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Abstract: Multichannel images, i.e., images of the same object or scene taken in different spectral
bands or with different imaging modalities/settings, are common in many applications. For example,
multispectral images contain several wavelength bands and hence, have richer information than
color images. Multichannel magnetic resonance imaging and multichannel computed tomography
images are common in medical imaging diagnostics, and multimodal images are also routinely used
in art investigation. All the methods for grayscale images can be applied to multichannel images by
processing each channel/band separately. However, it requires vast computational time, especially
for the task of searching for overlapping patches similar to a given query patch. To address this
problem, we propose a three-dimensional orthonormal tree-structured Haar transform (3D-OTSHT)
targeting fast full search equivalent for three-dimensional block matching in multichannel images.
The use of a three-dimensional integral image significantly saves time to obtain the 3D-OTSHT
coefficients. We demonstrate superior performance of the proposed block matching.

Keywords: block matching; Haar transform; multichannel image; multispectral image; color image

1. Introduction

Block matching is a fundamental tool used to search for blocks (patches) similar to a given query.
It has been widely used in solving various image processing problems, like object recognition and
tracking [1], image registration [2], image analysis [3], image restoration [4], to name a few. Block
matching searches for patches of the same size as a query and is sensitive to deformation. In this sense,
it is different from some common image descriptors such as scale-invariant feature transform (SIFT)
[5] and speed-up robust features (SURF) [6], which extract features robust to deformation. In block
matching, generally, a full search (FS) algorithm that exhaustively compares all the pixel intensities of
all the candidates overlapping each other is the most accurate, but requires vast computation due to
the huge number of candidates in a large search space. The larger the image size and number of image
bands, the harder it is to use FS.

Fast block matching has been studied from algorithms and architectures. There are several works
of architecture such as hardware acceleration and configuration by custom instructions specially
for motion estimation in video coding [7–11]. There are also two categories in the algorithms,
FS-equivalent algorithms and non-FS-equivalent algorithms. Some non-FS-equivalent algorithms
such as three-step-search [12] and diamond search [13] reduce the amount of computation by limiting
search areas, and others do so by approximating patterns [14,15], where there is a trade-off between
accuracy and efficiency. The scope of this paper is limited to the FS-equivalent algorithm.
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Fast FS-equivalent algorithms have been intensively developed in order to address the
computational complexity with FS [16–19]. Although these methods can be applied only to the
patches of size power-of-2, they prove that the search in a transformed domain is much more efficient
than the search in a spatial domain. The additional calculation to obtain the transform coefficients is
fully compensated by the reduction of candidates. The orthogonal Haar transform (OHT) reportedly
performs fastest in this setting [20,21]. One of the reasons is that there is a unique way to calculate the
transform coefficients using an integral image [22,23]. Once an integral image is built, the transform
coefficients can be calculated with a few arithmetic operations. This is based on the fact that the Haar
transform matrix is sparse and composed of rectangular functions, which is much different from
other transforms. In order to overcome the limitation of patch sizes, two-dimensional orthonormal
tree-structured Haar transform (2D-OTSHT), the generalization of OHT, was proposed [24]. Compared
to OHT, the normalization factor of 2D-OTSHT is not an integer number, but this has little effect in the
whole speedup.

In this paper, we propose three-dimensional orthonormal tree-structured Haar transform
(3D-OTSHT) with three-dimensional integral image for multichannel images. In the proposed
3D-OTSHT, the transform coefficients can be obtained by a few arithmetic operations regardless
of patch size. Focusing on the pruning performance in the transformed domain, we consider
the combination with FS, where the pruning process is stopped at a certain level of reduction of
candidates. We demonstrate superior results regarding the savings in computation time compared to
the straightforward solution, where the fast FS-equivalent method for grayscale images is applied to
each band separately. Experimental results are obtained using a standard dataset for color images and
a five-band multispectral image dataset.

The paper is organized as follows: In Section 2, we provide the problem setting and required
techniques as preliminaries. We present the design of 3D-OTSHT for three-dimensional (3D) integral
image and the 3D block matching using 3D-OTSHT in Section 3. Our evaluations of the pruning
performance and speedup are detailed in Section 4. Finally, in Section 5, we conclude our study.

2. Preliminaries

First, the problem targeted in this paper is stated. Next, a couple of techniques required for the
proposed method are briefly described.

2.1. Problem Statement

Consider the problem of searching for patches similar to a given query in a multichannel image. In
the full search (FS) algorithm, the matching patches are detected with a threshold in a sliding window
manner by measuring the similarity of all the candidates in the whole search space. Generally, the sum
of squared differences (SSD) of all the intensities in a candidate is used as the similarity.

