiently uses spatial information to
avoid overtraining on the limited amount of annotations. Inspired by U-Net,10 our model consists of an encoder
(left), a decoder (right) and skip-connects (center). Unlike U-Net, there are no decimating pooling layers and
instead dilated convolutional layers12 are used to maintain a big receptive field. In a dilated convolutional layer
the weights of the kernel K (width 2M + 1) are spaced out by a factor k, the dilation rate:

z[u] = (x ∗k K)[u] =

M∑
m=−M

x[u− k ·m]K[m]. (1)

This way the produced output z at pixel u maintains the same resolution as the input x while the kernel virtually
operates on a lower resolution grid, having a much bigger receptive field without increase in kernel size.

The encoder consists of 3×3 dilated convolutions layers, alternated every two layers with a max-pooling layer
with stride set to one. This way the pooling layer solely acts as a low-pass filter. Additionally the operating
width of each pooling layer increases according to w = 2(k−1) + 1 to reduce more high frequency information
according to the change in dilation rate.

The dilation rate is doubled after each pooling layer, starting from the value 1 for the first layer. The amount
of filters in each layer is kept constant. With respect to U-Net, there is no need to double the amount of filters f



after each pooling layer to make up for the loss of spatial information. Without taking into account the shrinking
after each convolutional layer, the shape of each layer is now approximately w×w×f versus w/2k×w/2k×f ·2k
for the respective U-Net layer, where k is the amount of previous pooling layers. This means the produced feature
maps are denser in spatial information, and when training the network, the updates of the weights are averaged
out over more pixels, improving stability. In summary, with every extra pooling and increase in dilation rate,
the receptive field increases exponentially while the amount of trainable parameters only increases linearly.

The decoder mostly mirrors the encoder except the pooling layers are replaced with a 2× 2 dilated convolu-
tional layers. Instead of doubling the dilation rate, it is now again halved, starting with the 2× 2 convolutional
layers. As the resolution in each layer is the same, there is no need to upscale the previous feature map, however
it is still useful to gradually reduce the dilation rate again to aggregate the information of neighbouring pixels.14

The output of the 2× 2 convolutional layers is concatenated with the input of the corresponding pooling layer of
the encoder with the idea of combining high-level, low-pass with low-level high-pass features respectively. The
last layer is a 1 × 1 convolutional layer with the number of filters corresponding to the number of classes. For
our detection problem, the two output maps corresponds to the paint loss and background classes. Each layer
uses an ELU15 activation function, except for the last layer which uses softmax (σ):

ŷ = σ(z)j =
ezj

ez1 + ez2
. (2)

This is to produce a normalised prediction ŷ of the last output vector z, corresponding to the likelihood that a
pixel belongs to the classes paint loss and background.

Given that the whole architecture only uses dilated convolution layers and non-decimating pooling, an inter-
esting property arises. Translation invariance means that translating an input x produces the same, although
translated (T ), version of the output z.

x(u) 7→ z(u) ⇐⇒ x(u+ T) 7→ z(u+ T). (3)

Unlike architectures with subsampling layers, each layer of this architecture is explicitly translation invariant,
such that the whole system is translation invariant, which is a desired property of semantic segmentation models.
Because no spatial information is lost after a pooling layer, translation invariance does not have to be learned
by the model and the amount of filters (k) is kept constant in each layer.

2.2 Convolutional autoencoders

Autoencoders are neural networks consisting of an encoder e and decoder d part which are trained to reproduce
the input x from a lower-dimensional latent representation e(x). Formally,

x̂ = (d ◦ e)(x) ≈ x. (4)

The goal of the encoder is to learn efficient data codings, typically compressing the input data to a lower
dimensional manifold. The initial use was for dimensionality reduction techniques and learning features.16

With the appearance of convolutional neural networks, convolutional autoencoders made their debut.11 As
convolutional layers do not reduce the spatial dimensionality, pooling layers are used to reduce the spatial
resolution. This loss in spatial information forces the different filters to capture the relevant spatial features
into the different feature maps. What is crucial is that the total dimensionality gets reduced in the encoder in
order to force the autoencoder to learn this lower dimensional representation. A schematic of a convolutional
autoencoder is shown on the left side of figure 2, with the width and height of each bar depicting the amount of
feature maps and resolution per layer respectively.

Working with multimodal data, the different image modalities are rescaled and registered with respect to each
other in order to stack them as a 3D datacube, with the different channels representing the components from
different imaging modalities. Training the autoencoder on the these modalities together leads to an encoding that
combines both the intra- en inter-modal information which improves the reconstruction performance.17 For that
reason, we argue that this encoding can be extra helpful when used as initialisation for the paint loss detection
model, which is what we propose in this paper.



