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Abstract—Sparse subspace clustering (SSC), as an effective
subspace clustering technique, has been widely applied in the
remote sensing community demonstrating a superior perfor-
mance over the traditional methods such as k-means. In this
paper, we propose a unified framework for hyperspectral image
(HSI) clustering, which incorporates spatial information and label
information in a SSC model, aiming at generating a more precise
similarity matrix. The spatial information is included through a
joint sparsity constraint on the coefficient matrix of each local
region. Pixels within a local region are encouraged to select a
common set of samples in the subspace-sparse representation,
which greatly promotes the connectivity of the similarity matrix.
We incorporate the available label information effectively within
the same framework, by zeroing the entries of the sparse
coefficient matrix, which correspond to the data points from
different classes. An optimization algorithm is derived based on
the alternating direction method of multipliers (ADMM) for the
resulting model. Experimental results on real HSIs demonstrate
a superior performance over the related state-of-the-art methods.

Index Terms—Hyperspectral images, semi-supervised cluster-
ing, sparse subspace clustering, joint sparsity.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs), captured with hun-
dreds of spectral bands, offer richer information about

the imaged objects than the multispectral images. Therefore,
HSIs have become a powerful and valuable tool for various
applications, including astronomy, geosciences, surveillance,
defense and security [1, 2], agriculture [3, 4] and environ-
mental monitoring [5–7]. HSI clustering is usually regarded as
a fundamental step in these applications, aiming at assigning
the pixels into different groups in an unsupervised way, where
the pixels in the same group are more similar to each other
than to those in different groups. However, due to the large
spectral variability, noise and complex structure in the image
of a scene, clustering of HSIs is a very challenging task [8].

Traditional clustering methods such as k-means [9], fuzzy
c-means (FCM) [10] and generalized principal component
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analysis (GPCA) [11] have been widely used in remote
sensing. However, directly applying such methods on HSIs
often produces the clustering maps with a large amount of
impulse noise, due to the limited discriminative information
in spectral domain, complexity of ground objects and large
diversity of spectral signatures in the same class [12].

In recent years, sparse subspace clustering (SSC) [13] has
emerged as an effective method for HSI clustering, providing
the current state-of-the-art performance [8, 14–18]. SSC relies
on a self-representation model where the input matrix is
employed as the dictionary. The method postulates that each
sample in a union of subspaces can be represented by a
linear combination of other samples in the dataset and all
the involved samples in this representation are in the same
subspace as the test sample. This indicates that given the
dictionary for an input sample in the subspace Sl, there exist
a sparse representation vector whose non-zero entries corre-
spond to the samples in the same subspace Sl [13], which is
called subspace-sparse representation. As the subspace-sparse
representation of the input matrix reflects the memberships of
each sample, it is employed to build a similarity matrix, which
is further applied within the spectral clustering framework
[19]. The construction of the similarity matrix is a crucial
step for the SSC model. In this paper, we will mainly focus
on the generation of a well-designed similarity matrix.

The performance of SSC is limited by the fact that it
treats each pixel independently without considering the spa-
tial distribution of data points during the subspace-sparse
representation, which makes the sparse coefficients sensitive
to noise. Various extensions of the SSC model have been
proposed to exploit spatial information in HSIs and achieved
a significant improvement over SSC [8, 15, 16, 20]. The
approach of [8] imposes a smoothness constraint on the neigh-
bouring sparse coefficients within square patches. Another `2-
norm based spatial regularizer acting on the coefficients of
horizontally and vertically adjacent pixels was proposed in
[15] to promote piecewise smoothness of sparse coefficients.
An object-oriented SSC method was proposed in [20], which
extracts spectral-spatial features in each segmented object by
a reweighted mass center learning method. A kernel version
of SSC incorporating a max pooling of the sparse coefficient
matrix was presented in [16].

However, none of the modified SSC models mentioned
above incorporates label information in the construction of
similarity matrix. Hence, their subspace-sparse representation
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is unsupervised, leaving room for improving the performance
when labelled data are available. In order to utilize the
available label information, a semi-supervised SSC model was
recently proposed in [21], where the class probability matrix
of unlabelled samples was first calculated by using the labelled
samples and then the whole probability matrix of all samples
was applied as a weight matrix on the sparse matrix with the
purpose of improving the global similarity structure among
samples. However, spatial information was not taken into
account and thus impulse noise was degrading significantly
the resulted map.