Let q(x, y, z) be a query patch of size N × N having B bands, and I(u, v, w) measure an image
of size M×M having B bands. The SSD of all the intensities of all the candidates is calculated, for
0 ≤ u < M− N, 0 ≤ v < M− N, and 0 ≤ w < B, as

SSD(u, v, w) =
M−N

∑
u=0

M−N

∑
v=0

N−1

∑
x=0

N−1

∑
y=0

B−1

∑
z=0

(I(u + x, v + y, w + z)− q(x, y, z))2 . (1)

It turns out that (2(M− N + 1)2N2B− 1) additions and (M− N + 1)2N2B multiplications are
required for the search. The aim of this paper is to reduce the computational complexity for search in
multichannel images while keeping the same accuracy as FS using the same threshold as FS uses.

A part of I(u, v, w), i.e., the i-th candidate, and a query are hereafter simply expressed as pi and q,
respectively, in a vector form, e.g., the SSD of the i-th candidate is represented as

SSDi = ||pi − q||22. (2)
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2.2. Tree-Structured Haar Transform

Tree-structured Haar transform (TSHT) is a generalization of the Haar transform, which can be
applied to signals with arbitrary length [25]. In the conventional Haar transform [26], the basis is built
by dividing an interval equally into two intervals. In TSHT, on the other hand, the basis is built by
dividing an interval unequally into two intervals putting weights on them. The complete division of
the intervals can be expressed by a binary tree structure.

Figure 1a shows an example of a binary tree having 3 leaves. A circle represents a node. The
topmost node is the root. The node having no connection below (no child node) is a leaf. The number
inside a circle represents the number of leaves the node has, which determines the internal division
ratio when dividing an interval and the weight of intervals in the basis function. Figure 1b shows
the intervals corresponding to the nodes of the binary tree. The interval corresponding to a node is
divided internally in two subintervals, in a ratio equal to the number of leaves of the left child node to
that of the right child node.

Let α be a node of a binary tree having N leaves. Let α0 and α1 be the left child node and the right
child node of α, respectively. We denote by ια the interval corresponding to α. The basis function for
interval ιroot is given as

h(t) = 1√
N

, t ∈ ιroot (3)

and

h(t) =


ν(α1), t ∈ ια0

−ν(α0), t ∈ ια1

0, otherwise,
(4)

where ν(α) represents the number of leaves that α has. Thus, except for ιroot, the absolute value of the
weight of two intervals is inversely proportional to the number of leaves. Figure 1c shows the basis.
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Figure 1. Binary tree and corresponding intervals for the basis. (a) Binary tree having N = 3 leaves,
where each node is labeled with 0 and 1 outside the circle except for root; (b) intervals corresponding
to the nodes; (c) the basis built from the intervals.

2.3. Three-Dimensional Integral Image

The three-dimensional (3D) integral image J(x, y, z) is generated from an image, I(u, v, w), of size
M×M having B bands, for x = 0, 1, 2, . . . , M; y = 0, 1, 2, . . . , M; and z = 0, 1, 2, . . . , B, as

J(x, y, z) =
x−1

∑
u=0

y−1

∑
v=0

z−1

∑
w=0

I(u, v, w), (5)

where J(0, y, z) = 0, J(x, 0, z) = 0, and J(x, y, 0) = 0. Observe that (3B− 1)M2 additions are required
to build a 3D integral image.
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With the 3D integral image, the sum of all the intensities in region A (ABCD-EFGH) whose
diagonal starts at the location (sX, sY, sZ) and ends at (eX, eY, eZ), as shown in Figure 2, is calculated
by seven additions regardless of region size as

regionSum(A) = J(eX + 1, eY + 1, eZ + 1)− J(eX + 1, eY + 1, sZ)− J(eX + 1, sY, eZ + 1)

− J(sX, eY + 1, eZ + 1) + J(sX, sY, eZ + 1) + J(sX, eY + 1, sZ) + J(eX + 1, sY, sZ)

− J(sX, sY, sZ). (6)

This property is a key to significant speedup of the proposed method.

O

Y

X

Z

A

B C

D

E

F G

H

sZ

eZ

sY

eY

sX

eX

Figure 2. Specific property of 3D integral image. The sum of the intensities in region ABCD-EFGH
whose diagonal starts at A:(sX, sY, sZ) and ends at G:(eX, eY, eZ) is obtained by seven additions.

