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Summary. In this paper we develop a novel classi�cation method for multibeam
sonar images based on the Weyl transform. The texture descriptor based on Weyl
coe�cients describes e�ectively the multiscale correlation features appearing in the
sonar images. Our classi�cation approach combines the Weyl coe�cients with sta-
tistical features that are commonly used in the analysis of seabed sonar images and
captures the morphological variation and geoacoustic characteristics of the sea�oor.
We employ a neural network as a classi�er. The proposed combined feature extrac-
tion method demonstrates better performance than the commonly used statistical
methods in this application.
Keywords: multibeam data processing, multibeam sonar image, feature extraction,
Weyl transform, acoustic sediment classi�cation

1 Introduction

Backscattering from the sea�oor is the result of an intricate interaction of the
sound pulse with the water-sediment interface and relates to three basic quan-
tities: the acoustic impedance contrasts between the propagation and sediment
media, the volume inhomogeneity and the roughness. Due of this, backscatter
directly relates to the sea�oor nature and such hydroacoustic measurements
can be used to characterise it in the interest of geology, sedimentology and
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biology [1, 2]. A conventional multibeam echosounder system is capable of
collecting backscatter data and bathymetry data, from which we are able to
obtain a variety of features of the seabed to distinguish the sediment type
[3, 4]. Texture-based techniques rely on the extraction and characterization
of the textural information of each seabed type. All state-of-the-art methods,
in order to have a reliable texture analysis, remove the angular dependency
on each analysis zone which shares the same backscatter pro�le [5]. A well-
established approach currently is to use the �rst-order [6] and the second-order
statistical features [7]. The objective of this study is to develop more e�ec-
tive feature extraction methods to improve the reliability of acoustic sediment
classi�cation.

Recent studies have demonstrated that the Weyl transform [8, 9] o�ers an
excellent framework for data representation and texture analysis in general.
The main contribution of this paper is to explore the potential of seabed sed-
iment classi�cation based on the Weyl transform. Furthermore, we develop
an e�ective classi�cation method for sonar images that combines the Weyl
features and complementary statistical features, which are capturing the mor-
phological variation and geoacoustic property. The experimental results show
clearly that the proposed combined textural descriptor can e�ectively dis-
criminate between the di�erent classes of sediment. The paper is organized as
follows: Section 2 reviews brie�y the Weyl transform theory. Next, in Section
3 we present our proposed method for texture characterization of multibeam
sonar images. The experiment results are presented in Section 4 and Section
5 concludes the paper.

2 Weyl Transform

The Weyl transform has recently shown remarkable results in the context
of texture classi�cation with standard texture images [8], outperforming some
common textural descriptors including HOG [10] and LBP [11]. The transform
has a desirable property of being invariant to a large class of multiscale signed
permutations. In particular, di�erent ways of orienting and translating the
same texture will produce the same Weyl descriptor and patches sampled
from the same texture should share similar Weyl transforms [8, 12].

2.1 The Binary Heisenberg-Weyl Group

The binary Heisenberg-Weyl group HW2m is a group of permutation matrices
and matrices that resemble permutation matrices with sign changes in some
of the rows. Those square matrices of size 2m exist for each power of 2 and
are de�ned as tensor products

D(a, b) = D(a, 0)D(0, b) = xam−1zbm−1 ⊗ · · · ⊗ xa0zb0 . (1)

where
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x =

[
0 1
1 0

]
, z =

[
1 0
0 −1

]
and a = (a0, . . . , am−1), b = (b0, . . . , bm−1) ∈ Zm2 are two binary m-tuples.

Formally, the binary Heisenberg-Weyl group HW2m of order 22m+2 is de-
�ned as HW2m = {iλD(a, b) | λ ∈ {0, 1, 2, 3} and a, b ∈ Zm2 }.

