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ABSTRACT

Recent improvements in reconstructing Magnetic Resonance Images (MRI) from partial data have been reported
using spatial context modelling with Markov Random Field (MRF) priors. However, these algorithms have
been developed only for magnitude images from single-coil measurements. In practice, most of the MRI images
today are acquired using multi-coil data. In this paper, we extend our recent approach for MRI reconstruction
with MRF priors to deal with multi-coil data i.e., to be applicable in parallel MRI (pMRI) settings. Instead of
reconstructing images from different coils independently and then obtaining final image using sum of squares
method, we consider recovery of MRI image using undersampled measurements from all coils jointly with their
estimated sensitivity maps. The proposed method is derived from a maximum a posteriori probability (MAP)
formulation of the reconstruction problem on which is then applied an alternating direction method of multipliers
(ADMM). Therefore, an algorithms steps of the proposed method can be divided in two blocks. The first one
contains few iterations (up to 10) of conjugate gradient (CG) method for obtaining a temporary image estimate
from multi-coil measurements which although are undersampled significantly overlap at low frequencies. The
second block contains steps which refer to applications of MRF regularizations on temporary image estimate
obtained from the first block. This procedure is repeated through iterations until some stopping criterion is
satisfied (e.g. number of iterations). Experimental results demonstrate the effectiveness of the proposed approach
in comparison to some well-adopted methods for accelerated pMRI reconstruction from undersampled data.
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1. INTRODUCTION

Slow MRI acquisition is still a barrier in everyday clinical usage. Parallel imaging in MRI (pMRI) and using
a compressed sensing theory in MRI (CS-MRI) are the two possible directions how this speed limitation can
be overcome. In this work we combine both these techniques for the purpose of multi-coil MRI reconstruction
starting from the method which already proved it potential in single coil reconstruction scenario. A matematical
model for a single coil MRI acquisition is given in the following equation

y = Ax + n (1)

where image x ∈ CN has to be recovered from a k-space measurements data y ∈ CM with the present of white
Gaussian noise n ∈ CM .1,2 Matrix A ∈ CM×N , where M � N , denotes the undersampled Fourier operator
formed according to a predefined k-space undersampling scheme e.g. (radial, spiral or random). Estimation of
image x is usually obtained as a solution of the following optimization problem

min
x∈CN

1

2
‖Ax− y‖22 + τφ(x) (2)
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where the 1
2‖Ax− y‖22 is a data fidelity term, φ : CN 7→ R ∪ {−∞,+∞} is a regularization function and

parameter τ which denotes the amount of involved regularization. The pMRI reconstruction problem can be
formulated in image domain (SENSE method from3) or in k-space domain (GRAPPA method from4). In this
work we opt for the maximum likelihood (ML) formulation of the multi-coil reconstruction problem given as

min
x∈CN

Nc∑
i=1

‖yi − FCix‖22 (3)

where matrix F represents Fourier transform and index i indicates the considered coil data yi and its coresspond-
ing spatial sensitivity Ci. If we consider reconstruction from a single coil (i = 1) we can see that equation (3)
simplifies to form similar to the data fidelity term in (2). The difference is in the presence of undersampling in
Fourier domain denoted with operator A instead of F. This means that involving CS in pMRI (pMRI-CS) re-
construction through the sampling of coils data below the Nyquist rate demands some sort of regularization since
now reconstruction problem becomes ill-posed. In this work we extend the single coil reconstruction methods
from5 with MRF regularization for the more general pMRI-CS problem formulation.

2. PARALLEL IMAGING IN MRI

In the pMRI reconstruction the multiple k-space data yi obtained from different reciever antenna coils are utilized
in order to recover the MR image. The method SENSE3 combines the aliased coil images xi, reconstructed using
inverse discrete 2-dimensional Fourier transform (2D-IDFT) from each coil measurements yi (or density corrected
adjoint non-uniform Fourier transform in case of non-Cartesian k-space trajectories), and creates a composite
MR image with the a priori knowledge of coils sensitivities. Although an important issue with SENSE method is
estimation of the coil sensitivity profiles, it is to date the most widespread employed pMRI techinque offered by
many companies. The issue with estimation of sensitivity profiels can be circumvented with GRAPPA method4