3. Three-Dimensional Block Matching for Multichannel Images

We propose here fast FS-equivalent three-dimensional (3D) block matching for multichannel
image using three-dimensional orthonormal tree-structured Haar transform (3D-OTSHT). First, we
construct 3D-OTSHT to simplify the computation to obtain its coefficients. Next, we describe the 3D
block matching using 3D-OTSHT.

3.1. Three-Dimensional Orthonormal Tree-Structured Haar Transform

One of the vectors forming the basis of the vector space for a three-dimensional region is referred
to in this paper as a basis block. The 3D-OTSHT consists of the basis blocks built by subdividing
a three-dimensional region formed by intervals along X, Y, and Z axis. For rapid calculation of
3D-OTSHT coefficients via integral image, we design the basis block to have at most two regions in it,
each of which is assigned to a constant.

Let us consider the basis blocks for a query of size N × N having B bands. We generate the set
of basis blocks by basis block functions. Let TX, TY, and TZ be the binary trees for X axis having N
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leaves, Y axis having N leaves, and Z axis having B leaves, respectively. The nodes of TX , TY, and TZ
are denoted by α, β, and γ, respectively.

We define the basis block function for region (ιroot × ιroot × ιroot) as

ϕ0(x, y, z) = 1
N
√

B
, (x, y, z) ∈ ιroot × ιroot × ιroot (7)

and the basis block functions for the other regions as

ϕ1(x, y, z) =


c+ϕ1, (x, y, z) ∈ ια0 × ιβ × ιγ

c−ϕ1, (x, y, z) ∈ ια1 × ιβ × ιγ

0, otherwise
(8)

ϕ2(x, y, z) =


c+ϕ2, (x, y, z) ∈ ια0 × ιβ0 × ιγ

c−ϕ2, (x, y, z) ∈ ια0 × ιβ1 × ιγ

0, otherwise
(9)

ϕ3(x, y, z) =


c+ϕ3, (x, y, z) ∈ ια1 × ιβ0 × ιγ

c−ϕ3, (x, y, z) ∈ ια1 × ιβ1 × ιγ

0, otherwise
(10)

ϕ4(x, y, z) =


c+ϕ4, (x, y, z) ∈ ια0 × ιβ0 × ιγ0

c−ϕ4, (x, y, z) ∈ ια0 × ιβ0 × ιγ1

0, otherwise
(11)

ϕ5(x, y, z) =


c+ϕ5, (x, y, z) ∈ ια0 × ιβ1 × ιγ0

c−ϕ5, (x, y, z) ∈ ια0 × ιβ1 × ιγ1

0, otherwise
(12)

ϕ6(x, y, z) =


c+ϕ6, (x, y, z) ∈ ια1 × ιβ0 × ιγ0

c−ϕ6, (x, y, z) ∈ ια1 × ιβ0 × ιγ1

0, otherwise
(13)

ϕ7(x, y, z) =


c+ϕ7, (x, y, z) ∈ ια1 × ιβ1 × ιγ0

c−ϕ7, (x, y, z) ∈ ια1 × ιβ1 × ιγ1

0, otherwise,
(14)
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where c+ϕn and c−ϕn, (n = 1, 2, . . . , 7) are a positive constant and a negative constant, respectively, which
includes normalization factor and weight:

c+ϕ1 =
ν(α1)√

ν(α)ν(β)ν(γ)ν(α0)ν(α1)
, c−ϕ1 = − ν(α0)√

ν(α)ν(β)ν(γ)ν(α0)ν(α1)
, (15)

c+ϕ2 =
ν(β1)√

ν(α0)ν(β)ν(γ)ν(β0)ν(β1)
, c−ϕ2 = − ν(β0)√

ν(α0)ν(β)ν(γ)ν(β0)ν(β1)
, (16)

c+ϕ3 =
ν(β1)√

ν(α1)ν(β)ν(γ)ν(β0)ν(β1)
, c−ϕ3 = − ν(β0)√

ν(α1)ν(β)ν(γ)ν(β0)ν(β1)
, (17)

c+ϕ4 =
ν(γ1)√

ν(α0)ν(β0)ν(γ)ν(γ0)ν(γ1)
, c−ϕ4 = − ν(γ0)√

ν(α0)ν(β0)ν(γ)ν(γ0)ν(γ1)
, (18)

c+ϕ5 =
ν(γ1)√

ν(α0)ν(β1)ν(γ)ν(γ0)ν(γ1)
, c−ϕ5 = − ν(γ0)√

ν(α0)ν(β1)ν(γ)ν(γ0)ν(γ1)
, (19)

c+ϕ6 =
ν(γ1)√

ν(α1)ν(β0)ν(γ)ν(γ0)ν(γ1)
, c−ϕ6 = − ν(γ0)√

ν(α1)ν(β0)ν(γ)ν(γ0)ν(γ1)
, (20)

c+ϕ7 =
ν(γ1)√

ν(α1)ν(β1)ν(γ)ν(γ0)ν(γ1)
, c−ϕ7 = − ν(γ0)√

ν(α1)ν(β1)ν(γ)ν(γ0)ν(γ1)
. (21)