2.2 The Weyl Representation

As shown in [8], the signed permutation matrices D(a, b) with aT b = 0 form
an orthonormal basis of the vector space of real square symmetric matrices
with respect to the inner product given by 〈R,S〉 := tr (RTS). In particular,
each real symmetric matrix R can be represented as a linear combination of
the basis elements as

R =
∑

a,b∈Zm
2

abT=0

{
1

2m/2
tr [R ·D(a, b)]

}
1

2m/2
D(a, b). (2)

Given a vectorized signal y ∈ R2m , it's covariance matrix yyT ∈ R2m×2m is
real, symmetric matrix and as such can be represented as

yyT =
∑

a,b∈Zm2
abT =0

{
1

2m/2
tr
[
yyT ·D(a, b)

]} 1

2m/2
D(a, b)

=
∑

a,b∈Zm2
abT =0

ωa,b(y)
1

2m/2
D(a, b).

(3)

Coe�cients ωa,b(y) are the Weyl coe�cients of the signal y and the corre-
sponding isometric mapping yyT 7→ ωa,b(y) is the Weyl transform [8].

3 Methodology

3.1 Texture descriptor based on Weyl transform

The Weyl transform distinguishes the di�erent textural structures by quan-
tifying multiscale symmetry features [9]. Moreover, invariance to multiscale
transformations ensures that the Weyl representation of image patches with
the same textural structures exhibit similarity.

We divide the whole multibeam sonar image into a number of small patches
using a moving window of size Sw × Sw (Sw = 2r, r ∈ Z+). Each patch can
be vectorized in a raster-scanning fashion which results in S = 22r dimen-
sional vector. Let m = 2r, a = (am−1 . . . a0)

T and b = (bm−1 . . . b0)
T . Then

the Weyl coe�cients of patch Y are computed by using (3). Figure 1 shows
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Fig. 1. Computation of the Weyl coe�cients for a sonar image.
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Fig. 2. Weyl coe�cients with the dimension reduced to 2 using PCA.

how we obtain the Weyl representation of a selected patch from a multibeam
backscatter image.

An ideal texture descriptor should represent the samples of the same class
with a compact and isolated cluster. We randomly select 800 patches of size
8× 8 from 4 classes of multibeam backscatter images and compute the Weyl
coe�cients of all samples. For visualization purpose, we use PCA to reduce
the dimensionality of the 4096-dimensional feature vector to two-dimensional
one. Figure 2 shows the backscatter patches represented in Weyl coe�cients
after the dimensionality reduction. Di�erent colors correspond to di�erent
seabed sedimentary classes: Sand (S, blue), Gravelly Sand (GS, green),Muddy

Sand (MS, magenta), Sandy Mud (SM, red). This example shows that the
proposed texture descriptor based on the Weyl transform discriminates well
between GS/MS/SM and GS/S/SM classes, but not between S and MS classes.
Due to the fact that sand and muddy sand show similar textures and similar
distributions of pixel values (Figure 3), the Weyl descriptor is not able to
discriminate well between those two classes.
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Fig. 3. Boxplot of the distribution of greyscale values for di�erent sediments.

3.2 Combined Features for Multibeam Sonar Image

The Weyl transform captures textural characteristics more related to the local
correlation. A complementary approach is to extract features, which mainly
reveal the global zonal characteristics. Hence, we adopt statistical methods
to extract characteristic features of the sonar image, that we refer to as
Classical Statistical Features. In particular, we include: �rst-order statistics
(backscatter-based), second-order statistics (backscatter-based) and terrain
characterization (bathymetry-based).

We calculate the �rst-order statistics from local patches using zonal statis-
tics, including mean, maximum, minimum, quartile, standard deviation, kur-
tosis and skewness [6]. The second-order statistics are calculated from the Grey
Level Co-occurrence Matrices (GLCM) [7]. We derive the entropy and homo-
geneity from the GLCM. Terrain modeling based on multibeam bathymetry
data can make a signi�cant contribution to the prediction of benthic habitat.
The adopted terrain features include slope, rugosity and benthic position in-
dex [13, 14]. We apply the feature selection algorithm of Boruta [15] to reduce
the feature set to the more discriminative ones. Then the resulting most rel-
evant statistical features are combined with the Weyl coe�cients to generate
a feature vector by stacking all the components. We normalize the features
such that they are in the same range and thus contribute appropriately to the
classi�cation result.