To overcome the above limitations, in this paper we propose
a semi-supervised SSC model in combination with spatial
information of HSI, with the purpose of building a more
accurate similarity matrix. We refer to the proposed method as
joint sparse subspace clustering with label information (JSSC-
L) throughout this paper. Fig. 1 shows the similarity matrix
produced by SSC and JSSC-L where 1% labelled samples are
utilized. There are 4 clusters each consisting of 50 samples
from the Indian Pines image, and the pixels are sequentially
arranged from 4 classes as shown in Fig. 1. In [13], it was
explained that the ideal similarity matrix should be block-
diagonal. Fig. 1 reveals that our proposed method preserves
such structure much better than SSC.

The benefits of the JSSC-L model are mainly due to the
following two aspects. Firstly, unlike the `1 norm constraints
on the coefficient matrix in the aforementioned approaches
[8, 15, 16, 20, 21], we exploit the spatial information of HSI by
enforcing a joint sparsity constraint as `1,2 norm, on each local
region in the subspace-sparse representation. The local regions
are typically homogeneous in HSI [22–29] and we obtain
these local regions by a super-pixel segmentation technique,
yielding non-overlapping super-pixels with an adaptive shape
and size. Each super-pixel is typically comprised of the highly
similar materials, and consequently the spectral signatures
within one super-pixel are mutually similar. To preserve such
a relationship, we integrate a joint sparsity constraint for the
coefficients of pixels in each super-pixel with the SSC model,
promoting this way the graph connectivity. The second aspect
is that we utilize the label information in HSI to build a more
precise connection between the data points. As neighbouring
pixels in a local region are mostly in the same class, we first
propagate the label information to each super-pixel by exploit-
ing such spatial information, which allows us to employ the
label information as much as possible. Then the links between
every pair of data points are refined in the way where we set
the sparse coefficient to zero if the two corresponding data
points are from different classes. Therefore, the JSSC-L model
is able to capture the global data structure by respecting the
label information, which ensures that the generated similarity
matrix follows well the genuine block-diagonal structure. Note
that the way we employ the label information is much different
from the label usage in supervised classification methods like
sparse representation classification (SRC) [30] and the block
sparse subspace clustering (BSSC) [31], where class labels
are employed to build a structured dictionary. To solve the
resulting optimization problem, an iterative solver based on
alternating direction method of multipliers (ADMM) is de-

Fig. 1. Similarity matrix of four classes obtained by SSC (left) and the
proposed JSSC-L (right) with 1% labelled samples in the Indian Pines image.

rived. Experimental results on three real data sets demonstrate
the effectiveness of the proposed method with a significant
performance improvement over the existing methods in terms
of overall accuracy.

The preliminary work was reported in a conference [32]. In
comparison with the conference version, which only exploits
the spatial information with a joint sparsity constraint on local
regions, here we extend the model further to a semi-supervised
SSC model by utilizing label information, which yields a more
precise similarity matrix. The major contributions of the paper
can be summarized as follows:

1) A unified framework is proposed for HSI clustering,
which incorporates spatial information and label infor-
mation, leading to the significantly improved clustering
performance.

2) The spatial information of HSI is included through a
joint sparsity constraint on the coefficient matrices of
local regions to promote the graph connectivity.

3) The label information of HSI is utilized to refine the
estimation of the similarity matrix, which excludes the
connections of pixels in different classes directly by
setting the corresponding coefficients to zeros. The re-
sulted similarity matrix is much closer to the block-
diagonal structure. This method is general and can be
easily applied to other existing SSC based models.

4) An efficient ADMM-based algorithm is derived to solve
the resulting optimization problem.

The rest of this paper is organized as follows. Section
II briefly introduces the clustering of HSIs with the SSC
model. Section III describes the proposed JSSC-L model and
the resulting optimization problem. Section IV presents the
experimental results on real data and Section V concludes the
paper.

II. HSI CLUSTERING WITH THE SSC MODEL

The spectral signature of each pixel in HSI is a vector with
each entry corresponding to the spectral reflection value of
object in a specific wavelength. A 3-D HSI data cube with the
size of M × N × B, where M and N represent the height
and the width of the data, respectively, and B the number of
bands, is first flattened to a 2-D matrix Y ∈ RB×MN with
each column being a spectral signature. Under the assumption
that each pixel in a union of subspaces can be sparsely
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Algorithm 1 HSI clustering with the SSC model
1: Input: An input matrix Y ∈ RB×MN , λ and the number

of clusters c.
2: Calculate the sparse coefficient matrix C by (1).
3: Normalize the columns of C by ci = ci/‖ci‖∞.
4: Compute the similarity matrix W by (2).
5: Obtain the clustering results by applying W in the

spectral clustering framework [19].
6: Output: A clustering map.

