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ABSTRACT

Convolutional Neural Network (CNN) has been widely ap-
plied in hyperspectral image (HSI) classification exhibiting
excellent performance. The CNN model overfitting is a com-
mon issue in this domain due to limited amount of labelled
training samples. In addition, making the full use of spectral
information is still considered an open problem. In this paper,
we propose a novel group 2D-CNN model for spectral-spatial
classification. Specifically, we propose an original multi-scale
spectral feature extraction approach based on a novel concept
of multi-kernel depthwise convolution. Furthermore, we ex-
ploit for the first time shuffle operation on the group convo-
lutions in HSI spectral-spatial feature extraction to effectively
limit the amount of learning parameters. As a result, we de-
sign a small and efficient network for HSI classification. Ex-
perimental results on real data demonstrate favourable perfor-
mance compared to the current state-of-the-art.

Index Terms— Group convolutional neural networks,
multi-scale spectral feature extraction, hyperspectral image.

1. INTRODUCTION

Compared with panchromatic and multi-spectral remote sens-
ing images, hyperspectral image (HSI) contains much richer
spectral information, which enables more accurate discrim-
ination between different materials or objects in the target
scene [1]. However, this large dimensionality in the spectral
domain poses huge challenges for processing due to scarcity
of labelled training samples [2]. Feature extraction is typi-
cally employed to alleviate this problem [3].

Recent studies demonstrate huge potential of deep learn-
ing, and in particular, convolutional neural network (CNN)
architectures for feature extraction in HSI [4, 5]. CNNs with
one dimensional neurons (1D-CNN) are used to extract spec-
tral features and reportedly achieve better performance than
traditional machine learning methods [6].

In general, making use of the spatial context together with
spectral information yields better classification performance
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than spectral classification alone. Spectral-spatial feature ex-
traction methods based on 2D-CNN and 3D-CNN were re-
ported, e.g., in [4, 7]. 2D-CNN based models [4, 8] often
exploit the first few principal components of the HSI bands
to extract the spatial features. This way, fewer learning pa-
rameters are needed, but the spectral information is less well
exploited [9]. An alternative approach based on dual-channel
CNN solves this problem by extracting the spectral and spa-
tial features separately [10, 11]. Yue ef al. [12] presented a
deep learning framework where the spectral features and spa-
tial features were extracted via stacked auto-encoders (SAE)
and CNN. Hao et al. [13] proposed an improved and more ro-
bust version by using stacked denosing autoencoders (SdAE),
which are more robust to noise than SAE and achieve better
performance. Recently, a unified framework based on long
short-term memory (LSTM) model and CNN was reported to
extract spectral and spatial features in [14].

An alternative approach based on 3D-CNN models ex-
tracts spectral-spatial features simultaneously without dimen-
sionality reduction. E.g., the 3D-CNN model in [4, 9] extracts
the integrated spectral-spatial features as the structural char-
acteristics of 3D HSI. Lately, a residual learning version was
presented in [15]. However, 3D-CNN models often employ
smaller networks than 2D-CNN to avoid overfitting, so it is
hard to extract deep features and fully use the global spectral
information. Consequently, the classification map tends to be
oversmoothed [14].

A major challenge faced by all the methods mentioned
above is how to avoid overfitting under a limited amount of la-
belled training samples. To mitigate this problem, group fea-
tures extraction methods were recently proposed in [16, 17].
A downside is a weaker representation due to ignoring the
correlation among the different groups. A clever idea of chan-
nel shuffling, dubbed ShuffleNet, was recently introduced in
computer vision [18, 19], specifically for mobile devices, to
overcome the limitations of group convolutions.

