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Summary. In this paper, we propose an efficient method for learning local image
descriptors with convolutional autoencoders. We design an autoencoder architecture
that yields computationally efficient extraction of patch descriptors through an in-
termediate image representation. The proposed approach yields significant savings
in memory and processing time compared to a reference autoencoder-based patch
descriptor. The results demonstrate improved robustness to noise and missing data.
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1 Introduction

Local feature descriptors are fundamental to image processing tasks such as
image denoising, inpainting, object tracking, and saliency detection. These
descriptors can be classified into two categories – the hand-crafted feature de-
scriptors and the learned ones. Two common types of hand-crafted descriptors
are distribution-based [1, 2, 3], and binary descriptors [4, 5].

Learned descriptors have recently gained a lot of attention. The success
of deep Convolutional Neural Networks (CNNs) in various image processing
tasks has encouraged their usage for patch descriptors [6, 7, 8, 9], showing
excellent results in patch-matching. The CNN-based learning methods are
supervised, i.e. trained with pairs of patches that are labeled as similar or
dissimilar. The learned similarities and dissimilarities between image patches
may not hold when they are affected by some degradation type that was not
included in the training set.

An alternative is unsupervised learning based on autoencoders [10, 11].
Chen et al. [12] applied autoencoders to the general problem of patch descrip-
tors. Their autoencoder-learned descriptor shows promising results, however,
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Fig. 1. The proposed autoencoder architecture. There are no max-pooling
layers after the first two convolutions in order to obtain an intermediate representa-
tion (IR) of image that preserves the spatial information in the height-width plane.

its calculation time and memory is infeasible for higher resolution images.
Their fully-connected network does not take advantage of the local similarity
property of natural images, has more parameters to be trained, and requires
longer training times than the convolutional autoencoder designs. Moreover,
the descriptor from [12] does not allow different input sizes and therefore a
separate autoencoder needs to be trained for every patch size, which renders
the framework impractical for many applications.

We propose a novel autoencoder-based patch descriptor designed for ap-
plications with many patch comparisons within a single image. We design a
specific network architecture that yields a special image representation that
we call the intermediate representation (IR). The benefits of having a direct
access to IR are twofold: (i) patch descriptors can be obtained from IR with a
simple operation, and (ii), IR is structured such that overlapping patches’ rep-
resentations are overlapping themselves, resulting in a unique memory-saving
property that, to our knowledge, does not hold for any other patch descriptor.

Besides, the introduction of IR enables incorporating contextual informa-
tion beyond the patch borders into its descriptor, making the descriptors more
robust to erroneous and missing parts of image patches. We employ convolu-
tional layers in our method such that our descriptor can work with patches of
different sizes without the need to retrain the autoencoder (which is an impor-
tant practical advantage over [12]). This flexibility results in faster learning
and wider applicability in the processing of natural images.

In the following section, we give a brief introduction to the autoencoders.
Section 3 contains the description of our method, and in Section 4 we present
and discuss the experimental results. We conclude the work in Section 5.

2 Preliminaries

Autoencoders are unsupervised neural networks used for learning efficient
representations of data. An autoencoder consists of two parts, an encoder
and a decoder, and is trained by minimising the reconstruction error between
the input and output, while imposing some constraints on the middle layer.
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Formally, an autoencoder with encoder E and decoder D is trained to minimise
the loss function J(X, E ,D) =

∑
x∈X L(x,D(E(x))) + Ω(E(x)), where x ∈

X is a data sample, L is some metric and Ω(E(x)) is an optional sparsity
regularisation term imposed on the hidden (code) layer. Autoencoders working
with image data usually consist of alternating convolutional and max-pooling
layers. The output neuron at location (i, j) in the k-th channel of the l-th
convolutional layer is calculated as follows:

x
(l,k)
ij =

∑
c∈C

f(l)−1∑
u=0

f(l)−1∑
v=0

w(l,k)
uv x

(l−1,c)
(i+u)(j+v) + b(l), (1)

where C is the set of channel indices, w(l,k) is the convolutional kernel for the
l-th layer and k-th channel, b(l) the bias for the l-th layer, and f (l) is the size
of the convolutional kernel (filter) for the l-th layer.