represented as a linear or affine combination of the others
from the same subspace [13, 33], the sparse coefficient matrix
C ∈ RMN×MN of Y can be derived by solving the following
optimization problem:

argmin
C
‖C‖1 +

λ

2
‖Y −YC‖2F

s.t. diag(C) = 0, 1TC = 1T , (1)

where ‖C‖1 =
∑
i

∑
j |Cij |; 1T is a row vector of size

1×MN ; diag(C) is a diagonal matrix whose entries outside
the main diagonal are zero and λ is a parameter, which
controls the balance between the data fidelity and the sparsity
of the coefficient matrix. The first constraint diag(C) = 0 is
introduced to avoid the trivial solution of representing a sample
by itself and the second constraint 1TC = 1T indicates the
case of affine subspace.

The model in (1) can be solved by ADMM [34]. As the non-
zero entries of C indicate which data points will be selected
in the subspace-sparse representation of Y, the matrix C
indicates the connections between each data point of Y. The
similarity matrix W ∈ RMN×MN is given by

W = |C|+ |C|T . (2)

The symmetric structure of W makes sure that each pair of
samples are connected to each other if either side is selected
to represent another, which results in a strengthened connec-
tion of the graph. With spectral graph theory, the clustering
results can be achieved by applying k-means to a subset
of eigenvectors of the Laplacian matrix L = D−W where
D ∈ RMN×MN is a diagonal matrix with Dii =

∑
jWij

[19]. The SSC model is summarized in Algorithm 1.

III. THE PROPOSED JSSC-L MODEL FOR HSIS

In this section, we first introduce a joint sparsity based SSC
(JSSC) model, which only incorporates the spatial information
of HSIs. Then, our complete JSSC-L model employing the
label information is presented. Finally, we develop an opti-
mization algorithm for the resulting model based on ADMM.

A. JSSC model

In the subspace-sparse representation of SSC, the sparse
coefficient vector of each pixel of Y is calculated individually
and independently. Various factors such as limited discrimina-
tive information in spectral domain, noise and large diversity

of spectral signatures belonging to the same class in HSIs [8],
degrade the construction of the similarity matrix, deteriorating
thereby spectral clustering performance. In practice, pixel
values are spatially correlated, which means that pixels within
a local region belong to the same class with high probability
[23–25, 27, 29].

Here, we incorporate the spatial information with a joint
sparsity constraint to preserve the dependencies between HSI
pixels in each local region.

Suppose that a HSI is segmented into p non-overlapping
super-pixels [35]. Each super-pixel is regarded as a homoge-
neous region belonging to a particular class. We assume that
each pixel within the same super-pixel selects the same set of
pixels in the data representation but with different coefficients.
The resulting JSSC model can be described as follows:

argmin
C

p∑
i=1

wi‖Ci‖1,2 +
λ

2
‖Y −YC‖2F

s.t. diag(C) = 0, 1TC = 1T , (3)

where Ci ∈ RMN×ni is a sparse matrix that corresponds to
the ni pixels in i-th super-pixel; ‖Ci‖1,2 is the `1,2 norm
defined as

∑MN
j=1 ‖c

j
i‖2. Here cji is the j-th row of Ci and wi

is a normalized weight defined as:

wi =

√
ni/p∑p

i=1

√
ni/p

(4)

to balance the joint sparsity constraint for each super-pixel.
The first term with `1,2 norm takes care that the pixels
within one super-pixel are likely to select a common set of
samples in the data representation, promoting this way the
graph connectivity within the local region.

B. JSSC-L model

In order to better preserve the original data structure, we
integrate the label information of the observed pixels explicitly
into the JSSC model, resulting in its semi-supervised extension
JSSC-L. The actual structure of ideal similarity matrix is
block-diagonal [13], which means that there are no connec-
tions between pixels from different classes. To comply with
such diagonal structure, we set the coefficients Ci,j to zero if
pixels i and j are from different classes. Since local regions of
HSI are typically homogeneous (belonging to the same class),
we firstly propagate the label information to each super-pixel
by a majority voting strategy. If a super-pixel contains labelled
samples from different classes, the class to which most of them
belong will be assigned. The resulting optimization problem
with respect to C is:

argmin
C

p∑
i=1

wi‖Ci‖1,2 +
λ

2
‖Y −YC‖2F

s.t. diag(C) = 0, 1TC = 1T , PL(C) = 0, (5)

where L is a set of pairs {i, j} such that i and j are labelled
pixels from different classes, and PL(C) is a projection
operator that extracts the entries in C whose indices are in
L. Obviously, the third constraint PL(C) = 0 makes use of
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the label information by setting the entries for pixels pairs
from different classes to zero.