In this paper, we investigate a different perspective of op-
timizing the network structure while enhancing the efficiency
of feature extraction. We propose a novel group 2D-CNN
model for HSI spectral and spatial classification. While most



of 2D-CNN based methods like [4, 8, 11-14] include some
kind of dimensionality reduction (such as PCA), we introduce
instead a multi-scale spectral feature extraction (MSSFE)
module in the first convolution layer, without any dimension-
ality reduction. The core of our proposed MSSFE module is
a novel concept of multi-kernel depthwise convolution that
we formulate in order to weight the spatial information of
each band from different scales. We combine this multi-scale
representation with group convolution to fully extract global
spectral features. Then we employ two group convolution
layers with shuffle operation to efficiently extract group spec-
tral and spatial features under less learning parameters. As
a result, we design a small and efficient network to extract
spectral and spatial features of HSI.

The main contributions of this paper are:

1) We introduce multi-kernel depthwise convolution to
weight the spatial information at different scales in each band.

2) Based on this concept, we develop a novel MSSFE
module, which effectively extracts multi-scale global spectral
information making use of all spectral bands.

3) We design an architecture that exploits group convolu-
tions with shuffle operation to extract spectral-spatial features
effectively. To our knowledge, the use of shuffle operation for
HSI group feature extraction has not been reported before.

The rest of this paper is organized as follows. Section 2 in-
troduces the proposed method. The experiments are reported
in Section 3 and Section 4 concludes the paper.

2. PROPOSED METHOD

2.1. Overall architecture

A major challenge faced by CNN-based models for HSI clas-
sification is overtraining because of insufficient amount of la-
belled training samples to justify the model parameters. How
to fully extract spectral features and effectively fuse them with
the spatial features is another core problem that still requires
further research. In order to address these challenges, we
propose a novel group 2D-CNN architecture to extract and
fuse group spectral and spatial features effectively. Fig. 1
shows the overall architecture of the proposed method, which
consists of three parts: 1) multi-scale spectral feature extrac-
tion, 2) group spectral and spatial feature extraction, and 3)
grouped feature fusion and classification. Specifically, we
propose a novel MSSFE module to extract multi-scale global
spectral information in the beginning stage. Then, we exploit
the group convolutions with shuffle operation to extract group
spectral and spatial features. Finally, two fully connected lay-
ers fuse the extracted features, and the label of each pixel is
predicted by a softmax layer.

2.2. Multi-scale spectral feature extraction module

Since HSI contain hundreds of bands, current 2D-CNN based
models often use only few principle components as inputs

to reduce the amount of the parameters [8—14], sacrificing
some useful information for the classification [17]. On the
other hand, the data-driven feature learning methods that bet-
ter preserve the useful information and fully extract spectral
features, suffer from the phenomena known as curse of di-
mensionality [2]. To mitigate this problem, we propose a
novel multi-scale spectral feature extraction approach, termed
MSSFE, which boosts the spectral feature extraction power
under an acceptable number of learning parameters.

The core component of the proposed MSSFE is a novel
multi-kernel depthwise convolution operation. Different from
the common depthwise convolution [20], it has multiple out-
put channels for each input channel, so we refer to it as multi-
kernel depthwise convolution. Mathematically, with a depth-
wise convolution, an input neuron at location (4, j) of the k-th
feature map in the (I — 1)-th layer leads to a single output:
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where - denotes the element-wise product, and H; and W, are
the height and the width of the kernels. w}¥ is the weight
and bb* is the bias term. o refers to the actlvatlon function.
We now define a multi-kernel depthwise convolution with s
scales, where the corresponding input neuron yields s out-
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Now, the weights wﬁ;;gq,l < n < s, are learned for each
scale. We employ 1 x 1 multi-kernel depthwise convolution
to weight the spatial information of each band from s scales
as shown in Fig. 1. In Fig. 2, we show a more detailed struc-
ture of MSSFE. With the shuffle operation, we transform the
weighted HSI into s groups, where each group contains all the
bands of the HSI at a particular scale. Each shuffled group is
then fed to the 1 x 1 convolution separately. The squeeze and
excitation (SE) [21] module emphasizes informative bands
(e.g., features) and suppresses useless ones (e.g., noisy).