A series of functions (8) to (14) is repeated at all the intervals corresponding to the nodes of
three binary trees. Eventually, N2B basis blocks are generated. Each basis block is indicated as Gk,
(k = 1, 2, . . . , N2B) in a vector form. As such, c+ϕn and c−ϕn are replaced by c+k and c−k , respectively. Let
G be the set of basis blocks, i.e., G = [G1, G2, . . . , GN2B]

T , where .T denotes the transposition. G is
orthonormal.

Figure 3 shows the appearance of 3D-OTSHT. Function ϕ1 divides a region along X axis into two
regions, c+∗ and c−∗ , where c+∗ and c−∗ are the region assigned to c+ϕn and c−ϕn as in (15) through (21),
respectively. Functions ϕ2 and ϕ3 divide c+∗ and c−∗ , respectively, built by ϕ1 along Y axis; ϕ4 and ϕ5

divide c+∗ and c−∗ , respectively, built by ϕ2 along Z axis; ϕ6 and ϕ7 divide c+∗ and c−∗ , respectively, built
by ϕ3 along Z axis.
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Figure 3. Three-dimensional orthonormal tree-structured Haar transform (3D-OTSHT) basis blocks
built by subdivision.

3.2. 3D Block Matching Using 3D-OTSHT with 3D Integral Image

In the proposed 3D block matching, SSD of 3D-OTSHT coefficients is calculated as similarity, but
not all the transform coefficients of all the candidates are used. The candidate that does not match is
rejected from the search in the middle of processing, which is called pruning.

The transform coefficients are obtained efficiently with a 3D integral image. From (6), the k-th
3D-OTSHT coefficient, P(k), of a patch, p, in a vector form is obtained as

P(k) = Gkp

= c+k × regionSum(p+
∗ ) + c−k × regionSum(p−∗ ), (22)

where p+∗ and p−∗ are the regions in the patch corresponding to the regions to which c+k and c−k are
assigned in the k-th basis block, respectively.

For pruning, the similarity of candidates is calculated using a subset of 3D-OTSHT. Let Gk be the
subset of G that contains the first k basis blocks, i.e., Gk = [G1, G2, . . . , Gk]

T . The similarity of the i-th
candidate is calculated with Gk as

SSDk
i = ||Pk

i −Qk||22, (23)

where Pk
i = Gkpi and Qk = Gkq. At every k (k = 1, 2, . . . , N2B), SSDk

i is judged with a threshold.
Once SSDk

i is beyond the threshold, the i-th candidate is rejected from the search and neither OTSHT
coefficient nor SSD is calculated afterward. As long as using the same threshold as FS uses, the
unmatched candidates are securely rejected. The theory behind this is that if the transform is
orthonormal, the energy of a signal is not changed in the transformed domain. Therefore, it holds that

||Pi −Q||22 = ||pi − q||22, (24)
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where Pi = Gpi and Q = Gq. From ||Pk
i −Qk||22 ≤ ||Pi −Q||22 for k = 1, 2, . . . , N2B, secure rejection is

made. For this reason, the transform should be orthonormal and SSD used as the similarity measure.

3.3. 3D Block Matching Using Limited 3D-OTSHT

All the basis blocks of 3D-OTSHT can detect patches with the same accuracy as FS. However, it
is inefficient to use all the basis blocks because Gk becomes sparser as k increases. To avoid this, the
limited number of basis blocks is used for pruning, and after the number of candidates is reduced, the
remaining candidates are scrutinized by FS. That is, GK with a certain K is used instead of G for SSDk

i
shown in (23), and at every k, (k = 1, 2, . . . , K), SSDk

i is judged with a threshold for pruning.

4. Evaluation

We performed 3D block matching in order to evaluate the pruning performance and elapsed time
of the proposed method using multichannel images.