Chen et al. [12] proposed learning descriptors with an autoencoder that
consists of a single hidden layer, which was fully connected with the input
and output layers of the network. The encoder part of the network, i.e. the
descriptor of the image patch x, was calculated as E(x) = S(WEx + bE),
where WE and bE are the weights and the bias in the encoding layer respec-
tively, and S(·) is the sigmoid function. The authors used the loss function
J(X, E ,D) = 1

2|X|
∑

x∈X(x−D(E(x))) +Ω1(E(x)) +Ω2(E ,D), with Ω1(·) be-

ing the dimensionality constraint on the middle (code) layer, and Ω2(·) the
sparsity constraint on the weights of the network. The layers in this network
can be represented as convolutions with a kernel of the same size as the input.
Hence, they are fully-connected layers and not convolutional in the common
sense of the term. The use of these fully-connected layers fails to exploit the
local self-similarity property of natural images, requires longer training time
compared to convolutional network designs, and requires training a new net-
work for each patch size.

3 Proposed method

Our primary contribution is a novel autoencoder architecture that provides an
intermediate representation (IR) of an image. The use of IR has two main ad-
vantages: it is less memory-intensive than storing the descriptors of all patches
within an image, and it allows a descriptor of a single patch to be extracted
from IR with minimal computation. To accommodate this, we take advantage
of the properties of the convolutional layers described in Section 2, but dis-
card all the max-pooling layers in the encoder except for the last one. The
convolutional layers exploit the self-similarity property of natural images to
reduce the computational time while also obtaining better results than fully-
connected layers. Moreover, the use of convolutional layers is critical for the
ability to extract patch descriptors from the IR, since convolutional layers
preserve spatial information in the height-with plane.
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Fig. 2. A comparison of the memory requirements (expressed in the number of
float 32’s) as a function of image size in pixels, for the two versions of the proposed
descriptor (v32 and v128) compared to Chen et al. [12].

Max-pooling is typically applied since it adds extra non-linearity, plays
the role of dimensionality reduction, and reduces the number of training pa-
rameters and hence the training time. However, successful neural network
architectures have been recently reported also without max-pooling [13]. We
omit max-pooling after the first two convolutions and employ non-linear ac-
tivation functions. We leave only one max-pooling layer with large spatial
extent at the end of the encoder to reduce the dimension of the code layer.
This architecture requires longer training time compared to standard use of
max-pooling, but reduces the computational time and memory while using the
descriptor. This is beneficial since the training needs to be done only once.

The reduction of computational time and the memory usage follows from
the IR in our network. An IR is obtained by propagating the complete image
(containing patches of interest) through the convolutional layers in the en-
coder, but not the max-pooling layer. Figure 1 shows the architecture of our
network and the IR.

Let x := x(0,:) be the input image. We define the intermediate representa-
tion as IR(x) = x(L,:), with

x(L,c) = A(ClL(A . . . (Cl1(x(0,:))))), (2)

where L is the number of convolutional layers in the encoder E , x(li,c) is the
c-th channel of the output of the li-th layer, x(li,:) denotes all channels of
the output of the li-th layer, A is some activation function, and Cli is the
li-th convolutional layer. From the intermediate representation of an image
IR(x), we obtain the descriptor for a patch x(i,j), whose upper left corner is
positioned at (i, j), as follows

E(x(i,j)) =MP(IR(x)(i,j)), (3)

i.e. by performing the max-pooling on the patch of the IR.
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For the activation function A from (2), we have chosen the sigmoid func-
tion, S(x) = 1

1+e−x . This choice was made in order to avoid the case of having
many zeros as an output, which was the case with some other activation func-
tions, such as a rectifier. We trained the network with Adadelta optimizer
[14], and we used binary cross entropy as a loss function (we scale the pixel
values to be in [0, 1]):

J(X, E ,D) =
∑
x∈X
L(x, x̂) =

∑
x∈X

(x log(x̂) + (1− x) log(1− x̂)) (4)

where x̂ := D(E(x)) is the output of the autoencoder. We trained the autoen-
coder in two different ways, creating two versions of the descriptor, v32 and
v128 (named after the dimensionality of the descriptor for 16 × 16 patches).
For the implementation, we use Keras library for neural networks. The au-
toencoder has been trained on a total of 150k 16 × 16 patches cropped from
images from the ImageNet dataset [15]. The ratio between training, validation,
and test set is 8 : 1 : 1.