We merge the constraints diag(C) = 0 and PL(C) = 0
into PG(C) = 0, where G is the union of set L and set {i,
i}. The objective function (5) can be reformulated as

argmin
C

p∑
i=1

wi‖Ci‖1,2 +
λ

2
‖Y −YC‖2F

s.t. 1TC = 1T , PG(C) = 0. (6)

The optimization problem (6) will be solved by an ADMM-
based method as described in the next subsection.

Once we obtain the sparse matrix C, the similarity matrix
is calculated using (2) and further applied within the spectral
clustering method to yield the clustering results in the same
way as in SSC.

C. Optimization method

In this subsection, an efficient optimization algorithm is
derived. We base our approach on the general algorithm for
solving convex problems. ADMM [34] splits a complicated
optimization problem into smaller problems that are easier
solved and often has closed-form solutions. The sub-problems
are iteratively solved until stop criterion is satisfied.

We first reformulate (6) as the following optimization prob-
lem:

argmin
C,A

p∑
i=1

wi‖Ai‖1,2 +
λ

2
‖Y −YC‖2F

s.t. 1TC = 1T , C = A− PG(A), (7)

where A ∈ RMN×MN is an auxiliary variable.
We denote the resulting augmented Lagrangian function by

fµ(C,A;Y1,Y2) as follows:
p∑
i=1

wi‖Ai‖1,2 +
λ

2
‖Y −YC‖2F + 〈Y1,1

TC− 1T 〉

+〈Y2,C−A+ PG(A)〉+ µ

2
(‖1TC− 1T ‖22

+‖C−A+ PG(A)‖2F ), (8)

where Y1 ∈ R1×MN , Y2 ∈ RMN×MN and µ are the penalty
parameters for the appended terms and 〈V1,V2〉 denotes the
trace of VT

1 V2. Due to the separable structure of fµ, we can
solve each of C and A separately by fixing one when solving
another. The concrete steps are described next.

1) Update C: The objective function with respect to C is
given by:

Ck+1 = argmin
C

λ

2
‖Y −YC‖2F +

µk

2
(‖1TC− 1T

+
Yk

1

µk
‖22 + ‖C−Ak + PG(A

k) +
Yk

2

µk
‖2F ) (9)

By setting the first-order derivative to zero, a closed form
solution is obtained as

Ck+1 = (λYTY + µk(I+ 1))−1(λYTY

+ µk(Ak − PG(A
k) + 1)− 1Yk

1 −Yk
2 ). (10)

Algorithm 2 ADMM for solving JSSC-L model
1: Input: An input matrix Y ∈ RB×MN , λ, the number

of super-pixel p and indice set G.
2: Initialize: A0 = 0, Y0

1 = 0, Y0
2 = 0, µ0 = 1, ρ = 1.1,

ε = 10−5, MaxIter, k ← 0.
3: Do
4: Update C by (10).
5: Update A by (11).
6: Update Y1 by (15).
7: Update Y2 by (16).
8: Update µ by (17).
9: While (‖1TCk+1−1T ‖∞ > ε or ‖Ck+1−Ak+1‖∞ > ε

and k < MaxIter)
10: Output: Coefficient matrix C.

2) Update A: The objective function with respect to A is:

Ak+1 = argmin
A

p∑
i=1

wi‖Ai‖1,2 +
µk

2
‖Ck+1 −A

+PG(A) +
Yk

2

µk
‖2F , (11)

which can be separated into p sub-problems corresponding to
each super-pixel:

argmin
Ai

wi‖Ai‖1,2 +
µk

2
‖Ck+1

i −Ai + PG(Ai) +
Yk

2i

µk
‖2F ,

(12)

where Y2i ∈ RMN×ni is a matrix with each column indexed
by the pixels in i-th super-pixel. Let ak+1

i,t , ck+1
i,t and Yk

2i,t be
the rows of matrices Ak+1

i ,Ck+1
i and Yk

2i , respectively. We
solve each sub-problem for t = 1, 2, ..., ni as follows:

ak+1
i,t = argmin

a
wi‖a‖2 +

µk

2
‖a− PG(a)− z‖22 (13)

where z = ck+1
i,t +Yk

2i,t/µ
k. The problem (13) can be solved

using:

ak+1
i,t = ã− PG(ã), (14)

where ã = (1 − wi/µk/‖z‖2)+z and (x)+ is a vector with
entries max(xi, 0).

