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Abstract—Dynamic classifier selection (DCS) is a classification
technique that, for each new sample to be classified, selects and
uses the most competent classifier among a set of available ones.
We here propose a novel DCS model (R-DCS) based on the
robustness of its prediction: the extent to which the classifier can
be altered without changing its prediction. In order to define
and compute this robustness, we adopt methods from the theory
of imprecise probabilities. Additionally, two selection strategies
for R-DCS model are presented and are applied on remote
sensing images. The experiment results demonstrate that our
model successfully incorporates uncertainty with respect to the
model parameters without losing the performance.

Index Terms—Robust classification, Dynamic classifier selec-
tion, Hyperspectral images, LiDAR data, remote sensing, Impre-
cise probabilities

I. INTRODUCTION

Image classification in remote sensing is the process of
assigning land cover classes to pixels. Recent advances in the
remote sensing technology including hyperspectral imaging
and Light Detection And Ranging (LiDAR) systems facilitate
and improve the relevant information acquisition [1].

Making use of multiple data sources enables a more compre-
hensive interpretation of the scene and improved classification
performance [2]-[6]. We develop here a novel multi-source
classification method based on the concept of Dynamic Clas-
sifier Selection (DCS) [7], that we extend to the framework of
imprecise probabilities.

A DCS selects dynamically for each test sample the classi-
fier with the highest probability of correctly classifying it. The
key is how to select the most competent classifier for any given
query sample. Usually, this classifier choice is made based on
a local region of the feature space where the query sample is
located in. Most works define this local region by applying
the K-Nearest Neighbors technique, which groups samples
with similar features to construct a local region [8], [9]. In
this work, we group samples differently, by incorporating the
concept of robustness to the model specification.

Despite the huge progress in image classification, the current
machine learning methods are not yet sufficiently robust to
various perturbations in the data and to model errors to support
reliably high-stakes applications [10], [11]. The work in [12]
analyzed the global sensitivity of a maximum a posteriori
(MAP) configuration of a discrete probabilistic graphical
model (PGM) with respect to perturbations of its parameters,

and provided an algorithm to evaluate the robustness of the
MAP configuration with respect to those perturbations. For a
family of PGMs, the maximum perturbation level that does not
alter the MAP solution is called the critical perturbation thresh-
old. In a classification problem, these thresholds determine the
level to which the classifier parameters can be altered without
changing its prediction. The experiments in [12] established
a strong correlation between these robustness measures and
the accuracy of the corresponding classifiers. This property
combined with DCS was applied to classification in our earlier
work [13], but only for the cases with binary classes and two
classifiers.

Here we build further on this idea, developing a robust clas-
sification method with multiple classes and multiple classifiers.
In particular, we build on Naive Bayes Classifiers (NBCs), but
the proposed framework can be extended to other classification
models. We define and compute the perturbation thresholds
based on the concepts from the theory of imprecise prob-
abilities. Particularly, we use the Imprecise Dirichlet Model
(IDM) [14] to extend the specification of local probabilities
in the model to corresponding credal sets. This imprecise
probabilistic extension of an NBC is called a Naive Credal
Classifier (NCC) [15]. Specifically, we perturb an NCC by
varying the values of the hyperparameter that determines the
degree of precisions in IDM. Thus, the perturbation threshold
of an NCC is the maximum value of the hyperparameter under
which the NCC still remains determinate.

Based on this imprecise-probabilistic measure for the ro-
bustness of a class prediction, we here propose a robust
DCS (R-DCS) model and apply it on remote sensing image
classification. We first extract features from single or multiple
data sources. The extracted features carry different types of
information, such as spectral, spatial and elevation information
in the captured scene. Afterwards, classifiers are constructed
by different types of features and are used for dynamic
selection in R-DCS.

We provide two selection strategies for R-DCS: Rt and R-
LA. Rt strategy selects classifiers by only considering the value
of their perturbation thresholds. While conceptually simple,
this approach does not always perform well because the ex-
act relation between perturbation thresholds and performance
differs from one classifier to another. The second strategy R-
LA improves upon this by determining the empirical relation



between the perturbation thresholds of different classifiers and
their probabilities of correctly classifying the instance that is
considered. Experimental results on two real data sets with HSI
and LiDAR data, demonstrate the efficiency of the proposed
method for sensor fusion and classification.

This paper is organized as follows. The NBC and its
imprecise-probabilistic extension NCC are introduced in Sec-
tion II. In Section III, we first present the computation of
perturbation thresholds for NCCs. Then the proposed model
R-DCS is illustrated by introducing two selection strategies in
R-DCS and how R-DCS works in multi-sources data classifi-
cation. Experiments on HSI and LiDAR data are reported in
Section IV. We conclude the paper in Section V.