4.1. Methods and Environments

We compared the performance of the following five methods for search: FS, two-dimensional
OTSHT with a two-dimensional integral image by single judge (2D-OTSHT-2DI-S) [24],
two-dimensional OTSHT with two-dimensional integral image by whole judge (2D-OTSHT-2DI-W),
two-dimensional OTSHT with a 3D integral image (2D-OTSHT-3DI) [27], and the proposed 3D-OTSHT
with 3D integral image (3D-OTSHT-3DI). 2D-OTSHT-2DI-S and -W use the OTSHT for grayscale
images on each channel, and judge the candidates in different ways: The single judge (-S) decides
whether to reject the candidate or not based on a single channel, while the whole judge (-W) evaluates
the candidate based on all the channels. In 2D-OTSHT-3DI, a basis image forms a basis block for the
3D integral image so that the same basis image is piled up.

We use two image data sets, color image data set and five-band multispectral image data set. The
color image data set, called SIDBA, contains 12 scenes of size 256 × 256 having 3 color channels [28].
The 5-band image data set contains 11 scenes of size 1824 × 1368 having 5 bands [29]. For each dataset,
five patch sizes are used. We chose 10 queries randomly in an image per patch size. Then, we obtain
the ground truth patches similar to the query by FS with a threshold. If the SSD of the i-th patch holds

||pi − q||22 <= threshold, (25)

we set the i-th patch a ground truth. In this experiment, the threshold is 10N2B for the color images
and 2N2B for the 5-band multispectral images. The same threshold is used in all the methods. Table 1
summarizes the number of ground truth patches. From Table 1, it can be seen that the mean number
of ground truth patches tends to decrease as the patch size increases and increase as the image
size increases. We confirmed that the number of ground truth patches chosen by the queries with
low standard deviations of pixel intensities is likely to be large, and that the number of ground truth
patches chosen by the queries with high standard deviations is likely to be one. Therefore, the threshold
should be set appropriately considering the size and characteristics of images in practical applications.
Generally, the larger threshold yields more ground truth patches. However, a threshold that is too
large will be meaningless.

All the algorithms are written in C as single thread tasks, compiled with Xcode 10.1, and run on
a macOS system with 4 GHz Intel core i7 and 16 GB RAM, where eight active processor cores with
hardware multithreading are used.
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Table 1. The number of ground truth patches.

Number of Patches
Data Set Image Size Band Scenes Patch Size Samples Min. Mean Max.

5× 5 120 1 265 7541
9× 9 120 1 308 6097

1 256× 256 3 12 13× 13 120 1 234 4937
17× 17 120 1 51 1564
21× 21 120 1 4 127

5× 5 110 1 6158 103,161
13× 13 110 1 5634 113,573

2 1824× 1368 5 11 21× 21 110 1 2508 89,534
30× 30 110 1 1543 85,131
45× 45 110 1 1882 74,967

4.2. Pruning Performance

The pruning performance is evaluated by the ratio, R(K), of the number of remaining extra
patches detected by K basis images/blocks to the number of all the candidates, which is defined by

R(K) =
Nd(K)− Ng

Nc
× 100, (26)

where Nd(K) refers to the number of patches detected by K basis images/blocks, Ng is the number of
ground truth patches, and Nc represents the number of all the candidates. Lower R(K) means better
performance.

Figures 4 and 5 show the pruning performance, R(K), (K = 2, 4, 8, . . . , Kmax), in the color images
and the 5-band multispectral images, respectively, where Kmax refers to the maximum number of basis
images/blocks. In the proposed 3D-OTSHT-3DI, Kmax = N2B, while in the other methods, Kmax = N2.
We confirmed that all the methods detect every ground truth patch at any K, i.e., there are no false
negatives. Therefore, the final accuracy (the accuracy after the remaining candidates are scrutinized by
FS) is the same as the accuracy of FS. The proposed 3D-OTSHT-3DI method yields the best pruning
performance both on 3-band and 5-band images for all the patch sizes. In both image data sets, we
observe that when K is greater than or equal to 8, 3D-OTSHT-3DI is better than the other methods and
that as K increases, the rate of change reduces. These facts suggest that not all the basis blocks are
required for the whole speedup.

Figure 6 shows an example of patches detected at K basis images/blocks by different methods and
for different values of K. Every one of the detected patches of size 13× 13 is shown in an orange square,
and the detected overlapping patches cover different areas depending on the employed method and
the K-value. It can be seen that the amount of candidate patches reduces as K increases. The result of
3D-OTHST-3DI does not differ significantly between K = 8 and K = 16 and, clearly, these results agree
best with the ground truth.
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Figure 4. Percentage of extra patches remaining at K basis images/blocks in color images of size
256× 256.