3) Update other parameters: The next step is to update the
multipliers Y1,Y2 and µ, which can be achieved by

Yk+1
1 = Yk

1 + µk(1TCk+1 − 1T ) (15)

Yk+1
2 = Yk

2 + µk(Ck+1 −Ak+1 + PG(A
k+1)) (16)

µk+1 = ρµk, (17)

where ρ ≥ 1 is a parameter that controls the convergence
speed of the optimization. The three updating steps are exe-
cuted iteratively until the stopping criterion is satisfied, i.e.
‖1TCk+1 − 1T ‖∞ < ε and ‖Ck+1 − Ak+1‖∞ < ε, or
k > MaxIter, where MaxIter is the maximum number of
iteration. We summarize the optimization algorithm of JSSC-L
in Algorithm 2.
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TABLE I
CLUSTERING ACCURACY FOR Indian Pines.

No. Class name FCM k-means CFSFDP SSC L2-SSC CPPSSC JSSC JSSC-L
1 Corn-notill 62.39 69.85 28.46 60.00 61.09 71.62 74.03 93.27
2 Grass-trees 94.66 53.84 100 98.36 99.32 98.66 100 100
3 Soybean-notill 44.13 0 82.38 76.91 79.37 77.46 86.20 99.59
4 Soybean-mintill 63.83 57.59 50.73 50.68 54.89 76.78 87.79 92.15

OA(%) 65.34 50.17 59.10 65.11 67.78 79.35 86.40 94.95
κ 0.5118 0.2833 0.4409 0.5296 0.5629 0.7081 0.8069 0.9286

(a) (b) (c) OA=65.34 (d) OA=50.17 (e) OA=59.10

(f) OA=65.11 (g) OA=67.78 (h) OA=77.45 (i) OA=86.40 (j) OA=96.90

Fig. 2. Indian Pines image. (a) False color image, (b) Ground truth, and Clustering maps of (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC, (h)
CPPSSC (1 % labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Experiments are conducted on three real HSIs to validate the
performance of the proposed method: 1) Indian Pines image;
2) Pavia University image; 3) Salinas image. The results of
two widely used clustering methods FCM [10] and k-means
[9], the clustering by fast search and find of density peaks
(CFSFDP) [36] and state-of-the-art methods SSC [13], L2-
SSC [15] and a class probability propagation of supervised
information based on SSC (CPPSSC) [21] are reported for
comparison. In addition, we also report the performance of
our method JSSC which does not utilize label information
as reference. We used the online source codes of SSC1 and
CFSFDP2 in our experiments reported here.

Two common performance measures: overall accuracy (OA)
and Kappa coefficient (κ) are used for quantitative assessment
of the clustering performances. The optimal parameters of SSC

1http://www.ccs.neu.edu/home/eelhami/codes.htm
2https://people.sissa.it/∼laio/Research/Res clustering.php

and L2-SSC are acquired as in [8, 15, 16]. For the methods
JSSC, CPPSSC, and JSSC-L, we manually tune the parameters
by a grid-search strategy. JSSC shares the same segmentation
map of JSSC-L. Note that JSSC-L reduces to JSSC when no
label information is employed. In this paper, we randomly
select 1% labelled samples for CPPSSC and JSSC-L, and
the parameter λ of JSSC-L is set to 1 based on empirical
optimization. To avoid a biased estimation, the experiments
for CPPSSC and JSSC-L are repeated 5 times and the average
results are reported.

A. AVIRIS Data Set: Indian Pines image

We present here the experimental results on the Indian
Pines image, which was acquired by the Airborne/Visible
Infrared Imaging Spectrometer (AVIRIS) sensors from the
North-western Indiana in June 1992. The image consists of
16 classes and has a size of 145 × 145 × 220, with a spatial
resolution of 20 m per pixel and 220 spectral reflectance
bands in the wavelength range 0.4-2.5 µm. The spectral bands
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TABLE II
CLUSTERING ACCURACY FOR Pavia University.