II. NBC AND NCC

A. Naive Bayes Classifiers

Let C denote the class variable, which takes values c in a
finite set C and m denote the number of features. The i-th
feature variable F; takes values f; in a finite set ;. For nota-
tional convenience, we gather all feature variables in a single
vector F = (F1,..., F,,) that takes values f = (f1,..., fm)
in Fy X -+ X Fp,.

An NBC is a popular probabilistic model, where features
are conditionally independent given the class. Thus, the MAP
estimate of the class under NBC becomes:

é=argmax P(clf) = PO [ P(le), ()
=1

where Z =" .. P(c) [T, P(f;|c) is the partition function.
The (conditional) probabilities that appear on the right side
are typically learned from data. To avoid zero probabilities,
we adopt Laplace smoothing:
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with n the total number of data points, n(c) the number of
data points with class ¢ and n(c, f;) the number of data points

with class ¢ and i-th feature f;.

B. Naive Credal Classifiers

The Naive Credal Classifier (NCC) is an extension of the
NBC to the framework of imprecise probabilities that can be
used to robustify the inferences of an NBC. Basically, the
idea is to consider an NBC whose local probabilities are only
partially specified.

Instead of considering a probability mass function P(C')
that contains the probabilities P(c) of each of the classes ¢ €
C, an NCC considers a set of such probability mass functions,
which we denote by P(C'). Similarly, for every class ¢ € C
and every i € {1,...,m}, it considers a set of conditional
probability mass functions P (F;|c).

Particularly, we use a version of the IDM [14] to construct
these local sets, suitably adapted such that it is guaranteed to

contain the result of Laplace smoothing. For all ¢ € C, the
local set over class variable C' is defined by:
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where s is a fixed hyperparameter that determines the degree
of imprecision, ¢(c) is a probability mass function on C. P(C)
is taken to belong to P(C) if and only if for all ¢ € C, P(c)
is in the corresponding set P(c) defined above. For every
i € {1,...,m} and ¢ € C, the local set P(F;|c) is defined
similarly.

If we choose a single probability mass function P(C)
in P(C) and a single conditional probability mass function
P(F;|c) in P(F;|c) for every c € C and i € {1,...,m}, we
obtain a single NBC. By doing this in every possible way, a
set of NBCs can be obtained. This set is an NCC. In this work,
the base classifiers for DCS will be constructed by a set of
NCCs.

III. PERTURBATION THRESHOLDS AND R-DCS MODEL

According to the definitions above, we first present the
computation of perturbation thresholds for NCCs in this sec-
tion. Next, inspired by the observation in [12] that instances
with higher perturbation thresholds have higher chance to
be classified correctly, we illustrate the R-DCS model by
introducing two selection strategies and their application in
multi-sources data classification.

A. Computation of perturbation thresholds for NCCs

An NCC is a set of NBCs obtained by choosing different
(conditional) probability mass functions from the correspond-
ing sets. If all these NBCs agree on which class to return,
the output of the NCC will be that class. Otherwise, the NCC
is indeterminate and consists of a set of possible classes. In
this work, given perturbations in every local set by varying
the value of s, the goal is to obtain the maximum value of
s, which is called the perturbation threshold, under which the
NCC remains determinate.

The following theorem in [12] reformulates the computation
of such perturbation thresholds as an optimization problem by
the MAP inference.

Theorem 1: Let X be a variable taking values in a finite set
Val(X), P be a set of candidate mass functions over X and
Z be an MAP instantiation for a mass function P € P. Then
Z is the unique MAP instantiation for every P’ € P if and
only if

P'(z)
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Theorem 1 was used to test the robustness of the MAP
estimates in PGMs in [12], and can be exploited to compute
the perturbation thresholds for PGMs. In our case, we use a
specific version of PGM, i.e., the Naive Bayes topology, and
thus we can reformulate Theorem 1 to the following problem.

Let P(C|f) be the corresponding set of conditional probabil-
ity mass functions, whose local sets contain the corresponding



results of Laplace smoothing, ¢ be an MAP instantiation for
P(C|f). Then, based on Theorem 1, ¢ is the unique MAP
instantiation for every P’'(C|f) € P(C|f) if and only if:
Pr(clf)

max max ——— <1 5)
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As we adopt Laplace smoothing to learn the model, the

first criterion is always satisfied. With the definition in (1),
the second criterion is reformulated by
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where ¢(?) is an estimated class that yields the highest prob-
ability P(C|f) given feature f for all ¢ € C \ {¢}.