Figure 5. Percentage of extra patches remaining at K basis images/blocks in 5-band images of size
1824× 1368.
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K = 1

Query patch

?
K = 2

K = 4

Ground truth
patches

K = 8

K = 16

2D-OTSHT 2D-OTSHT 2D-OTSHT 3D-OTSHT
-2DI-S -2DI-W -3DI -3DI (proposed)

Figure 6. An example of the patches detected by a query patch in different methods at K basis
images/blocks. The query patch of size 13× 13 and the detected patches are shown in orange squares.

4.3. Computational Complexity

Here, we consider the number of arithmetic operations with respect to the number of basis
images/blocks when we use only OTSHT not included in the arithmetic operations of FS. Table 2
shows the number of additions and multiplications per pixel for search for patches similar to a query
of size N × N having B bands including building an integral image. It shows the worst case, where
no candidates are rejected at any K basis images/blocks. In 2D-OTSHT-2DI-S and -W, two additions
are needed per pixel for building a 2D-integral image in each band, and (8K − 1) additions and 3K
multiplications are required per pixel for SSD in each band. Thus, in total, (2 + 8k− 1)B additions and
3KB multiplications per pixel. In 2D- and 3D-OTSHT-3DI, (3B− 1) additions are needed per pixel
for a 3D-integral image, and (16K − 1) additions and 3K multiplications are required per pixel for
SSD. For the same K, the number of additions for 2D- and 3D-OTSHT-3DI is smaller than that for
2D-OTSHT-2DI-S and -W, except for the images having 2 bands; while the number of multiplications
for 2D- and 3D-OTSHT-3DI is smaller than that for 2D-OTSHT-2DI-S and -W in any images with more
than one band.
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Table 2. The number of additions and multiplications per pixel for searching patches having B bands
with K basis images/blocks.

Method Additions Multiplications

2D-OTSHT-2DI-S and -W (2 + 8K− 1)B 3KB
2D- and 3D-OTSHT-3DI 3B− 1 + 16K− 1 3K

4.4. Speedup

In this section, we analyze when to stop the pruning process for the whole speedup in combination
with FS, showing the mean elapsed time at K basis images/blocks in the methods, and compare the
final performance of the five methods. Figures 7 and 8 show the mean ratio (%) of the elapsed time of
each method at K basis images/blocks to the elapsed time of FS. Tables 3 and 4 detail the mean elapsed
time and the ratio to the elapsed time of FS when we use GK, (K = 1, 2, 4, . . . , 32) for the color images
and the 5-band multispectral images, respectively. The fastest time at each patch size is expressed in
bold. From Tables 3 and 4, it can be seen that the proposed method outperforms the other methods
except for the cases of patches of size 9× 9 in the color images and patches of size 5× 5 in the 5-band
images. In the color images, for patch size 5× 5, the fastest mean elapsed time was 1.03 (ms) which is
23.17 % of the mean elapsed time of FS; while for 21× 21, the fastest mean elapsed time was 1.30 (ms),
which is 1.78 % of the mean elapsed time of FS. In the 5-band images, for patch size 5× 5, the fastest
mean elapsed time was 0.050 (s) which is 17.44 % of the mean elapsed time of FS; while for 45× 45, the
fastest mean elapsed time was 0.164 (s), which is 0.78 % of the mean elapsed time of FS. The larger the
patch size and the larger the number of bands, the higher the efficiency of the proposed method.

We confirmed that the mean ratio did not differ much between eight active processor cores with
hardware multithreading and one core in the same system.
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Table 3. Mean elapsed time and ratio to full search (FS) time in color images of size 256 × 256.

2D-OTSHT-2DI 2D-OTSHT-2DI 2D-OTSHT-3DI 3D-OTSHT-3DI
FS -S+FS [24] -W+FS +FS [27] +FS (Proposed)

Size [ms] K Time [ms] Ratio [%] Time [ms] Ratio [%] Time [ms] Ratio [%] Time [ms] Ratio [%]

1 1.18 26.57 1.17 26.26 1.04 23.23 1.07 23.98
5 2 1.30 29.07 1.33 29.78 1.03 23.18 1.03 23.17
× 4.46 4 1.55 34.89 1.66 37.21 1.06 23.79 1.07 24.00
5 8 2.10 47.12 2.38 53.30 1.24 27.78 1.23 27.53

16 3.15 70.77 3.60 80.71 1.59 35.75 1.55 34.71
32 — — — — — — 2.23 49.96

1 1.46 10.07 1.55 10.67 1.68 11.60 1.70 11.72
9 2 1.44 9.92 1.53 10.54 1.29 8.91 1.29 8.87
× 14.51 4 1.62 11.18 1.76 12.12 1.18 8.14 1.19 8.18
9 8 2.14 14.74 2.38 16.38 1.34 9.24 1.26 8.70

