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Abstract. Autoencoders have been widely used in applications with
limited annotations to extract features in an unsupervised manner, pre-
processing the data to be used in machine learning models. This is espe-
cially helpful in image processing for art investigation where annotated
data is scarce and difficult to collect.
We introduce a structural similarity index based loss function to train
the autoencoder for image data. By extending the recently developed
partial convolution to partial deconvolution, we construct a fully partial
convolutional autoencoder (FP-CAE) and adapt it to multimodal data,
typically utilized in art invesigation. Experimental results on images of
the Ghent Altarpiece show that our method significantly suppresses edge
artifacts and improves the overall reconstruction performance. The pro-
posed FP-CAE can be used for data preprocessing in craquelure detec-
tion and other art investigation tasks in future studies.

Keywords: Autoencoder, Partial convolution, Multimodal data

1 Introduction

Art investigation aims at developing and applying technologies to facilitate re-
search and conservation of artworks. Some typical research topics are craquelure
detection, paint loss detection, virtual reconstruction and so on. In recent years,
deep learning has shown great potential in computer vision tasks, which attracts
researchers to apply deep learning methods to art investigation. However, exist-
ing studies mainly utilize fully supervised learning that relies on a great number
of annotation data, a requirement that is hard to come by in art investigation.

Using autoencoders as a data preprocesser for feature extraction, is very com-
mon in deep learning when only limited amount of annotated data is available.
Autoencoders can be trained in an unsupervised manner so that it learns to ex-
tract the most important features from a particular dataset, e.g. paintings from
the same artist. After unsupervised learning, the latent vector of the autoencoder
can then be used as the input of models for the art investigation tasks. Since
these models are applied on a compressed representation of the input, they can
be of lower complexity and contain less parameters. Accordingly, less annotated
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(a) (b)

Fig. 1: Different modalities of the panel the Prophet Zachary. (a) RGB and (b)
Infrared reflectography image. Different types of degradations become visible in
these images. Intermodal information through the variations in different modali-
ties can be utilized. Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb;
photo courtesy of KIK-IRPA, Brussels.

data is needed to train these models to the same performance level. In this way,
autoencoders can be a powerful tool for art investigation.

Besides photography, other sensors are commonly employed in art investiga-
tion in order to acquire more information about a particular object. Our methods
are applied on images acquired in the ongoing restoration project of the Ghent
Altarpiece [9] where at least five modalities are obtained: macro-photography
before and during treatment (RGB, three color channels each), Infrared reflec-
tography (IRR, single channel), X-ray (single channel) and ultraviolet fluores-
cence (UVF, three color channels). Researchers have used these multimodal data
for craquelure [23] and paint loss detection [6,16], although are restricted in per-
formance to the availability in annotations. Images from two different sensors
of the painting the Prophet Zachary can be found in figure 1. In both images,
craquelure and regions of paint loss are visible. A disparity in context can show
overpainted regions, e.g. in the red rectangles. To achieve good data preprocess-
ing for art investigation tasks, the autoencoder must be able to extract both
inter- and intramodal features.

To assess the quality of this encoding with respect to the compression factor,
the reconstruction performance is commonly analyzed. To improve the recon-
struction performance, we have 3 main contributions: a fully partial convolu-
tional autoencoder, a structural similarity (SSIM) index based loss function,
and separating the inputs for a multimodal autoencoder. Firstly, we generalize
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partial convolutions [14] and extend it to partial deconvolutions. As a result,
we construct a novel fully partial convolutional autoencoder (FP-CAE) which
significantly reduces edge artifacts on the reconstructed images. When train-
ing the autoencoder, we introduce a SSIM-based loss function to maximize the
structural similarity between the input and reconstructed images. Finally, we in-
vestigate two strategies to improve extracting inter- and intramodal information
from multimodal data.

The paper is organized as follows: We review briefly autoencoder designs,
variation of CNNs, existing studies in art investigation, and multimodal data
processing in section 2. Our generalization and extension of partial convolutions,
the proposed model structure and loss function are explained in section 3. The
experiments and results are discussed in section 4. Finally, section 5 draws some
conclusion and encloses the paper.

2 Related work

In this section, we first review a few recent studies in art investigation as well as
autoencoder and then discuss some variation of autoencoder structure. Finally,
we briefly summarize some relevant work in multimodal data processing.

