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Abstract—We explore the potential of deep learning in digital
painting analysis to facilitate condition reporting and to support
restoration treatments. We address the problem of paint loss
detection and develop a multiscale deep learning system with
dilated convolutions that enables a large receptive field with limited
training parameters to avoid overtraining. Our model handles
efficiently multimodal data that are typically acquired in art
investigation. As a case study we use multimodal data of the Ghent
Altarpiece. Our results indicate huge potential of the proposed
approach in terms of accuracy and also its fast execution, which
allows interactivity and continuous learning.

Index Terms—Art investigation, paint loss, multi-modal data,
semantic segmentation, deep learning, transfer learning.

I. INTRODUCTION

In art investigation typically high resolution images are
acquired in different modalities, including visible, infrared,
radiography, and others. For the study of old paintings these
multimodal data provides extra information of the different
layers of paint and materials used, allowing non-destructive
analysis.

During the conservation and restoration of old paintings, one
of the tasks consists of documenting and mapping the lacunas,
the regions of paint loss. Lacunas are mostly a result of drying
and flaking of paint through aging, although rough handling
can also introduce losses. An example of visible paint loss is
shown in Figure 1b. Currently, this documentation involves a
lot of manual work since available software can only give a
coarse estimation of the paint loss. This makes the process rather
tedious. In order to improve the automated mapping, smarter
image processing techniques are sought.

While paint loss is mostly visible in RGB images, it is not
always differentiable from the background. Additional modali-
ties can provide extra information to make a better assessment.
Figure 1 shows an example of different modalities used in our
work in a case study on the Ghent Altarpiece. Some of these
images are available (in a compressed form) on the website
http://closertovaneyck.kikirpa.be/ and others were acquired at
different stages of the restoration campaign [1].

Technical literature on paint loss detection is limited. Huang
et al [2] reported promising results with sparse representa-
tion classification (SRC), surpassing common machine learning
approaches like linear regression classification and support
vector machines in this task. The current techniques make a
classification mainly based on the spectral components while
the receptive field is limited to a few pixels. Moreover these
methods typically involve tuneable parameters that need to be
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Fig. 1. Different modalities of the panel the Prophet Zachary, acquired
during the restoration treatment of the Ghent Altarpiece. (a) and (b) are RGB
acquisistions before and during treatment respectively, (c) and (d) are infrared
and infrared reflectography, (e) X-ray, and (f) RGB image from ultraviolet
fluorescence. Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb; photo
courtesy of KIK-IRPA, Brussels.

adjusted for different paintings. The best performing methods
reported so far, based on sparse coding [2], also tend to be slow
when it comes to processing large paintings.

The state-of-the-art in supervised image segmentation is dom-
inated by convolutional deep neural networks [3], [4], [5], [6],
[7], [8], [9]. We build our approach on a recent convolutional
neural network architecture U-Net [4]. U-Net is an encoder-
decoder network, similar to convolutional auto-encoders [10],
with skip connects [11] to combine local information of the
encoder with global information captured in the lower resolution
layers of the decoder. Given the big range in size of paint loss
regions the multi-scale approach is especially useful.

In contrast to most of these other segmentation applications,
we have to deal with scarce and unreliable annotations on a



pixel level. As data in art investigation is typically very costly
to obtain and thus limited, the complexity of the model should
be modest to avoid overtraining. This limits the amount of layers
and filters per layer and as a consequence the receptive field is
also limited. This will also guide the design of our architecture.
Moreover, we develop our system such to handle efficiently
multi-modal data. As the size of paint losses can range from
a few to hundreds of pixels, the algorithm combines spectral
information with a large enough spatial support to exploit well
the relevant spatial information.

We will validate our method on the panels of the Ghent
Altarpiece [1], a monumental triptych made by the brothers van
Eyck in the 15th century. We also propose a transfer learning
scheme to efficiently apply the system to other paintings with
very limited user-input.

II. METHOD

In this section we build a new method for pixel-level target
labeling in multimodal data motivated by recent developments
in deep learning. The proposed architecture, illustrated in Figure
2, efficiently uses spatial information to avoid overtraining on
the limited amount of annotations. Inspired by U-Net [4], our
model consists of an encoder (left), a decoder (right) and
skip-connects (center). Unlike U-Net, there are no decimating
pooling layers and instead dilated convolutional layers [12] are
used to maintain a big receptive field. A dilated convolution is
convolutional of which the weights of the kernel W are spaced
out by a factor k, the dilation rate:

z[u] = (x ∗k K)[u] =

M∑
m=−M

x[u− k ·m]K[m]. (1)

This way the produced output z maintains the same resolution
as the input x while the kernel virtually operates on a lower
resolution grid, having a much bigger receptive field without
increase in kernel size.