4 Experimental Results

4.1 Dataset

We use the data set from a hydroacoustic survey conducted by Royal Belgian
Institute of Natural Sciences in Oostende Harbour, Belgium, in November
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Fig. 4. (a) backscatter data and grab samples; (b) bathymetry data.

2017. The multibeam data originates from the Kongsberg Maritime EM2040
dual system installed on RV Simon Stevin and were acquired at 300 KHz in
normal mode, CW pulse form and 101 µs pulse length [16]. Backscatter and
bathymetry data are both with a 1m horizontal resolution (Figure 4). The
ground-truth data are collected from a number of grab samples, including
Sand, Sandy Mud, Muddy Sand and Gravelly Sand. We demarcate 12 sub-
blocks on the surveyed area, where the sediment type is already known by grab
sampling analysis. Then we take 8×8 patches by overlapping sampling with a
sliding step of 4 pixels from each of subblock and 17622 samples are available
in total. In the experiments, we randomly take 1000 samples for every class of
the sediment, including backscatter data, bathymetry data and their labels.
The training set contains 200 × 4 samples and testing set contains another
800× 4 samples, which are both randomly taken from the whole dataset.

4.2 Results

To validate the performance of the proposed texture descriptor, we perform
sediment classi�cation on multibeam sonar images by feeding the combined
Weyl-Statistical features to a 2-layer neural network. Each test patch is as-
signed to a sediment type. We compare the performance of Classical Statistical
Features alone, Weyl coe�cients alone and the Combined Features. From Sec-
tion 3, we know that Classical Statistical Features are extracted both from
backscatter data and bathymetry data, while the Weyl coe�cients are com-
puted only using backscatter data. Even though the bathymetry data is not
used, Table 1 and Table 2 indicate that the Weyl coe�cients can isolate dis-
tinct sediment types with comparable accuracy as the Classical Statistical
Features. Table 3 shows the classi�cation accuracies using the combined Clas-
sical Statistical Features and Weyl Transform Features. The results in Figure
5 show that the combined features signi�cantly improve the classi�cation ac-
curacy for the sand class, compared to the �rst two methods. The overall
accuracy of the combined method is also better than any single method.
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Table 1: Classi�cation results using Classical Statistical Features.

Ground truth
Prediction

S GS MS SM Total Accuracy

S 384 71 324 21 800 48%
GS 13 774 13 0 800 97%
MS 73 3 724 0 800 91%
SM 62 0 12 726 800 91%
Total 532 848 1073 747 3200 82%

Table 2: Classi�cation results using Weyl Transform Features.

Ground truth
Prediction

S GS MS SM Total Accuracy

S 416 45 300 39 800 52%
GS 62 732 6 0 800 92%
MS 112 0 688 0 800 86%
SM 48 0 0 752 800 94%
Total 638 777 994 791 3200 81%

Table 3: Classi�cation results using Combined Features.

Ground truth
Prediction

S GS MS SM Total Accuracy

S 579 25 179 17 800 72%
GS 85 713 2 0 800 89%
MS 131 0 669 0 800 84%
SM 13 0 10 777 800 97%
Total 808 738 860 794 3200 86%
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Fig. 5. Classi�cation accuracy of the three feature extraction methods.
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5 Conclusion

We designed a novel feature extraction method for seabed sediment classi�-
cation based on the Weyl transform. We showed that the Weyl coe�cients
of multibeam sonar images can discriminate between di�erent classes of sedi-
ment. We also proposed a combined feature extraction method based on the
Weyl transform and Classical Statistical Features to capture better the charac-
teristics of the sea�oor both locally and globally. The combined feature vector
proves to be more powerful in the classi�cation of sediments than the Weyl
transform alone or statistical features alone. Examples on Oostende Harbour
dataset demonstrate the e�ciency of the proposed feature extraction method
for seabed sediment classi�cation using multibeam sonar images.
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