2.1 Art investigation and autoencoder

Some recent studies adopted deep learning methods in art investigation tasks.
A U-net like structure was used in [16] to detect paint loss while Sizyakin et
al. proposed to combine morphological filtering with CNN for crack detection
[23]. Existing deep learning models used in art investigation are based on su-
pervised learning, which is constrained by the limited annotations. Therefore,
more research exploring unsupervised or semi-supervised learning such as using
autoencoders is needed to improve these methods.

Autoencoder has been applied to fields such as medical image processing
where annotations are limited [5]. When training an autoencoder, the mean
squared error is typically employed as the loss function [4], [5]. However, Snell
et al. have shown that SSIM based loss function can achieve better performance
than MSE loss for images [24].

2.2 Autoencoder model structure

Various autoencoder structures exist for different applications. The variational
autoencoder [12] is a stochastic autoencoder and is very popular in especially
generative models [17], [19], [21]. Another category, the deterministic autoen-
coder, has been widely used in feature extraction and reconstruction. Some used
stacked autoencoders to reduce the noise from input data [22].

In deep learning models, convolutional neural networks have been proved
more effective compared to fully connected networks. Since convolution is im-
plemented by sliding kernels along the input, one challenge researchers have to
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deal with is preserving the border information when applying CNN. Carlo et
al. proposed to use extra filters explicitly to learn the border information [7].
However, the total filters and parameters increase quickly when the kernel size
increases. This limits its application with large kernel sizes and those that re-
quire fast computations. Another widely used technique to cope with border
information in convolution is padding. Zero padding [13], reflection padding and
duplication padding are the most common padding methods researchers use. All
these methods introduce artificial values in the border, which does not neces-
sarily correspond to the real value outside the border hence this leads to edge
artifacts. Liu et al. proposed using partial convolution for image inpainting tasks
[14]. In their method, appropriate scaling is applied to counter balance the vary-
ing amount of valid inputs. Since zero padding can be regarded as a special case
of missing values by defining the input region to be non-holes and zero padded
region to be holes, partial convolution based padding is used to reduce edge ar-
tifacts [15]. Their results suggest that partial convolution could indeed improve
the segmentation accuracy on the edges.

Transposed convolution or deconvolution has been used as the basic building
block for convolutional decoders [1], [10]. The most commonly used implementa-
tion of deconvolution first stretches the input feature by inserting zeros between
each input unit and then applies the kernel to the stretched input with stride
equal to 1 [3]. Since zero insertions are used in the deconvolution, checkerboard
artifacts are easily introduced [18]. As an alternative, Ronneberger et al. used
upsampling [20] to build the decoder. However, upsampling also introduces ar-
tificial values when applying interpolation to the input feature, which leads to
other kind of artifacts.

2.3 Multimodal data processing

Multimodal data processing has attracted attention from researchers in recent
years as more and more correlated data from different sensors are collected.
Cadena et al. proposed separating depth sensor data, image and semantics in
the input and combining encoded features in latent space to predict depth [2].
Jaques et al. investigated the possibility of combining data from text, number,
location, time and survey for mood prediction [8]. Canonical correlation analysis
based intra and inter modal information learning was introduced in [25] for
RGB-D object recognition task. In art investigation, Meeus et al. stacked all
modalities together for paint loss detection [16]. Given all the possible variables
of data source, it is still an ongoing research topic of how to effectively combine
different modalities to obtain correlated information nowadays.

3 Method

In this section, we start with illustrating how we extend the partial convolution
and then explain the structure of our multimodal autoencoder as well as the
proposed loss function.
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Fig. 2: The general flowchart for implementing partial convolution. The convo-
lution operation can be 1D convolution, 2D convolution, transposed convolution
etc.

3.1 Extending Partial convolution

General method for implementing partial convolution From the defini-
tion of partial convolution with zero padding [14], [15], we generalized a method
for implementing partial convolution, see figure 2. Given the input feature X, the
trainable kernel W and bias b′ (if not zero) of the current layer, two all-ones ma-
trix 1X and 1W , having the same shape as X and W respectively, are generated.
Some convolutional operation such as Conv1D, Conv2D or Conv2DTranspose
is applied to X and W, yielding Z′. The same convolutional operation is also
applied to 1X and 1W , yielding a non-scaled mask M. Instead of calculating
the L1 norm of all-ones matrix in [14], we take the maximum value of M as the
numerator so that the minimum value of the scale factor is one. This way we en-
force that the convolution result is not changed in the region where all elements
are valid inputs. In the extreme case when all the elements where the region
kernel applies are zeros, the scale factor and bias will be set to zero. Finally, Z′

is multiplied element-wise with the scale factor R. Bias and non-linearity can be
applied after this multiplication.
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(a) (b) (c) (d) (e)

Fig. 3: Visualization of our partial deconvolution. (a). An input feature and filter
matrix. (b). The stretched and zero-padded input feature. (c) Output of normal
deconvolution. (d) The scale factor r(i,j). (e). Output of our partial deconvolu-
tion. Our partial deconvolution smooths the output of a normal deconvolution
by multiplying with the appropriate scale factor based on the varying amount
of valid inputs.