The encoder consists of 3 × 3 dilated convolutions layers,
alternated every two layers with a max-pooling layer with stride
set to one. This way the pooling layer solely acts as a low-pass
filter. Additionally the operating width of each pooling layer
increases according to w = 2(k−1) + 1 to reduce more high
frequency information according to the change in dilation rate.

Starting from one, the dilation rate is doubled after each
pooling layer. The amount of filters in each layer is kept
constant. With respect to U-Net there is no need to double the
amount of filters f after each pooling layer to make up for
the loss of spatial information. Without taking into account the
shrinking after each convolutional layer, the shape of each layer
is now approximately w×w×f versus w/2k×w/2k×f ·2k for
the respective U-Net layer, where k is the amount of previous
pooling layers. This means the produced feature maps are
denser in spatial information, and when training the network,
the updates of the weights are averaged out over more pixels,
improving stability. In summary, with every extra pooling and
increase in dilation rate, the receptive field increases exponen-
tially while the amount of trainable parameters only increases
linearly.

The decoder mostly mirrors the encoder except the pooling
layers are replaced with a 2 × 2 dilated convolutional layers.
Instead of doubling the dilation rate, it is now again halved,
starting with the 2×2 convolutional layers. As the resolution in
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Fig. 2. Schematic of the proposed architecture with two pooling layers. Left:
The complete network with different layer types. Wider rectangles denote larger
amount of filters. Each convolutional layer applies the same amount of filters
and operates on the same resolution. Right: the dilated kernel and dilation rates
for the convolutional layers on each row.

each layer is the same, there is no need to upscale the previous
feature map, however it is still useful to gradually reduce the
dilation rate again to aggregate the information of neighbouring
pixels [8]. The output of the 2 × 2 convolutional layers is
concatenated with the input of the corresponding pooling layer
of the encoder with the idea of combining high-level, low-pass
with low-level high-pass features respectively. The last layer is
1×1 convolutional layer with as many filters as there are classes.
With paint loss and background, this is two output maps. We
set the activation of all layers to ELU [13], except for the last
one, where we use softmax. This is to produce a normalised
vector ŷ, corresponding to the likelihood that a pixel belongs to
the classes paint loss and background:

ŷ = σ(z)j =
ezj

ez1 + ez2
. (2)

Given that the whole architecture only uses dilated convolu-
tion layers and non-decimating pooling, an interesting property
arises. Translation invariance means that translating an input x
produces the same, although translated, version of the prediction
y.

x(u) 7→ z(u) ⇐⇒ x(u+T) 7→ z(u+T). (3)

Unlike architectures with decimating layers, each layer of the
proposed architecture is explicitly translation invariant, such
that the whole system is translation invariant, which is a
desired property of pixel labeling algorithms. Because no spatial
information is lost after a pooling layer, translation invariance
does not have to be learned and the amount of filters is kept
constant in each layer.

III. RESULTS

Three experiments are conducted to validate paint loss detec-
tion with the proposed system with efficient use of annotations.
Firstly the paint loss detection is tested on a single painting
based on dense annotations Secondly the quality of the map is
checked by using the damage map for virtual inpainting. Lastly
the ability to generalise is tested by applying the model directly
to another panel and updating it with a limited set of extra
annotations. The results are shown on images of the ongoing
restoration of the Ghent Altarpiece
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Fig. 3. Paint loss detection map and virtual restoration on the panel John the Evangelist. The annotations of paint loss are visible in green in (a). The paint loss
prediction map (b) is used as mask for virtual restoration (c). A close-up of the shoulder (d) shows the maintained details of the prediction (e). The paint loss
prediction (f) is comparable to the physical restoration (g). Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb; photo courtesy of KIK-IRPA, Brussels.

A. Paint loss detection

Training the model for paint loss detection requires an-
notations from an expert. Both examples of paint loss and
background are needed. For the Ghent Altarpiece we have a
total of 807, 740 annotated pixels of which 8.3% is paint loss.
This amount is increased by a factor 8 after data augmentation
by rotations of 90◦ and flips. An example of dense annotations
on the panel John the Evangelist is visible in Figure 3a. Per
smaller regions, all the paint loss is annotated in green while
the rest is background. For the input data, the different image
modalities are registered and stacked to a single image with
12 spectral components. The ground truth map is converted per
pixel to a one-hot encoding. The model is trained with cross-
entropy cost on crops around the annotated pixels of both the
input and output. Taking into account the receptive field, the
input and output patches are set to size 146×146 and 100×100
respectively. While one patch contains mostly similar context
and thus possibly less variety, due to shared computations, it
only adds a limited increase in computation time. Moreover,
more data in a single training batch smoothens the gradient
updates, making the training more stable.