which doesn’t require knowledge of the coil sensitivities. It reconstructs the missing k-space data using its
adjacent neighbourhood in k-space from all coils. GRAPPA uses a kernel which defines how the missing k-space
from the ith coil data are interpolated using the acquired k-space data from all of the coils. It is learned from
the low-frequency spectrum of the k-space data of every coil (so-called Auto Calibration Signal (ACS)).6 After
interpolation of the missing k-space data an 2D-IDFT is employed to obtained a xi coil images which are usually
with the Sum of Squares (SoS) techique:

x =

√√√√ Nc∑
i=1

|xi|2 (4)

combined to reconstruct the composite MR image x. An approach for pMRI reconstruction SPIRiT (iterative self-
consistent parallel imaging reconstruction) is coil-by-coil method (reconstruct each coil image separately and then
combine them to obtained the composite MR image) based on GRAPPA method. It synthesis observed missing
k-space point using acquired and reconstructed missing points in its neighborhood from all coils. It achieved
better noise reduction and more accurate reconstruction compared to traditional GRAPPA-like approaches. A
method which bridge the gap between SENSE and GRAPPA, called ESPIRiT uses eigenvalue decomposition
in image space for computation of robust sensitivity maps. It combines advantages of SPIRiT and GRAPPA
methods and restrict solution to a subspace span by coil sensitivity maps.

For the case when the sampling of coils data is below the Nyquist rate a problem of image reconstruction
becomes ill-posed and demands some sort of regularization. A method COMPASS from7 expresses a multi-coil
reconstruction problem as Basis Pursuit (BP) optimization problem with `1 norm as regularization on image
sparse representation. Authors in8,9 proposed method which also combines parallel imaging with partial Fourier
acquistion named LORAKS (LOw-RAnk modelling of local K-Space neighborhoods). It takes into account the
fact that many MRI images have limited spatial support and smoothly varying phase through the constraints in
optimization framework. In the following we propose a new method for the pMRI-CS reconstruction problem,
based on method from.5 We create joint framework for utilization of parallel imaging and compressed sensing
in MRI and compare it with the state-of-the-art methods in the field.



3. PROPOSED METHOD

Let us formulate the pMRI-CS problem as follows:

min
x∈CN

φ(Px) subject to

Nc∑
i=1

‖yi −ACix‖22 ≤ ε (5)

where P stands for sparsyfying transform and ε ≥ 0 denotes a parameter which is usually related to the noise
variance. Since the measurements from the coils yi are undersampled with operator A, some regularization is
necessary in order to find a suitable solution. Problem formulation in (5) has very similar form to the problem
formulation from.5 The difference is that we have measurements gathered from more than one coil, which
usually have overlaping in the region of low frequency components. This means that regularization step in
algorithm for solving (5), has to be applied on image x which is initially (temporary) reconstructed using all coil
measurements. If we introduce notation for augmented measurement vector ya = [yT

1 ,y
T
2 ...y

T
Nc

]T and augmented
vectorized image xa = Tx, where T is formed by stacking Nc times row-wise the indentity matrix IN×N , then
we can reformulate problem from (5) as

min
x∈CN

φ(Px) subject to ‖ya −ABCBxa‖22 ≤ ε (6)

where AB consists of repeated A along the diagonal while CB is formed by stacking coil sensitivity maps Ci

along diagonal. A constrained optimization problem in (6) can be transformed to its unconstrained form, with a
usage of an indicator function,5 which is equivialent to maximum a posteriori probability (MAP) formulation for
estimation of original image x. Obtained unconstrained form of the problem in (6) is then solved by application
of alternating direction method of multipliers (ADMM). Derived ADMM algorithm steps can be divided in two
blocks the first one which refers to obtaining temporary image estimate from all coils measurements using few
iterations (up to 10) of conjugate gradient (CG) and the second block which contains steps for application of
MRF regularizations.