Partial deconvolution The zero insertion and padding used in the deconvo-
lution can be regarded as missing input values, thus partial convolution can be
applied. Let X be the input feature of current deconvolution layer and 1X be
all-ones matrix with the same shape as X. Xext and 1ext is the stretched and
zero padded result on X and 1X respectively. When a kernel W is applied to a
local region of the input feature X(i,j), the partial deconvolution result is:

z(i,j) = WT (Xext
(i,j) � 1ext(i,j))r(i,j) + b = WTXext

(i,j)r(i,j) + b. (1)

The scale factor r(i,j) is defined as:

r(i,j) =
max(M)

M(i,j)
, (2)

where M is the deconvolution result of 1ext and the all-ones kernel 1W , having
the same shape as W. The visualization of our partial deconvolution can be
found in figure 3. In this example both the input feature X and the kernel W
are 3 × 3 all-ones matrix. The input feature is first stretched to a 5 × 5 matrix
and becomes 7 × 7 matrix after padding. The normal deconvolution result is
shown in figure 3c while our partial deconvolution result is shown in figure 3e.
By multiplying with scaling factor r(i,j), the appropriate adjustment is applied
to different input regions with varying number of valid elements. Therefore, the
partial deconvolution could smooth out the variation in output values and thus
suppress edge artifacts.

3.2 Multimodal autoencoder

We proposed two autoencoder architectures to cope with the multimodal data:
stacked input and separated input autoencoder. The main difference of these
two structure is the strategy to combine different modalities in the input.
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Fig. 4: Model structure of stacked input autoencoder. All image modalities are
stacked together in the input layer so the input channel depth is 11.

Our model structure for stacked input autoencoder is a fully convolutional
neural network, see figure 4. Images from different modalities are stacked to-
gether as a single input for the autoencoder. To reduce edge artifacts, different
versions of the model are tested by replacing the convolution and deconvolution
layers with partial convolution, deconvolution, or upsampling layer. For this
model, the input shape is 32×32×11 while the latent vector shape is 3×3×80,
thus the data compression ratio is 15.6.

For the separated input autoencoder, each modality has an encoder to extract
important intra-modal features, illustrated in figure 4. The encoded features are
combined either by an addition or a concatenation layer. Then these combined
features are given to a convolutional layer to learn the inter-modal information.
Finally, the learned inter-modal features are distributed to decoders for each
modality to reconstruct the multimodal images. The encoder and decoder used
for multi-modal autoencoder have the same structure as the stacked input au-
toencoder, only the input channel depth changes. The output of the convolution
layer for the inter-modal features is used for later art investigation tasks. There-
fore, the dimension of latent vector is again 3 × 3 × 80 and compression ratio
stays 15.6.

3.3 Loss function

SSIM is widely used as a metric to compare the similarity between two im-
ages. The single scale SSIM consists of three components: luminance (L), con-
trast (C) and structure (S). With µ and σ2 the average and variance operator

respectively, they are defined as L(x, y) =
(2µxµy+C1)
(µ2

x+µ
2
y+C1)

, C(x, y) =
2σxσy+C2

σ2
x+σ

2
y+C2

,

S(x, y) =
σxy+C3

σxσy+C3
. The SSIM score is calculated by combining these three func-

tions:
SSIM(x, y) = L(x, y)αC(x, y)βS(x, y)γ . (3)

As usually α = β = γ and C3 = C2

2 , the SSIM can be rewritten as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4)
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Fig. 5: Separated input autoencoder model structure. The different modalities are
separated. Intra-modal information is learned by the encoder and decoder while
inter-modal information is extracted by the convolution layer. The combination
layer could be either an addition or a concatenation layer.

Based on the definition, the SSIM score ranges from −1 to 1 and only when
two images are identical the score can be equal to one. For the proposed loss
function, the logarithm is applied on a shifted and rescaled SSIM, in order to
punish a low SSIM more.