16 3.13 21.58 3.55 24.50 1.64 11.31 1.58 10.88
32 5.11 35.19 5.84 40.22 2.30 15.86 2.19 15.12

1 1.82 6.39 2.11 7.43 2.77 9.76 2.78 9.80
13 2 1.64 5.77 1.77 6.24 1.71 6.03 1.70 5.97
× 28.39 4 1.72 6.06 1.83 6.45 1.29 4.54 1.26 4.44
13 8 2.14 7.53 2.35 8.29 1.38 4.85 1.34 4.70

16 3.00 10.55 3.33 11.73 1.62 5.71 1.58 5.58
32 4.80 16.90 5.38 18.96 2.22 7.81 2.19 7.70

1 2.19 4.39 2.82 5.66 4.35 8.74 4.35 8.72
17 2 1.71 3.42 2.01 4.03 2.04 4.09 2.01 4.04
× 49.84 4 1.66 3.34 1.91 3.82 1.34 2.68 1.34 2.69
17 8 2.00 4.02 2.26 4.53 1.33 2.67 1.27 2.55

16 2.78 5.58 3.09 6.19 1.51 3.04 1.46 2.93
32 4.36 8.74 4.87 9.77 2.01 4.04 1.97 3.96

1 2.94 4.02 4.10 5.60 6.17 8.44 6.19 8.46
21 2 2.04 2.79 2.60 3.55 2.63 3.59 2.57 3.51
× 73.16 4 1.81 2.48 2.15 2.94 1.44 1.97 1.43 1.95
21 8 2.08 2.84 2.44 3.33 1.38 1.88 1.30 1.78

16 2.71 3.71 3.13 4.28 1.49 2.03 1.47 2.01
32 4.24 5.80 4.87 6.66 1.95 2.66 1.90 2.60

All the algorithms are written in C as single thread tasks, compiled with Xcode 10.1, and run on a macOS
system with 4 GHz Intel core i7 and 16 GB RAM, where eight active processor cores with hardware
multithreading are used.
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Figure 7. Mean ratio [%] of the elapsed time of each method at K basis images/blocks to the elapsed
time of FS in color images of size 256 × 256.

Figure 8. Mean ratio [%] of the elapsed time of each method at K basis images/blocks to the elapsed
time of FS in 5-band images of size 1824 × 1368.
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Table 4. Mean elapsed time and ratio to FS time in 5-band images of size 1824 × 1368.

2D-OTSHT-2DI 2D-OTSHT-2DI 2D-OTSHT-3DI 3D-OTSHT-3DI
FS -S+FS [24] -W+FS +FS [27] +FS (Proposed)

Size [s] K Time [s] Ratio [%] Time [s] Ratio [%] Time [s] Ratio [%] Time [s] Ratio [%]

1 0.099 34.913 0.102 35.845 0.052 18.239 0.051 17.873
5 2 0.125 44.007 0.126 44.373 0.050 17.437 0.050 17.604
× 0.285 4 0.173 60.934 0.179 62.793 0.052 18.389 0.053 18.487
5 8 0.271 95.202 0.286 100.577 0.062 21.896 0.059 20.621

16 0.460 161.597 0.496 174.368 0.078 27.316 0.073 25.471
32 — — — — — — 0.097 34.203

1 0.137 7.792 0.169 9.646 0.126 7.192 0.125 7.141
13 2 0.153 8.742 0.176 10.065 0.092 5.250 0.092 5.231
× 1.753 4 0.196 11.160 0.217 12.361 0.077 4.392 0.077 4.401
13 8 0.288 16.453 0.314 17.910 0.078 4.473 0.072 4.134

16 0.473 26.997 0.512 29.224 0.090 5.112 0.083 4.724
32 0.843 48.094 0.914 52.168 0.115 6.587 0.107 6.101

1 0.211 4.360 0.324 6.696 0.302 6.250 0.301 6.235
21 2 0.195 4.035 0.275 5.681 0.177 3.658 0.176 3.637
× 4.833 4 0.221 4.577 0.276 5.719 0.122 2.516 0.122 2.525
21 8 0.306 6.322 0.351 7.266 0.108 2.228 0.094 1.939

16 0.483 9.983 0.529 10.936 0.111 2.299 0.098 2.034
32 0.834 17.252 0.899 18.607 0.133 2.747 0.117 2.428

1 0.352 3.742 0.589 6.252 0.616 6.547 0.616 6.547
30 2 0.287 3.053 0.459 4.871 0.332 3.527 0.330 3.503
× 9.415 4 0.286 3.034 0.418 4.437 0.209 2.222 0.207 2.195
30 8 0.357 3.788 0.470 4.990 0.169 1.798 0.142 1.512