In Figure 2 we compare the effective memory usage required by different
descriptors depending on the image size. These results indicate potential for
a tremendous decrease in memory usage for applications on a single image.
This decrease could make some algorithms that use many patch comparisons
feasible for use on larger images.

4 Experimental evaluation

4.1 Robustness to noise

We test the noise robustness of both versions of our descriptor, comparing
them to the exhaustive search on pixel intensity values, and the existing de-
scriptor trained with the autoencoder of [12]. We trained all the descriptors
on the same set of colour patches.

The evaluation is performed as follows. We select a set of query patches
within an image with added Gaussian noise. For each query patch, we retrieve
the k most similar patches either by comparing their descriptors or by using
exhaustive search over the pixel values. The quality of patch retrieval is evalu-
ated based on the sum of square differences (SSD) between the pixels in query
and retrieved patches before the noise was added. The standard deviation of
the Gaussian noise was varied between 0 and 50.

Figure 3 summarises the results of our patch retrieval experiments and
some visual examples are shown in Figure 4 (left). When no noise is present,
the exhaustive search retrieves the patches that are the most similar to the
query patch. However, noise deteriorates the performance of the exhaustive
search, whereas our descriptor v128 shows little decrease in performance.

Our descriptors also show superior performance compared to the existing
descriptor learned with autoencoders. Our method v128 shows significantly
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Fig. 3. Comparison of descriptors’ robustness to noise (top) and missing
data (bottom). A – proposed descriptor v32, B – proposed descriptor v128, C
– Chen et al. [12], D – exhaustive search on pixel intensity values. The plots are
showing SSDs of ground truth pixel values of patches found by the descriptors (in
A-C) and exhaustive search (D), based on the noise (top) and percentage of missing
area in a patch (bottom).

better results than Chen [12], while having the same patch descriptor dimen-
sionality. Furthermore, our method v32 that shows similar results to [12] has
an order of magnitude lower dimensionality of the descriptor when encoding a
single patch. The dimensionality comparison changes even more in our favour
when encoding the whole image due to the usage of the IR (Figure 2).

4.2 Robustness to missing data

We set up an experiment to determine the capability of the proposed de-
scriptor when working with patches that contain missing regions. This type
of operation is of interest for applications such as inpainting and scene recon-
struction from multiview data. The setup is similar to the noise robustness
evaluation, but here parts of the query patches have been randomly removed.

For the query patches with missing parts we want to find the best matching
undamaged patches. We are searching for the matching patches by comparing
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Fig. 4. Noisy patch retrieval (left) and patch retrieval where the query has missing
parts (right). For each query, the first row corresponds to the proposed descriptor
v128; the second row: the descriptor from [12], and the third row: exhaustive search.
The missing parts of the query patches on the right are shown in black.

the descriptors of the non-missing parts. The numerical evaluation is done
based on the SSD values of the complete (undamaged) query and the found
match. The results are shown in Figure 3 (bottom), again comparing our two
descriptors, descriptor from [12], and the exhaustive search over pixel intensity
values. Visual comparison is shown in Figure 4 (right).

The conclusions from these experiments are similar to those with the noisy
patches. When the missing area in a patch is small, exhaustive search retrieves
the best results. However, as the missing area is increasing, our descriptor v128
starts performing better and overtakes the exhaustive search, showing more
robustness to missing data than the exhaustive search. Both of our proposed
methods outperform the existing method [12], with a slightly larger margin
than in the case of noisy patches. More elaborate analysis of the experiments
is in our extended journal submission [16].

5 Conclusion

We propose a new method for learning local image descriptors using autoen-
coders. The proposed approach saves memory and computational time in com-
parison to existing methods when used for patch search and matching within a
single image. We have evaluated the proposed descriptors’ robustness to noise
and missing data against an existing descriptor learned with autoencoders
from [12] and exhaustive search over pixel intensity values. The proposed de-
scriptors show improved results, and superior robustness to both noise and
missing data in comparison with exhaustive search.
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