Loss = −log(
SSIM + 1

2
) (5)

The more similar two images are, the smaller the loss is. Given the properties
of the logarithm function, when SSIM is small, the loss value and and gradient
is high, thus pushes bigger model update steps. When SSIM is closer to one,
the gradients become smaller and the model optimizes the parameters in a more
stable way. Since the SSIM is only defined for grey scale images, we apply grey
scale to images that have three color channels such as RGB and UVF images
before calculating its SSIM. For the multimodal autoencoder, the final loss is
the mean loss on each modality.

4 Results and Discussion

All our models are applied on multimodal acquisitions of two panels from the
Ghent Altarpiece: John the Evangelist and the Prophet Zachary [9]. The five
modalities mentioned in section 1 are used, totalling 11 color channels. For each
painting, we first divide the full image into two roughly equal parts. One part
is used as the training data while the other part is used for testing. Then the
full image is further cropped into small squares to match the input dimension
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of our model. Horizontal, vertical and diagonal flip are randomly applied to the
patches. This way, around 2.6 million images and 2 million images are available
for training and testing respectively.

We started our experiments by testing performance of stacked input autoen-
coders, i.e. all modalities are stacked before being given to the model. The kernel
size, stride, input and output dimensions of the different stacked input autoen-
coders are the same as illustrated in figure 4. The convolution layers might be
replaced by partial convolution, upsampling or deconvolution layer depending on
the model configuration. As baseline, we first train an autoencoder whose layers
are normal convolution and deconvolution layers (normal AE ). For the second
model, the convolutional layers in encoder are replaced with partial convolution
layers while the decoder remains the same (PEN + NDE ). The third model has
the same encoder as the second model and the deconvolution layers are replaced
with upsampling and partial convolution layers (PEN + UPDE ). Nearest inter-
polation is used for the upsampling method. The last model is constructed by
replacing all normal convolution and deconvolution layers with partial convo-
lution and deconvolution layers, which becomes our fully partial convolutional
autoencoder (FP-CAE ). Adam optimizer [11] was used to optimize parameters.
The learning rate for the baseline model was set to 6e−4 without decay. However,
with partial convolution layers we found that higher learning rate is desired in
order to achieve good performance. The learning rate for the other three models
is 12e−4 with 3e−5 decay. All models are trained until convergence.

The stacked input fully partial convolution autoencoder was used as basic
unit to construct the separated input autoencoder. We first combined the differ-
ent encoded features by concatenating them together and then applied a convo-
lution layer (Concatenation FP-CAE ), as illustrated in figure 5. In the second
multimodal autoencoder, the combination layer is an addition layer(Addition
FP-CAE ). The learning rate for both models is 8e−4 with 4e−5 decay.

4.1 Stacked input autoencoder

The average testing SSIM score of different models is shown in table 1. It can be
seen that our FP-CAE is the best among four models while the model with the
commonly used upsampling layers performs the worst. The visual comparison
of some test samples can be found in figure 7. The most severe edge artifacts
occur in the normal AE. Replacing only normal convolution with partial convo-
lution (PEN + NDE ) reduces some artifacts but the overall performance drops.
(PEN + UPDE ) reduces most visual artifacts but the reconstruction perfor-
mance drops a lot and corner artifacts become dominant. When replacing all
the normal layers with their partial substitute (FP-CAE ), the reconstruction
performance slightly increases and most artifacts are suppressed.

Although the visible reduction of edge artifacts, the numerical difference
between our FP-CAE and normal autoencoder is relatively small. This is because
the edges only account for a small proportion for the full image. Improving
only the edges and keeping most of the interior unchanged does not lead to
significant improvement of the overall SSIM score. In order to evaluate the actual
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Table 1: The average SSIM for stacked input autoencoders. Our FP-CAE is
better than all the other models. The improvement of SSIM in our model comes
from the suppression of edge artifacts.

Model Normal AE PEN + NDE PEN + UPDE Our FP-CAE

SSIM 0.9366 0.9349 0.9271 0.9377

(a)

0 2 4 6 8 10 12
distance

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

SS
IM

normal AE
PEN+NDE
PEN+UPDE
Our FP-CAE

(b)

Fig. 6: Evaluating the effect of suppressing edge artifacts. (a) The definition
of distance. (b) Visualization of local SSIM with cropping window size 8 with
respect to distance from edge.

improvement of the partial deconvolution on the edges, we calculate the SSIM
score in local regions and plotted the SSIM score with respect to the distance to
the edge of the patch. The distance is the Manhattan distance: Suppose the width
and height of the image is l, the small window size applied to crop the image is
w. With x and y the spatial coordinates of a pixel according to an image patch,
the coordinates of the four corners on the cropped image are (x1, y1), (x1, y2),
(x2, y1), (x2, y2). The distance of this cropped image to the edge is defined as:

d = min(x1, l − x2) +min(y1, l − y2) (6)

The smaller the distance is, the closer the cropped image to the four corners.
For the locations with the same distance, the SSIM is averaged.