16 0.527 5.595 0.623 6.620 0.154 1.631 0.133 1.407
32 0.874 9.284 0.985 10.460 0.163 1.730 0.147 1.559

1 0.642 3.057 1.202 5.724 1.294 6.163 1.297 6.178
45 2 0.444 2.113 0.832 3.961 0.606 2.888 0.605 2.883
× 20.993 4 0.371 1.768 0.651 3.102 0.328 1.565 0.327 1.556
45 8 0.409 1.948 0.659 3.138 0.257 1.224 0.193 0.920

16 0.554 2.638 0.768 3.659 0.211 1.004 0.164 0.781
32 0.876 4.173 1.076 5.124 0.200 0.952 0.168 0.802

All the algorithms are written in C as single thread tasks, compiled with Xcode 10.1 and run on a macOS system
with 4 GHz intel core i7 and 16 GB RAM, where eight active processor cores with hardware multi-threading
are used.

We also compared the five methods with the best performed K-value to A2DHT [20]. A2DHT
is an FS-equivalent algorithm for grayscale images and reportedly performs fastest in FS-equivalent
algorithms, whose source code is provided by the authors [30]. We modified the code so that the
method was applied to each band separately. Since A2DHT has a limitation that the patch size is
power-of-2, the queries of size 16× 16 were used for the color image dataset and the queries of size
16× 16 and 32× 32 were used for the 5-band image dataset. The number of ground truth patches is
summarized in Table 5. We confirmed that all the methods detected every ground truth patch. Table 6
shows the mean elapsed time and mean ratio to FS time, where the fastest time and its ratio at each
patch size is expressed in bold. It can be seen that the proposed method outperforms state-of-the-art
methods.

Table 5. The number of ground truth patches of size power-of-2.

Number of Patches
Dataset Image Size Band Scenes Patch Size Samples Min. Mean Max.

1 256× 256 3 12 16× 16 120 1 15 732

2 1824× 1368 5 11 16× 16 110 1 4880 100,278
32× 32 110 1 1370 91,325
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Table 6. Mean elapsed time and ratio to FS time for patches of size power-of-2.

Data 2D-OTSHT 2D-OTSHT 2D-OTSHT 3D-OTSHT-3DI
Size Set FS A2DHT [20] -2DI-S+FS [24] -2DI-W+FS -3DI+FS [27] +FS (Proposed)

[ms] [%] [ms] [%] [ms] [%] [ms] [%] [ms] [%] [ms] [%]

16 × 16 1 46.04 100 2.65 5.76 1.69 3.68 1.94 4.22 1.33 2.89 1.23 2.67
(K = 4) (K = 4) (K = 4) (K = 8)

[s] [%] [s] [%] [s] [%] [s] [%] [s] [%] [s] [%]

16 × 16 2 2.517 100 0.099 3.933 0.136 5.398 0.166 6.614 0.069 2.728 0.067 2.647
(K = 2) (K = 2) (K = 4) (K = 8)

32 × 32 2 10.854 100 0.124 1.142 0.246 2.262 0.342 3.155 0.120 1.105 0.108 0.995
(K = 4) (K = 4) (K = 16) (K = 16)

All the algorithms are written in C as single thread tasks, compiled with Xcode 10.1, and run on a macOS
system with 4 GHz Intel core i7 and 16 GB RAM, where eight active processor cores with hardware
multithreading are used.

5. Conclusions

We proposed a fast FS-equivalent 3D block matching method in order to search for the patch(es)
similar to a given query for multichannel images. The proposed method uses 3D-OTSHT and reduces
the number of candidates with SSD in the transformed domain. The pruning process rejects unmatched
candidates during the block matching processing. Moreover, in combination with FS, the pruning
process is stopped during the processing for the whole speedup. We designed 3D-OTSHT making the
most of 3D integral image rather than the extension of one-dimensional TSHT. Unmatched patches
are securely rejected due to being orthonormal and using SSD as the similarity measure. We have
analyzed the pruning performance and mean elapsed time using a color image dataset and a 5-band
multispectral image dataset, and demonstrated that the proposed method outperforms state-of-the-art
methods. In the color images, the mean elapsed time was shortened up to less than 2% of the FS
time. In the 5-band multispectral images, the search time was shortened up to around 0.8% of the
FS time, hence allowing more than 100-times faster processing without sacrificing the accuracy. We
believe that these huge savings in computation time can enable new applications of patch matching in
multichannel images, which were not feasible before due to the prohibitive computational complexity.
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