2.3 Virtual restoration

In virtual inpainting, marked regions of an image are filled in a visually plausible way. Using the paint loss
detection as mask to be virtually inpainted, allows us to simulate the whole restoration process done by the
restorers, thus assisting them in the decision-making process. Conservators usually do not fill in craquelure (i.e.
paint cracks) in the actual inpainting process, unless in cases where cracks show as larger areas of missing paint
and can be characterized as paint loss. Thus it is relevant for the conservator that craquelure is not detected
together with paint loss and the realistic digital inpainting needs to leave the craquelure untouched. We shall
employ patch-based image inpainting18 to virtually restore the images starting from the detected paint loss maps.

3. METHODS

Our primary contribution is a pretraining and weights-transfer scheme for the TI-U-net that allows the paint
loss detection on the multimodal images to be performed with a minimal amount of labels.

For the detection of paint loss, annotations are typically very scarce since annotating manually high-resolution
images at a pixel level is very tedious. The amount of annotations and the precision with which they are made
depend largely on the patience of the user. Thus, to improve the usability of automatic paint loss detection, the
performance has to be maximised with limited user-interference. In order to improve the quality of the prediction
with limited data, we introduced earlier a translation invariant UNet (TI-UNet).8 This TI-UNet combines dilated
convolutions with the typical U-Net without any down- and upsampling layers. As there is no reduction in spatial
resolution, the information through the layers becomes more dense, which improved the training capacity when
working with restricted amount of data. To further improve the performance in the case of limited annotations,
we apply an unsupervised pretraining step and extend this model such that it can continuously improve the
classification accuracy by combining new annotations with preliminary prediction results.

3.1 Transfer learning: from autoencoder to dilated convolutional encoder

In order to be able to apply transfer learning on the encoder, the respective layers have to be compatible i.e.
the kernels need to have the same shape. As visualised in figure 2, the encoder of the autoencoder has the same
number of convolutional and (decimating) max-pooling layers. As the resolution is reduced after each pooling
layer, the convolutional layers are not dilated, but still use the ELU activation function and are followed by a
batch normalisation layer. The decoder is the mirrored version of the encoder, with the pooling layers replaced
by upsampling layers to increase the resolution again to the original one. As the amount of filters per layer
(k) is constant for the TI-UNet, the amount of filters is also constant for the autoencoder. The last layer of
the autoencoder produces the same number of feature maps as the input and the activation is set to a sigmoid
(S(z) = 1/(1 + e−z)) as the input is normalised to be in [0, 1]. It is optimized with respect to a binary cross
entropy loss for each featuremap:

L(x, x̂) = − (x · log(x̂) + (1− x) · log(1− x̂)) . (5)

One of the main prerequisites to successfully training an autoencoder is to have a latent space that is smaller
than the input space in order to force the model to learn a lower-dimensional representation of the input. If
dilated convolutional layers would be used for the autoencoder, once the amount of filters (k) equals 9, the
dimensionality does not have to be reduced and thus it would be possible that the identity transform is learned.
This would lead to no new interesting information in the encoding. To avoid this, the autoencoder needs to use
regular convolutional layers with downsampling.

We develop a method to make the encoder compatible for transfer learning to our TI-U-Net, motivated by
the observations of Tschopp et al19 who showed how convolutional neural networks with pooling layers can be
converted to networks with a constant resolution by applying dilated convolutional layers. These networks have
been shown to produce the identical outputs as their original. The intuitive explanation is that the dilated
convolution will mimic the behaviour as if working on a lower resolution grid, matching the same operational
resolution and receptive field of the respective regular convolutional layer of the autoencoder. As such, the
weights can be safely transferred between the encoders without producing undesired outputs. Our transfer of
the kernel parameters of the encoder is illustrated by the orange arrows in figure 2, this includes the weights of



Table 1: Summary of the average performance of the different methods. The IoU is used as measure of perfor-
mance. The values are averaged over the the different cross-validation sets, after the model converged and only
for those models with high enough number of kernels in order to be able to have the maximum performance. T
and F stand for the encoder being trainable or fixed respectively. F-T is for the encoder first being trained with
a fixed encoder, followed by a finetuning where the encoder is also trainable.