From the graph in figure 6 it can be seen that our fully partial convolu-
tional autoencoder always outperforms the other models, i.e. our FP-CAE not
only reduces edge artifacts, the overall performances increases too. As the differ-
ence between PEN + NDE and normal AE is very small, we conclude that the
biggest performance increase is due to our proposed deconvolution layers. The
reconstruction of PEN + UPDE in four corners (d = 0) is the worst among all
models, which is consistent with the visualization in figure 7. This result clearly
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Ground Truth Normal AE

0.8919

PEN+NDE

0.8925

PEN+UPDE

0.8874

Our FP-CAE

0.9065

(a)
0.8919 0.8925 0.8874 0.9065

(b)
0.8851 0.8881 0.8800 0.9082

(c)
0.9905 0.9885 0.9890 0.9915

(d)

Fig. 7: Visualization of some test images. The best reconstruction SSIM score
is in black. The first column is the ground truth. Images in the second to fifth
column are reconstruction from different models. Partial convolution layer (third
column) does not help improve edge artifacts while up sampling layer (fourth
column) causes severe artifacts on the corner and reduce the overall reconstruc-
tion quality. The partial deconvolution layers in our fully partial autoencoder
(last column) improve reconstruction on edges hence slightly increase the over-
all SSIM. Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb; photo
courtesy of KIK-IRPA, Brussels.
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Table 2: The average SSIM for separated input autoencoders. Both separate
input models are better than the stacked input model but the difference between
two separate models is very small.

Stacked input Concatenation Addition
Model FP-CAE FP-CAE FP-CAE

SSIM 0.9377 0.9469 0.9450

proves that partial deconvolution improves reconstruction performance on the
edges.

4.2 Separated input autoencoder

The average SSIM for the seperated multimodal input models are shown in table
2. Compared the SSIM score with stacked input FP-CAE, both separate autoen-
coders show significant improvement. Some visualization of testing samples can
be found in figure 8. The visualization also suggests a better reconstruction
on the edges. However, the difference between concatenation based combina-
tion and addition based combination is very small. Concatenation FP-CAE only
shows 0.36% improvement with respect to the addition FP-CAE. Given that the
concatenation model has more parameters (996,043) than the addition model
(893,643), we can not conclude that one method outperforms the other one.
More studies will be needed to further investigate different combination strate-
gies.

5 Conclusion

We showed that autoencoders can be a powerful tool for feature extraction as a
data preprocessing step in art investigation tasks where annotations are typically
very limited. To achieve good feature extraction, the reconstruction performance
of the autoencoder is maximized. In this study, we generalized implementation
of the partial convolution operations and extended it to partial deconvolution,
which becomes the basic building block for our fully partial convolutional autoen-
coder (FP-CAE). In partial convolution and deconvolution, appropriate scale
factor is applied to the normal convolution output to counter balance varying
number of valid inputs, thus it can smooth the output and reduce artifacts. Re-
sults suggest that our partial deconvolution layers in the decoder significantly
reduce the artifacts on the edges while avoiding deteriorating inner regions. This
way, the reconstruction performance of our FP-CAE outperforms, both visually
and numerically, other autoencoders models with normal layers. During training,
we introduced an SSIM based loss function, which is effective to maximize the
similarity in structure between the original and reconstructed images. Finally,
we showed that the reconstruction performance of autoencoder can be further
improved by separating the different modalities in the encoder and decoder and
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Ground Truth

Stacked input

FP-CAE

0.9186

Concatenation

FP-CAE

0.9251

Addition

FP-CAE

0.9218

(a)
0.9206 0.9301 0.9273

(b)
0.9121 0.9195 0.9239

(c)
0.9713 0.9737 0.9758

(d)

Fig. 8: Visualization of test images from separate input autoencoders, the best is
in bold. The SSIM score of both separate input models is better the stacked input
model and reconstruction on the edges is improved. The difference between two
combination strategies is very small and none of them can always outperforms
the other. Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb; photo
courtesy of KIK-IRPA, Brussels.

combining them in latent space. Results indicate that the performance difference
between concatenating and summing the latent vectors is small. More studies
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are needed to compare various combination strategies. In future studies the pro-
posed autoencoder FP-CAE can be used in craquelure detection, inpainting,
overpainting detection or other art investigation tasks.
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