2.3. Group spectral and spatial feature extraction module

The powerful feature extraction ability of CNN results from
a large number of filters. This translates to a large number of
learning parameters. However, the amounts of labelled train-
ing samples for HSI are rather limited, and thus current CNN-
based models tend to be overfitting. Group features extraction
methods mitigate this problem [16, 17], but they may suffer
from some performance loss because of ignoring the corre-
lation among the different groups. Inspired by ShuffleNet
[18, 19], we propose two group convolution layers with chan-
nel shuffle operation to replace two regular convolution lay-
ers. Mathematically, the value of a neuron at location (3, j) of
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Fig. 1. The architecture of the proposed method. Different colors of the arrows illustrate here different weights.
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Fig. 2. A detailed structure of MSSFE.

the k-th feature map in the [-th layer of a group convolution
with g groups is
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where m indexes the input feature map. Compared with a reg-
ular convolution layer, a group layer reduces the number of
parameters g times and mitigates this way the overfitting. Let
Fg = [(fl,la a3} fl,M/g), sy (fi,la ] fi,M/g)a sy (fg,la cee
fg,Mm/q)] denote the outputs of the first group layer, and
(fi1s - fimyg) denote all the M/g elements in the i-th
group. Without shuffle operation, the output of each group
in the second group layer is only derived from the corre-
sponding local input (i.e., the i-th output is derived from
(fi,1s - fi,m/g)) resulting in a weak representation. Shuffle
operation transforms Fy into F'g = [(f1,1,..., fi,1, s fg,1)s
ooy (F1,0M /s ooos fisni)gs s fg,0174)]- Now, the output of each
group in the second convolution layer comes from different
input groups. The shuffle operation establishes hereby the
correlation among the groups, and thus we can extract group
spectral and spatial features more effectively, especially when
the labelled data are very limited.

2.4. Grouped feature fusion and classification

We exploit two fully connected layers to concatenate and
fuse all the extracted features. To avoid overfitting, we use a
dropout with 0.2 threshold before the grouped feature fusion.
Finally, we employ a softmax layer with L2 regularization,
and express the cost as

c=L(P,Y, W)+ \W|3. )

where £ denotes the cross entropy loss function, P, Y, W are
the predicted labels, the ground truth, and the fusion weights,
respectively. | ||% is the Frobenius norm and X is a regular-
ization parameter. We optimize (4) by using the mini-batch
adadelta [22].

3. EXPERIMENTAL RESULTS AND ANALYSIS

Experiments are conducted on two real HSIs as detailed later.
We compare our proposed method with the following state-of-
the-art CNN-based methods: CNN [6], PPFCNN [23], CD-
CNN [24], and SSCNN [8]. The parameters of these meth-
ods are set to the default values indicated in their original
works. The overall accuracy (OA) and average accuracy (AA)
are used for quantitative evaluation. The experiments are re-
peated ten times by randomly selecting 200 training samples
per class and 10% of them as validation samples, and the av-
erage over the ten runs is reported. The patch size in our
method is set to 5 x 5. To accelerate the training process, the
ReduceLLROnPlateau and EarlyStoping functions are adopted.
The base learning rate is set to 1 and 3 for Indian Pines and
PaviaU images, respectively. We set the epochs and batch size
as 500 and 64, respectively.

3.1. Experiments on real data

Experiment 1 was conducted on the Indian Pines, which was
captured by the Airborne/Visible Infrared Imaging Spectrom-
eter sensors from the North-western Indiana in June 1992. It
contains 16 classes, out of which we select 8 large classes. 4
water absorption bands were removed. The results in Table 1
show a significant improvement of the proposed method over
the reference methods. In comparison with CNN, PPFCNN,
CDCNN, and SSCNN, the increase in OA is 11.74%, 4.85%,
4.51% and 2.12%, respectively.

Experiment 2 was conducted on an urban HSI: University
of Pavia (denoted as PaviaU), which was acquired by the Re-
flective Optics System Imaging Spectrometer sensor during
a flight campaign over Pavia, Northern Italy. It consists of



Table 1. Classification accuracy for Indian Pines.