Methods TI-UNet T TI-UNet F TI-UNet F-T TI-UNet

IoU
per fold

1 0.243 0.260 0.270 0.278
2 0.137 0.185 0.124 0.174
3 0.269 0.316 0.254 0.337
4 0.080 0.107 0.081 0.089
5 0.263 0.271 0.197 0.265
6 0.126 0.140 0.113 0.138

Average IoU 0.186 0.213 0.173 0.213
Average accuracy 0.836 0.837 0.832 0.838

the batch normalisation layers. The first convolutional layer of both encoders is identical and is thus transferring
the weights is trivial. After the first pooling layer, the convolutional layer of the encoder operates on half the
original resolution. As such the dilation rate of the respective layer of TI-U-Net is set to 2 and thus this layer
also operates, in essence, on a grid of half the resolution. After more pooling layers, the same reasoning can be
made. As the resolution again halves, the dilation rate of the respective layer doubles and as such they stay
compatible and their weights can transferred while still producing valid outputs.

When applying the same model to other panels, that were not included in the training, there is no need
to start the training from scratch. Instead, the preliminary detection is shown to the user, which then can
provide limited extra annotations for those regions he or she does not agree with. As we start from a better
initialisation and these extra annotations provide a lot of information, the model can be fine tuned with limited
user-interference, speeding up training time. This process can be repeated until the desired performance is
reached.

4. RESULTS & DISCUSSION

As a case study, we use image acquisitions of the panels of the Ghent Altarpiece, taken during the current
restoration treatment. We evaluate the three variants of the proposed method described in section 3: the TI-
UNet without any form of pretraining, transfer learning from an autoencoder and transfer learning a pretrained
model to other paintings.

4.1 Data set

We evaluate the proposed method in the context of the ongoing conservation of the Ghent Altarpiece by the Royal
Institute of cultural Heritage (KIK-IRPA).9 This monumental polyptych, depicting the Adoration of the Mystic
Lamb, was painted by the brothers Hubert and Jan van Eyck and finished in 1432. We use the imaging modalities
documented on the website http://closertovaneyck.kikirpa.be20 as well as additional images that were acquired
during the restoration treatment. We use the following modalities: Digital colour images (RGB) taken during
treatment which are also used to annotate paint loss, and four imaging modalities acquired before treatment:
visible, infrared (IR), infrared reflectography (IRR) and X-ray. For the different modalities, the painting was
captured in sections with fixed lightning conditions, with resolutions in the range of 74 to 480 pixels/cm. For
further processing these are rescaled and registered with respect to the visible modality during treatment, leading
to a datacube with 9 components.

4.2 Paint loss detection without pretraining

To analyse the effect of pretraining the encoder, we report the results on a close-up of the face of the Mystic
Lamb of the central panel, shown in figure 5a. To quantitatively evaluate the performance, six smaller regions
are densely annotated and are used in a six-fold cross-validation scheme: one patch is kept as a test set, while
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Figure 3: Predictions of the models on different testset splits. Image copyright for (a): Sint-Baafskathedraal
Gent @ Lukasweb.be - Arts in Flanders vzw, photo KIK-IRPA.

the others are used to train the models. This is repeated for each patch and the intersection over union (IoU) is
averaged as a reliable measure of performance. Each patch is roughly of size 300 × 300 pixels with on average
13% of the pixels belong to a region of paint loss. The visible modality during treatment with and without the
annotated regions of paint loss is shown in figure 3 column a) and b) respectively.

For each test set the performance is evaluated for a range of kernels per layer k, illustrated in figure 4a.
From the detections generated after the model converged, the median IoU is given bounded by its 25th and
75th percentile. For comparison to our proposed method with different transfer learning schemes, TI-UNet
without any form of preprocessing is used. The different predictions are shown in figure 3c with their respective
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intersection over union score. To test the influence of the number of filters per layer k, the average score over the
different test sets is plotted in figure 4b. We notice that from a certain value of k, the performance stabilizes.
This average value is summarized in table 1. In addition the accuracy is provided, but it should be noted that
this is less informative given the presence of the imbalance in classes.

4.3 Unsupervised pretraining of the encoder

To compare the effects of a pretrained encoder, different models are trained through K-fold cross-validation
according to section 4.2 for a range of numbers of features per layer k. The results comparing our baseline
method and the pretrained encoder are plotted in figure 4. The performance of the trained TI-UNet is significantly
improved if the encoder is initialised by the encoder of a pretrained autoencoder (T TI-UNet). From k > 12,
the performance becomes relatively stable and from the aggregated results in table 1, the IoU is increased from
.186 tot .213. The visual results in figure 3 confirmm that the the paint loss is better detected.