No. Class name FCM k-means CFSFDP SSC L2-SSC CPPSSC JSSC JSSC-L
1 Asphalt 0 0 0 6.12 0 26.82 0 100
2 Meadows 86.33 78.91 0 57.55 94.27 75.65 99.84 96.64
3 Trees 60.32 66.67 0 95.24 84.13 100 90.48 54.92
4 Metal 61.37 58.63 37.79 98.10 97.34 99.42 99.39 95.22
5 Bare Soil 40.72 44.43 74.76 39.12 51.78 55.90 63.42 99.72
6 Bitumen 100 100 100 98.49 97.21 82.07 94.07 88.14
7 Brick 1.06 0 0 0 39.36 53.19 51.06 80.00
8 Shadows 100 100 100 82.55 99.72 89.70 95.01 39.45

OA(%) 58.53 58.60 56.34 61.51 71.61 70.99 76.82 92.81
κ 0.5032 0.5 0.4310 0.5378 0.6554 0.6463 0.7142 0.9047

(a) (b) (c) OA=58.53 (d) OA=58.60 (e) OA=56.34

(f) OA=61.51 (g) OA=71.61 (h) OA=69.91 (i) OA=76.82 (j) OA=95.36

Fig. 3. Pavia University image. (a) False color image, (b) Ground truth, and Clustering maps of (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC,
(h) CPPSSC (1 % labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples).

in 104-108, 150-163 and 200 are removed due to the water
absorption. We select a subimage with the size of 85× 70 as

test data for computational efficiency, as it was done in [8].
There are 4 classes in the test data as shown in Table I. The
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TABLE III
CLUSTERING ACCURACY FOR Salinas.

No. Class name FCM k-means CFSFDP SSC L2-SSC CPPSSC JSSC JSSC-L
1 Brocoli-1 99.01 100 100 99.21 100 98.84 97.14 100
2 Brocoli-2 42.48 0 0 61.50 99.69 99.97 100 100
3 Grapes-untrained 96.74 96.95 97.96 98.47 96.59 98.77 96.34 99.67
4 Lettuce-4wk 93.11 92.69 93.95 94.80 87.20 95.13 97.75 100
5 Lettuce-5wk 100 100 100 99.78 95.59 99.98 100 100
6 Lettuce-6wk 100 97.82 95.20 97.38 100 100 100 100

OA(%) 90.95 86.02 86.44 93.93 96.35 98.71 97.87 99.88
κ 0.8833 0.8189 0.8241 0.9217 0.9532 0.9834 0.9728 0.9985

(a) (b) (c) OA=90.95 (d) OA=86.02 (e) OA=86.44

(f) OA=93.93 (g) OA=96.35 (h) OA=99.27 (i) OA=97.87 (j) OA=100

Fig. 4. Salinas image. (a) False color image, (b) Ground truth, and Clustering maps of (c) FCM, (d) k-means, (e) CFSFDP, (f) SSC, (g) L2-SSC, (h) CPPSSC
(1 % labelled samples), (i) JSSC and (j) JSSC-L (1% labelled samples).

false color image and ground truth are shown in Fig. 2 (a) and
(b).

The parameters for JSSC-L are set to λ = 1 and p = 10.
The results reported in Table I and Fig. 2 indicate that our
method JSSC-L achieves the best performance in terms of OA
and κ. Compared with the two classical FCM and k-means
methods and the CFSFDP method, most of the sparsity-based
approaches show the superior clustering accuracy, demonstrat-
ing the effectiveness of sparsity-based clustering methods in
the present task. The JSSC-L yields a significant improvement
over SSC and L2-SSC with OA enhancements of 29.84%
and 27.17% respectively. Compared with CPPSSC, which also
employs the label information, JSSC-L achieves a 15.6% OA
improvement. The improvement over SSC is mainly due to
the two aspects: (1) the use of spatial information (with a joint
sparsity constraint on local regions), which yields 21.29% OA
enhancement and (2) the employment of label information,

which yields 8.55% improvement in terms of OA. In Fig. 2,
it can be seen that the clustering map of the CPPSSC method,
which only utilizes label information, is heavily affected
by impulse noise. The clustering map of JSSC-L is much
smoother, demonstrating the benefit of incorporating spatial
information.

B. ROSIS Urban Data Set: Pavia University image

The second experiment was conducted on an urban HSI:
Pavia University. This image was collected by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor during a
flight campaign over Pavia, Northern Italy. The image size is
512×217. The geometric resolution is 1.3 m and 103 spectral
bands are captured. 20 water absorption bands in 108-112,
154-167 and 224 are removed in this experiment. A typical
area with size of 200 × 100 is extracted as the test data that
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includes 8 classes in total. The false color image and ground
truth can be found in Fig. 3 (a) and (b).