While relatively limited with respect to the size of the whole

panel, training on this set of samples is sufficient to generate
an accurate map of paint loss for the whole panel as seen in
Figure 3b. Taking a more detailed look, Figure 3e shows the
detection on a close-up of the shoulder. The model appears to
be not only accurate in the vicinity of annotations but it also
generalises well over the whole panel.

In terms of speed, with a GeForce GTX1070, training con-
verges after approximately one hour. Because in processing
neighbouring pixels a lot of computations can be shared, our
algorithm processes a relatively large image region jointly with
limited increase in computation time compared to processing a
single pixel. Because of memory limitations, it is not possible
to run the inference on the whole panel at once, so instead
overlapping patches of size 446×446 are processed individually,
and the output patches of size 400 × 400 are stitched back
together for the whole detected paint loss map. To give an
idea of processing speed, the results of Figure 3b (44.9MP
image) are generated in mere seconds. Including pre- and
post-processing, the whole process takes less than one minute.
This process efficiently allows interactive use and indicates an
excellent potential for practical applicability.



B. Virtual inpainting

Besides documentation purposes, the damage map is an
essential input for virtual inpainting. This virtual restoration
can be useful to provide a quick prediction of how the final
restoration may look like. To be of relevance to art restorers,
the damage map should not include craquelure as when the
paintings are physically restored, typically the craquelure stays
untouched. An accurate paint loss map is a necessary prereq-
uisite for satisfactory virtual inpainting and thus we can use
virtual inpainting to assess the quality of our system.

Figure 3c shows the virtually restored panel of John the
Evangelist by applying the method of [14] on our detected
paint loss map. An enlarged detail in Figure 3f shows how with
respect to Figure 3e most of the paint loss is not visible anymore.
Compared to Figure 3g, visually the fully automatic processing
result resembles well the physical restoration, especially since
the craquelure is well maintained. This shows that our detection
of paint paint loss regions coincides well with the regions that
were manually detected and restored by the experts.

C. Generalisation to other paintings

Ideally after training, it is desired to have an intelligent system
that can detect the paint loss on other paintings as well. Because
of the diversity in i.a. content, art style, age, and amount of
abrasion, a trained model may not be sufficiently accurate on
arbitrary new data.

In Figure 4b and 4f, we applied our previously trained model
directly on parts of the panel John the Baptist. The results
show that the model can differentiate some paint loss from
background, however it does not generalise well enough as large
regions are under- or overdetected.

We apply transfer learning [15] to reduce the amount of user-
input. Instead of requesting a new set of dense annotations,
extra annotations are limited as illustrated in Figure 4c. The
previously trained model is then fine tuned on these new
annotations with a reduced amount of training steps. As the
annotating and training is so limited, we effectively create a
very fast training scheme.

The new results in Figure 4d show how the model improved
to get an accurate detection. Even in other regions of the same
painting, there is no clear indication of strongly misclassified
regions and shows again a strong generalisation capability over
the whole panel. Instead of having to train the network from
scratch for around one hour, the pretrained model converges on
the new data after around 5 minutes of training.

We conclude the model shows possibility to generalise well to
other paintings where limited annotations are needed to improve
the network to adjust to the given panel, making it possible to
segment large resolution acquisitions of a whole panel, including
annotation and training time, in an acceptable time, making it
a strong candidate for practical use.

IV. CONCLUSION

In this paper we showed how deep learning can assist for
the detection of paint loss during the restoration of paintings.
The results on the ongoing restoration of the Ghent Altar-
piece show that our system is both accurate and fast. The
proposed deep learning architecture was optimized to employ
a big receptive field and multimodal data. The paint loss is
accurately detected over the whole panel, with relatively few

annotations. These results are appreciated by the art restorers.
The virtual restoration based on our paint loss detection showed
close resemblance to the physical restoration. This means the
detection is in agreement with the physical restored regions.
For other paintings the system is applicable after updating the
pre-trained model further on a limited set of extra annotations.
Whilst preserving accuracy, this led to a huge speedup of the
whole process from hours to minutes, indicating a good potential
for practical use.
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Fig. 4. Detection results on the panel John the Baptist. Figure (a)-(d) is of a close-up on a central part of the panel while (e)-(f) is from a larger, separate region.
It shows the panel during treatment (a), (e); the detected paint loss map by directly applying a pretrained model (b), (f); limited set of extra annotation (c); and
improved detected paint loss map after continued learning (d), (g). Image copyright: Ghent, Kathedrale Kerkfabriek, Lukasweb; photo courtesy of KIK-IRPA,
Brussels.