Specifically, we use the IDM to construct the local credal
sets which is introduced in (3). By substituting (3) into (8),
we define for any given feature vector f, the perturbation
thresholds s(P¢") for an NCC is the maximum value of s that
satisfies

m
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where a(c(®);s) is an unconditional criterion function over
¢® and perturbation level s, 3(f;|c®); s) is a conditional cri-
terion function over ¢(?) and s for ease of presentation. These
two criterion functions are computed for all ¢ € {1,...,m} by
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where s € R, n(c) and n(c, f;) hold the same definition
in Section II. In practical application, we initiate s from 0
and increase its value over a specific scale (we use 0.1) in
each iteration until s does not satisfy (9). We will use this
perturbation threshold as an indicator to provide selection
strategies for R-DCS in the following section.

a(c?; : (10)
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B. Selection strategies for R-DCS

The key of DCS is to find the classifier with the highest
probability of being correct for a given unseen sample. We
here provide two selection strategies based on the perturbation
thresholds that were defined in the previous section.

1) Rt strategy

In order to select the most competent classifier among a set
of available ones, a first idea is simply to choose the classifier
with the highest perturbation threshold for each sample. We
refer to this strategy as Rt.

Let ¥ = {¢1,1s,...,¢} be the base classifiers forming
DCS. In particular, each ¢; € ¥ is an NCC in this work. Let

X = {x;} be a set of training samples and Y = {y,} be a set
of testing samples, each of these samples x; € R™, y, € R™
is a vector of pixel values at a particular location in m image
channels. We determine for all these samples the perturbation
thresholds defined in the previous section, and denote by sl(zer)
the perturbation threshold of the [-th classifier (¢/;) in sample
i. Let A\; € {1,..., L} denote the index of the base classifier
that will be assigned to sample j. The Rt strategy selects for
each test sample y; the classifier ¢5; € U that exhibits the
highest perturbation threshold:

(per)

Aj =arg emﬁx Sj (12)
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and the classifier ¢ is assigned to the sample y;.

2) R-LA strategy

R-LA aims to choose a classifier based on estimating the
accuracy of each classifier in a local surrounding region of the
image sample in a perturbation thresholds space. In particular,
we choose N training samples whose perturbation thresholds
are closest to that of the test sample for each of the classifiers
respectively.

Let us define the perturbation distance between two data
samples as the absolute value of the difference in their
perturbation thresholds for a given classifier:

per) (per)
i TS E
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Let V; ; be the set of IV training samples that are the nearest
neighbors of y, in terms of d;(x;,y;). For each sample y, to
be classified, we determine the most competent classifier vy,
as follows:

Vi N (14)

= max
1e{1,...}y N’

A= argle{r??fL} N
where M,j is a subset of N;; composed of those training
samples that are correctly classified by ;. Classifier 1y, is
then assigned to the sample y,

Fig.1 illustrates this strategy with a fictitious example that
contains ten training instances, whose thresholds in two clas-
sifiers are depicted on the plane. The threshold values of Clas-
sifier ¢ and 1o are the x— and y—coordinate respectively.
Every instance in the training set corresponds to a black point.
Consider now a test instance y; whose pair of thresholds
corresponds to the red dot and let N = 3. Then the three dots
with green triangles and purple squares construct the set A7 ;
and the set N> ; respectively. Next, we compare the accuracy
of both classifiers on these set of points. Whichever classifier
perform the best on them is the one that we will use to classify
this particular test instance.

C. R-DCS in multi-sources data classification

We apply the proposed R-DCS model in multi-sources data
classification. A framework of multi-sources data classification
with R-DCS is illustrated in Figure 2. It involves three blocks:
(i) feature extraction from the original data sources; (ii)
classifier construction based on the extracted features and (iii)
dynamic classifier selection from the classifier pool.
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Fig. 1. An illustration of the R-LA strategy. Three green triangles and three
purple squares are selected to compute the local accuracy in 1 and 2.
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Fig. 2. Multi-sources data classification with R-DCS.
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This general model admits multiple types of features from
one or more data sources. In this work, we extract features
by applying morphological openings and closings with partial
reconstruction on different data sources, similarly as in [16],
[17], to generate morphological features.

In particular, for HSI data, spectral features are obtained
from the original HSI and spatial features are generated by
mathematical morphology. For LiDAR data, elevation features
are generated by morphological operators. A separate classifier
is constructed for each type of the features. By this, a pool
of classifiers is obtained for dynamic selection in the R-DCS
model.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We conduct experiments on two real data sets: a HSI data
set and a combined HSI and LiDAR data set. We compare the
methods Rt and R-LA in our proposed R-DCS model with the
following schemes: 1) K-nearest neighbors (KNN) classifier
with spectral features of HSI; 2) NBC with different features,
i.e. NB-Spe (spectral features in HSI), NB-Spa (morpholog-
ical features in HSI) and NB-Ele (morphological features in
LiDAR); 3) Generalized graph-based fusion (GGF) [2]. Three
widely used performance measures: overall accuracy (OA),
average accuracy (AA) and Kappa coefficient (x) are used
for quantitative assessment. In the following experiments, half
of the labeled samples are used for training and the rest are
for testing. Experimental results are reported in average of 10
runs.