We set λ = 1 and p = 20 as the optimal parameters for
our method and report the clustering accuracy and maps in
Table II and Fig. 3. JSSC-L yields again the best clustering
performance in terms of OA and κ, with 33.85% and 23.75%
improvement of OA over SSC and L2-SSC, respectively. All
sparsity-based methods obtain better clustering results than
FCM, k-means and CFSFDP. In comparison with CPPSSC,
our method also achieves 25.45% increase in OA. Table II
also reveals that for the class 1 almost all the methods fail to
obtain good results while our method reaches an accuracy of
100%. Moreover, Fig. 3 shows that the clustering map of our
method is much closer to the ground truth.

C. AVIRIS Data Set: Salinas image

The third experiment was conducted on the Salinas image,
which was captured by the AVIRIS sensor over the Salinas
Valley, CA, USA. The image size is 512 × 217 × 224 with
a high spatial resolution of 3.7 m per pixel. There are 16
classes in total. Twenty bands in 108-112, 154-167 and 224
are removed due to the water absorption. We select a typical
region with a size of 100 × 80 as test data, consisting of 6
classes as shown in Table III. False color image and ground
truth are given in Fig. 4 (a) and (b).

We set λ = 1 and p = 10 as the optimal parameters
of JSSC-L, and report the clustering results for different
methods in Table III and Fig. 4. It is clear that JSSC-L
consistently yields a superior performance over others with
an overall accuracy of 99.88%. For the classes 1, 2, 4, 5 and
6, the proposed method JSSC-L even achieves the clustering
accuracy of 100%. In addition, when no label information is
available, our method JSSC still yields a better result than
other state-of-the-art approaches.

D. Analysis of parameters

This subsection investigates the effect of parameters λ and
p on the performance of JSSC-L model. We vary λ in the
range of {10−2, 10−1, 100, 101, 102, 103} and p in the range
of {10, 20, 40, 80, 160, 320} for the three data sets. The results
are shown in Fig. 5. Note that the λ-axis is in log10 and pn is a
normalized parameter for p as defined by pn = p/M/N×104.
These results indicate that JSSC-L is able to achieve a good
and rather stable performance for a wide range of these param-
eters, i.e., when pn ∈ [10, 67] and λ ∈ [1, 100]. Especially the
performance is stable for the Indian Pines image and Salinas
image. For the Pavia University image, even though the results
of JSSC-L are less stable than for other two images, in most
cases, the performance is still superior compared to SSC and
L2-SSC. Based on the empirical analysis we recommend the
value of p to be set in the range of [10, 67]×M ×N/104.

The results in Fig. 5 show that the number of super-pixels
p is a more important parameter compared with λ. When p
is set properly, the performance is quite stable with varying
λ. A larger value of p may capture the spatial information
more precisely but it will degrade the spatial connections
between some data points as the pixels are going to be

(a)

(b)

(c)

Fig. 5. Grid search of λ and p for JSSC-L in three data sets: (a)Indian Pines
(b) Pavia University (c) Salinas (the λ-axis is in log10 and pn is defined by
p/M/N × 104).

treated more independently which limits the ability of joint
sparsity constraint on promoting the graph connectivity, which
is obviously demonstrated by a declining curve with a fixed λ
in Fig. 5 (a). A smaller value of p may result in merging some
small homogeneous regions and neglecting this way some
minor classes during the label propagation. If in addition some
of these minor classes are not represented in the labelled data,
a much too strong constraint may be imposed on the coefficient
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(a) (b) (c) OA=96.90 (d) OA=94.92

(e) OA=92.87 (f) OA=67.21 (g) OA=65.82 (h) OA=64.79

Fig. 6. Indian Pines image. (a) False color image, (b) Ground truth, and Clustering maps of JSSC-L obtained with (c) p = 10, (d) p = 20, (e) p = 40, (f)
p = 80, (g) p = 160 and (h) p = 320.

matrix by the available labelled data. This is the main reason
why all the methods detect the grass-trees (unlabelled in the
ground truth) in the top middle part of clustering maps in Fig. 2
except the JSSC-L model. An effective way to overcome such
a degradation on the minor classes is to increase properly the
number of super-pixels to yield a more precise segmentation
map. We report the clustering maps of JSSC-L under different
values of p with 1% labelled samples in the Indian Pines image
in Fig. 6.

The results show that the clustering accuracy is decreasing
with the increasing values of p. The JSSC-L with p = 10
yields the best performance with a high accuracy of 96.90%,
but in fact it does not completely match the false color image
visually especially for the grass-trees on the top. The reason is
that the ground truth is not labelled overall and the best result
is reported according to the highest accuracy with respect to
this ground truth. So the clustering map in the unlabelled area
may be inaccurate. When p is set as 20 or 40, the clustering
maps are much closer to the false color image than that of
p = 10. Even though the accuracy is not the highest, visually
the result in Fig. 6 (e) can be regarded as the best one.