Classes | CNN PPFCNN CDCNN SSCNN  Proposed
1 78.58  92.99 90.1 96.28  97.70+£0.75
2 85.24  96.66 97.1 9226  99.43%+0.50
3 96.10  98.58 100 99.30  99.86+0.24
4 99.64 100 100 100 100+0
5 89.64  96.24 95.9 92.84  98.91+0.74
6 81.55 87.80 87.1 98.21  98.02+0.61
7 95.42  98.98 96.4 9245  99.90+0.24
8 98.59  99.81 99.4 98.98  99.94+0.05
OA(%) | 87.01  93.90 94.24 96.63  98.75+0.24
AA(%) | 90.60  96.38 95.75 96.29  99.2240.14

Table 2. Classification accuracy for PaviaU.

Classes | CNN PPFCNN CDCNN SSCNN  Proposed
1 88.38 9742 94.6 97.40  98.261+0.44
2 91.27 9576 96 99.40  98.97+0.26
3 85.88  94.05 95.5 94.84  95.58+1.19
4 9724 9752 95.9 99.16  99.10+0.41
5 99.91 100 100 100 100+£0
6 96.41  99.13 94.1 98.70  99.66+0.27
7 93.62 96.19 97.5 100 99.531+0.38
8 87.45  93.62 88.8 94.57  96.29+1.43
9 99.57  99.60 99.5 99.87  99.97+0.06

OA(%) | 9227  96.48 96.73 98.41  98.63+0.19

AA(%) | 93.36  97.03 95.77 98.22  98.60+0.24

Table 3. The effect of the number of scales on OA.

Datasets RConvl  s=10 s=20 s=30 s=40
Indian Pines 95.84 98.28 98.50 98.75 98.51
PaviaU 97.98 98.50 98.56 98.63 98.51

Table 4. The effect of the group convolutions and shuffle
operation on OA.

Datasets AllRConv RConv2 NoShuffle Shuffle(g=10)
Indian Pines 94.93 98.41 98.63 98.75
PaviaU 97.82 98.48 98.57 98.63

610x340 pixels with 103 spectral bands and 9 classes. The
ground truth is shown in Fig. 3(a). The results on PaviaU are
reported in Table 2 and Fig. 3. Our proposed method con-
sistently yields better accuracy than the other four methods.
Visually, our method presents more accurate and more simi-
lar results to the reference map. This can be observed clearly
e.g., in the regions of Meadows and Bare Soil.

In addition, we verify the effectiveness of the MSSFE
module. Table 3 lists the results with a regular convolution
layer (denoted as RConv1) versus the MSSFE module with
different number of scales s on the two real HSIs. Clearly, the
OA value with MSSFE is better than with regular convolu-
tion layer, which demonstrates the improved spectral feature
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Fig. 3. Classification results on PaviaU. (a) Ground truth, and
classification maps of (b) CNN, (c) PPFCNN, (d) CDCNN,
and (e) the proposed method.

extraction ability. Table 4 reports comparative results for the
regular convolution model (denoted as AlIRConv), two regu-
lar convolution layers (denoted as RConv2), two group convo-
lutional layers without shuffle operation (denoted as NoShuf-
fle) and with shuffle operation with ¢ = 10 groups. The re-
sults verify that the group convolutions with shuffle operation
indeed improve the accuracy due to avoiding the overfitting
and considering the correlation among the different groups.

4. CONCLUSION

In this paper, we propose a novel group 2D-CNN architec-
ture for HSI spectral and spatial classification. In the first
convolution layer, we propose a novel MSSFE module to effi-
ciently extract global spectral features. The core of this mod-
ule is a multi-kernel depthwise convolution that we defined
by extending the standard depthwise convolution, in order to
weight the spatial information from multiple scales. We com-
bine shuffle operation with group convolution to extract HSI
group spectral and spatial features with less learning parame-
ters. Experimental results on real data demonstrate favourable
performance compared to the current state-of-the-art.
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