(e) OA=65.56 (f) OA=93.29

(g) OA=77.06

(h) OA=93.57

Fig. 3. Indian Pines image. (a) False color image, (b) Ground truth,
classification maps of (c) NB-Spe (d) NB-Spa (e) KNN (f) GGF (g) R-DCS
with Rt strategy (h) R-DCS with R-LA strategy.

A. Experiments on HSI

We first conduct experiments on Indian Pines, which was
gathered by the Airborne/Visible Infrared Imaging Spectrom-
eter (AVIRIS) sensors from the North-western Indiana in June
1992. It has a data size of 145 x 145 x 224 and consists of
16 classes. The morphological features are extracted from the
first 3 principal components of the HSI data with 5 opening
and closings by using disk-shaped SE (ranging from 2 to 10
with step size increment of 2).

The results reported in Table I and Figure 3 reveal that our
method R-LA achieves the best performance. Compared with
NB-Spe and NB-spa, our Rt method shows a lower accuracy,
which demonstrates that DSC with the highest robustness
may not improve the classification performance. In contrast,
the proposed R-LA yields an improved performance, which
benefits from the adaptive selection of thresholds, ensuring that
the classification accuracy of each test pixel is closer to the
best result of the nearby pixels. Our method R-LA also obtains
a better result than the feature fusion based classification
method GGF.

B. Experiments on HSI and LiDAR

The second data set comes from the 2013 IEEE GRSS
data fusion contest [18]. We refer to it as GRSS2013. It
was acquired over the University of Houston campus and the
neighboring urban area in June 2012. It involves two types data
sources: an HSI and a LiDAR derived Digital Surface Model
(DSM). The HSI has 144 spectral bands and 349 x 1905
pixels. The ground truth provided for this dataset contains
15 classes. The morphological features are generated with the
same method in [18].

The results are reported in Table II, Rt does not perform
good enough, which proves our assumption again that it does
not make sense to directly compare the perturbation thresholds
of different classifiers and the combination methods might
not always be the best option. However, the proposed R-
LA yields again the best performance in terms of OA, AA
and . Compared with the feature fusion based method GGF,



TABLE I
CLASSIFICATION ACCURACY FOR Indian Pines.

NB-— NB- yNN GGF Rt R-LA

Spe Spa
OA(%) [ 5748 92.15 6352 0295 7639 9324
AA(%) | 5471 89.52 4720 90.11 7853 9017
K 05171 09107 05712 09188 0.7304 0.9232

TABLE 11
CLASSIFICATION ACCURACY FOR THE GRSS2013 DATASET.

Class | oo NB= NB y\N GoF Rt RLA
Spe Spa  Ele
I [ 9673 9994 9182 9662 9851 9869 99.98
> | 9656 98.55 89.87 9558 9884 9972 99.70
3| 9225 9906 95.19 9510 100 9660 99.04
4 9399 9894 97.59 9272 9922 9896 98.98
5 | 8805 100 9670 9865 100 9936 100
6 | 89.88 100 100 7250 100 9867 100
7 | 6778 9920 9790 7939 100 8600 9975
8§ | 4764 99.19 9868 6240 100 8956 99.66
9 | 7577 9805 9241 7603 99.04 8660 99.17
10 | 4748 9843 90.18 8282 100 6973 99.77
11| 6945 9742 97.16 69.44 9877 8621 98.83
122832 100 97.67 65.11 99.59 6601 99.94
13 | 1991 9657 9558 0 8400 6532 97.81
14| 9354 100 100 8664 100 9976 100
15 | 8243 100 97.61 9284 100 97.13 100
OA(%)| 72.14 9833 9529 8089 99.11 8873 99.62
AA(%)| 72.65 9832 9589 7772 98.59 8922 99.60
k| 0.6980 0.9828 0.9489 0.7921 0.9904 0.8776 0.9959

our method offers the robustness to model specification and
achieves a better performance at the same time. Moreover,
our proposed model is parameter free, which makes it more
practical for real applications.

V. CONCLUSION

The main contribution of this work is a novel, robust dy-
namic classifier selection method, that we refer to as R-DCS.
The experimental results demonstrate that the proposed R-
DCS model with the R-LA strategy not only outperforms each
of the individual classifiers it is based on, but also achieves a
better performance than the feature fusion based classification
method GGFE. Although the proposed model is computationally
very simple, it naturally improves the robustness to model
specification without sacrificing the classification accuracy.
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