E. Generalization of the existing models

Compared to SSC and L2-SSC, the improved performance
of JSSC-L is partly due to making use of label information.
In fact, our efficient approach to exploit the label information
can be readily incorporated into other off-the-shelf approaches
generalizing them and improving their performance. Specif-
ically, we add the constraint PG(C) = 0 in the SSC and
L2-SSC model and refer to the resulting methods as SSC-
L and L2-SSC-L, respectively. The results in Fig. 7 and 8

Fig. 7. Generalization of label information on SSC model in different data
sets.

demonstrate that the clustering accuracy of both SSC and L2-
SSC are significantly improved for all the tested data sets.
For the Pavia University image these improvements are nearly
20% and for the Indian Pines image the improvements are
even larger: nearly 30%. Obviously, the estimation of the
similarity matrix benefits from the label information, which
can be effectively integrated into various method using our
approach.

F. Effect of the number of labelled samples

We also investigate the effect of the number of labelled
samples on the performance of JSSC-L. The percentages of la-
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TABLE IV
COMPARISONS BETWEEN DIFFERENT METHODS ON RUNNING TIME [IN SECONDS]

Data sets FCM k-means CFSFDP SSC L2-SSC CPPSSC JSSC JSSC-L
Indian Pines 6 3 9 543 624 342 270 304

Pavia University 19 3 80 17206 18048 11408 8380 8468
Salinas 10 1 18 1307 1459 784 610 650

Fig. 8. Generalization of label information on L2-SSC model in different
data sets.

belled samples per class are set in the range of {0, 1, 5, 10, 20},
and we report the results in Fig. 9, where the standard
deviations are denoted by the line width in different colors.
In general, with increasing the fraction of labelled samples,
the performance is consistently improved in all three data sets.
The clustering accuracy shows first a drastic increase due to
introducing labelled data, until about 1% of labelled samples
per class are added, achieving 8.55%, 15.99% and 2.01%
OA improvements for the Indian Pines, Pavia University and
Salinas, respectively. Subsequently, the OA keeps increasing
gently with further increase of the labelled data fraction.
This demonstrates the effectiveness of our method in the
case of limited number of labelled samples. For the Salinas
image, the clustering accuracy reaches up to 100% with only
10% of labelled samples. The standard deviations at 1%
labelled samples usually show larger values than that with
more labelled samples, which is mainly caused by the spatial
distribution of randomly selected samples.

G. Time complexities: an empirical comparison

Table IV reports the computation times of different methods
on the three HSIs. All the methods were implemented in
MATLAB and the experiments were run on a computer with
an Intel c© core-i7 3930K CPU with 64 GB of RAM. The
running time records the complete process of each clustering
method. Clearly, the classical FCM and k-means methods
and the CFSFDP method are much faster than all the SSC-
based methods. However, the SSC-based methods typically
achieve better results in terms of accuracy as shown above.
CFSFDP takes longer time than FCM and k-means because

Fig. 9. Performance of JSSC-L on three different data sets, depending on the
fraction of labelled samples.

of the preprocessing part regarding the calculation of pairwise
distances for all the data points. Compared with SSC, L2-
SSC and CPPSSC, our methods JSSC and JSSC-L achieve
faster convergence. The JSSC-L takes longer time than the
JSSC, mainly due to the added constraint PL(C) = 0, but
the increase of computation time is relatively small given the
significantly enhanced clustering accuracy.

V. CONCLUSION

In this paper, we proposed a semi-supervised sparse sub-
space clustering method for HSI, which combines spatial
information via a joint sparsity constraint on local regions
and label information within a unified framework. Our simple
and elegant way of integrating the label information enables
more accurate estimation of the similarity matrix and can
be incorporated into other clustering methods as well, to
generalize them to a semi-supervised scenario. We also derived
an optimization algorithm based on ADMM for our complete
model. The experiments conducted on three real HSIs confirm
the effectiveness of our method with a superior performance
over other related clustering methods.
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Aleksandra Pižurica is Professor in statistical im-
age modelling at Ghent University. She obtained the
Diploma Degree in electrical engineering from the
University of Novi Sad, Serbia, in 1994; Master
of Science degree in telecommunications from the
University of Belgrade, Serbia, in 1997, and the
PhD degree in engineering from Ghent University,
Belgium, in 2002. Her research is in the area of
signal and image processing and machine learning,
including multiresolution statistical image models,
Markov Random Field models, sparse coding, rep-

resentation learning, image and video reconstruction, restoration and analysis.
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