When the encoder is transferred, the weights of the decoder do not yet contain any useful information.
Training the model could risk part of the initialisation to be unlearned. In order to avoid that, we repeat the
training but now first fix the weights of the encoders (F TI-UNet). As the autoencoder is trained to compress
all relevant information into a lower dimensional space, it should still be possible to learn to detect paint loss on
these pretrained features. When the models are fully converged, all the weights are again set to trainable and a
last training step is applied with the goal of finetuning the model (F-T TI-UNet).

As seen in table 1 and figure 4 the model with a fixed encoder (F TI-UNet) performs worse with respect to the
standard TI-UNet: An average Jaccard index of 0.173 versus 0.186 respectively. While it shows the encoder does
contain most information useful to detect paintloss, there is no access to all relevant features. When training
further after setting all layers trainable, it significantly outperforms the TI-UNet, however there is significant
difference in performance as both T TI-UNet and F-T TI-UNet have an average Jaccard index of around 0.213.
This is advantageous as it means there is no need to first train the decoder alone, and a single training phase is
needed to achieve the best generalisation performance using a pretrained encoder.

Another way to evaluate the quality of paint loss detection is to use it as input to virtual inpainting and to
evaluate the inpainted result visually. Generating a virtual restoration can serve as a simulation for the actual



(a) The Adoration of the Mystic lamb during treatment. (b) the Adoration of the Mystic lamb after restoration.

(c) Paint loss detection. (d) Virtual inpainting.

Figure 5: Results on the central part of the panel the Adoration of the Mystic lamb. (a) and (b) are the images
taken during treatment and after physical restoration, respectively, (c) shows the the detected paint loss with
the T TI-U-Net in blue and (d) shows a virtual restoration based on the paint loss detection. Image copyright
for (b) and (c): Sint-Baafskathedraal Gent @ Lukasweb.be – Arts in Flanders vzw, photo KIK-IRPA
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Figure 6: Fast paint loss learning by continuous training from a pretrained model with added annotations.
(a) close-up of the Prophet Zachary during treatment; (b) detected paint loss based on the network trained
on a different painting; (c) added minimal annotations where red marks paint loss and blue marks regions
which are not to be restored; (d) paint loss detection after retraining the network. Image copyright for (a):
Sint-Baafskathedraal Gent @ Lukasweb.be – Arts in Flanders vzw, photo KIK-IRPA

one and further assist in decision making processes. In figure 5 we show the respective paint loss detection
map used as mask to generate the virtual inpainting.18 It can be seen that the virtual inpainting resembles
the actual inpainting rather well. The automatic virtual inpainting filled in reasonably well most of the paint
loss regions that have been inpainted by the conservators in the actual restoration process as well. This shows
the effectiveness of the paint loss detection and its potential in assisting the actual conservation/restoration
treatment.

4.4 Generalisation for other paintings

Applying the model on another painting directly can produce inadequate results. The detected paint loss can
however be used as a guide to add annotations to train the model further and achieve a better detection.21 A
good pretraining alleviates the need for a lot of extra annotations. Provided less input is required, we expect
the overall quality of the annotations to improve.

In figure 6b we show the detection after applying our previously trained model directly on the panel of the
Prophet Zachary. While most paint loss regions are at least partially detected, there are substantial amount of
false positives while other regions are completely undetected. Based on this prediction, extra annotations were
added as shown in figure 6c, mostly guided by the regions mispredicted by the model. This results in a limited
extra training to further improve the accuracy and generalisation performance of the model. Our fine-tuned
model indeed gives a much better detection, accurately marking regions previously undetected as shown in figure
6d, generated in only a matter of seconds.

5. CONCLUSION

In this paper we designed a deep learning model for paint loss detection in paintings that can be used in a reliable
and robust manner without excessive manual labeling by the user for each new painting. We aimed at limiting the
need for user interaction by enabling pre-training (on similar paintings) and applying the model to new paintings
with relatively small amount of new annotations. By using transfer learning from a multimodal autoencoder
to our proposed translation invariant UNet, we were able to significantly improve the classification performance
with respect to omitting the pretraining step. While only the encoder was initialised, our results show it is not
necessary to first train the decoder of our model, and instead the whole model can be trained at once without any



loss of performance. The results were evaluated both objectively, by calculating the overlap measures between
manual expert detections and our automatic results, and visually, by assessing virtual inpainting based on the
detected paint loss maps. The objective evaluation in terms of the detection accuracy showed clear improvements
over our previous deep learning approach in this task. Visual results of automatic virtual inpainting of the
detected paint losses show close resemblance with the actual physical restoration, which indicates that paint
losses have been accurately detected. Based on this, we can conclude that the proposed approach shows good
potential to assist in the actual conservation/restoration treatments.
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