4. EXPERIMENTAL EVALUATION

In the first experiment we compared our proposed method with the COMPASS7 method on a saggital MRI slice
acquired using measurements from 4 coils with 12% of the Nyquist sampling rate on a k-space spiral trajectory.
This leads to an ill-posed problem since the overall number of measurements is less than the Nyquist sampling
rate. The results, shown in Fig. 1, demonstrate the advantage of our regularization based on MRF prior compared
to the `1 norm regularization in the multi-coil reconstruction scenario. Although both methods used the same
coil sensitivity maps, the proposed approach yields an improvement in the peak signal to noise ration (PSNR)
of more than 6dB. The reconstructed image is much sharper and has preserved much more original details, as it
also evident from the diference image.

The second experiment was evaluated on data publicly available on http://www.eecs.berkeley.edu/~mlustig

which is used in the experimental evaluation of methods ESPIRIT10 and SPIRIT.11 The lower sampling rate is
obtained by decimating the data with acceleration factor greater than 1. We use measurements undersampled
with acceleration factor 3 from 4 virtual coils obtained from 8 coils using SVD coil compression technique. This
experimental setup is the same as the one used in.10,11 In the proposed method the coil sensitivity maps are
estimated from undersampled measurements using approach from.12 From the presented results in Fig. 2 we see
that proposed method outperforms all compared methods. An image artifacts caused by undersampling trajec-
tory are better suppresed in image reconstructed by proposed method than in images recovered by compared
methods.

In the last experiment we compare our method with the P-LORAKS and SENSE-LORAKS methods.8,9

We use four-channel T1 weighted brain image from9 with provided coil sensitivity profiles. Reconstruction
is conducted using 14% of measurements from each coil sampled using two different trajectories random and
uniform. A golden standard image is created using all measurements from four coils with the SoS techique.
Achieved reconstruction performances are given in Table. 1. Reconstruction obtained with the proposed method
outperformed compared methods. Visual comparison is presented in Fig. 3 and in Fig. 4 for the uniform and

http://www.eecs.berkeley.edu/~mlustig


Figure 1. Reconstruction of sagittal slice from 4 coils with 12% of measurements per coil sampled with spiral trajectory.
First row: Reconstructed images with COMPAS7 (27.75 dB) and proposed method (35.42 dB) method respectively.
Second row: Coresponding reconstruction errors.

random sampling trajectory respectively. We can see in reconstructed image with the proposed methods a much
smaller amount of noise present compared to the reconstructions obtained by P-LORAKS and SENSE-LORAKS.

Table 1. Reconstruction of image from9 using undersampled measurements obtained from 4 coils with uniform / random
trajectory. A comparison of P-LORACS and SENSE-LORAKS methods with the proposed one is given in terms of
structure similarity measure (SSIM) and normalized root-mean-squared-error (NRMSE).

Methods SSIM NRMSE

P-LORAKS 0.88 / 0.92 0.07 / 0.06

SENSE-LORAKS 0.83 / 0.87 0.08 / 0.07

Proposed method 0.95 / 0.96 0.04 / 0.03

5. CONCLUSION

In this work we extend our recent approach for MRF based MRI reconstruction to deal with more general multi-
coil acquisitions. The extension is based on (MAP) signal estimation from undersampled multi-coil measurements
which is conducted using ADMM. The derived algorithm contains block of steps regarding temporary MRI
image estimate and block of steps which refer to MRF regularization which alternate one after the other through



Figure 2. Reconstruction of phantom test image using measurements sampled with acceleration factor 3 from 4 virtual
coils. First column: Reconstructed images with SPIRIT (32.22 dB), ESPIRIT (31.32 dB) and proposed method (32.64
dB) respectively. Second column: Coresponding reconstruction errors.

iterations until some stoping criterion is satisfied. From the experemental results we see that proposed method
outperforms some well-adopted method in multi-coil reconstruction scenario.



Figure 3. Reconstruction of T1 weighted brain image from9 form uniformly sampled measurements from 4 coils. First col-
umn: Reconstructed images with P-LORAKS, SENSE-LORAKS and proposed method respectively. Second column:
Coresponding reconstruction errors.



Figure 4. Reconstruction of T1 weighted brain image from9 form randomly sampled measurements from 4 coils. First col-
umn: Reconstructed images with P-LORAKS, SENSE-LORAKS and proposed method respectively. Second column:
Coresponding reconstruction errors.
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