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ABSTRACT

Sparse subspace clustering (SSC) has been widely applied
in remote sensing demonstrating excellent performance. Re-
cent extensions incorporate spatial information, typically via
smoothness-enforcing regularization. We propose an alter-
native approach: a joint sparsity SSC model, where pixels
within a local region are enforced to select a common set
of samples in the subspace-sparse representation. The cor-
responding optimization problem is solved by the alternating
direction method of multipliers (ADMM). Experimental re-
sults on real data show a significant improvement over SSC
and related state-of-the-art methods.

Index Terms— Hyperspectral images, joint sparsity,
sparse subspace clustering, super-pixels segmentation.

1. INTRODUCTION

Hyperspectral images (HSIs), captured with hundreds of
spectral bands offer richer information about the imaged ob-
jects than the multispectral images. Therefore, HSIs have
become a powerful and valuable tool for various applica-
tions including defense and security [1], agriculture [2] and
environmental monitoring [3]. When training samples are
unavailable, clustering of a HSI, known as the problem of
separating the pixels into different groups where the pixels in
the same group are more similar to each other than to those
in other groups, is usually regarded as a fundamental step
in all these applications. However, due to the large spectral
variability and complex structure, clustering of HSIs is being
a very challenging task [4].

Traditional clustering methods such as k-means [5], fuzzy
c-means (FCM) [6] and generalized principal component
analysis (GPCA) [7] have been widely used in remote sens-
ing. However, directly applying such methods on HSIs often
produces the clustering maps with a large amount of impulse
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noise, due to the limited discriminative information in spec-
tral domain, complexity of ground objects and large diversity
of spectral signatures in the same class [8].

In recent years, sparse subspace clustering (SSC) [9] has
emerged as an effective method for HSI clustering, providing
the current state-of-the-art performance [4, 10-12]. SSC re-
lies on a self-representation model where the input matrix is
employed as a dictionary and states that for a given sample in
a union of subspaces, there exist a sparse representation vec-
tor whose non-zero entries correspond to the samples in the
same subspace [9], named as subspace-sparse representation.
As the subspace-sparse representation of the input matrix re-
flects the memberships of each sample, it is employed to build
a similarity matrix which is further applied within the spectral
clustering framework [13].

The performance of SSC is limited by the fact that it treats
each pixel independently without considering the spatial dis-
tribution of data points. A number of approaches have been
proposed to exploit spatial information in HSIs and achieved
a significant improvement over SSC [4, 11, 12, 14]. The ap-
proach of [4] imposes a smoothness constraint on the neigh-
bouring sparse coefficients within square patches. Another
{o-norm based spatial regularizer acting on the coefficients
of horizontally and vrtically adjacent pixels was proposed in
[11] to promote piecewise smoothness of sparse coefficients.
An object-oriented SSC method was proposed in [14], which
extracts spectral-spatial features in each segmented object by
a reweighted mass center learning method. A kernel version
of SSC incorporating with a max pooling of coefficient matrix
was presented in [12].

From another perspective, we propose a joint sparsity
based SSC (JSSC) model with the purpose of building a
more accurate similarity matrix with the inherent spatial in-
formation of HSI. Specifically, we enforce the pixels in each
homogeneous region to share a common set of samples in the
subspace-sparse representation by a joint sparsity constraint.
The homogeneous regions are obtained by a super-pixel seg-
mentation technique, which is able to segment HSIs into a
number of non-overlapping super-pixels with an adaptive



shape and size. Each super-pixel is typically comprised of
the same material which means the spectral signatures in one
super-pixel are similar to each other. We assume that those
spectral signatures lie in the same subspace. In order to build
such a relationship, we integrate a joint sparsity constraint
for each super-pixel with the SSC model, which greatly pro-
motes the graph connectivity. In order to solve the resulting
optimization problem, we derive an iterative solver based on
the alternating direction method of multipliers (ADMM). The
proposed method was validated on real data. Experimental
results demonstrate the effectiveness of JSSC with a signifi-
cant performance improvement over the existing methods in
terms of overall accuracy.

The rest of this paper is organized as follows. Section 2
briefly introduces the SSC model. Section 3 describes the pro-
posed JSSC model and the optimization algorithm. Section 4
presents the experimental results on real data and Section 5
concludes the paper.

2. SSC MODEL

We assume the size of a 3-D HSIis M x N x B, where M, N
represents the height and width of the data respectively and
B denotes the number of bands. The data is first flattened to
a 2-D matrix Y € RBXMN where each column is a spec-
tral signature. With the assumption that each pixel in a union
of subspaces can be sparsely represented as a linear or affine
combination of the others from the same subspace [9, 15], the
sparse matrix C € RMN*XMN of Y can be derived by:

. A
argémHIICIh +51Y - YCl7

s.t. diag(C) =0, 1TC =17, 6))

where [|C||1 = >, >, |Cy;| and A is a parameter which con-
trols the balance between the data representation error and the
matrix sparsity. The first constraint is used to avoid the triv-
ial solution of representing a sample by itself and the second
constraint indicates the case of affine subspace.

The model in (1) can be solved by ADMM [16]. The non-
zero entries of C specify which data points will be selected
in the subspace-sparse representation. Therefore, matrix C
reflects the relationships between each pixel in Y. Then we
can obtain a similarity matrix W € RMNXMN py

W = |C| +|C|. 2

With spectral graph theory, the clustering results can be
achieved by applying k-means to a subset of eigenvectors of
the Laplacian matrix L = D — W where D € RMNXMN jq
a diagonal matrix with D;; = > 5 Wij [13].

3. PROPOSED METHOD

SSC treats each pixel of Y independently in the subspace-
sparse representation. Various factors such as limited dis-

criminative information in spectral domain, noise and large
diversity of spectral signatures belonging to the same class in
HSIs [4], affect the construction of the similarity matrix, de-
teriorating thereby spectral clustering performance. In prac-
tice, pixel values are spatially correlated, which means that
the pixels within a local region typically belong to the same
class [17-20]. Here, we exploit the spatial information with a
joint sparsity constraint to preserve the dependencies between
HSI pixels in a local region.

3.1. JSSC model

Suppose that we segment a HSI into p non-overlapping super-
pixels [21]. Each super-pixel is regarded as a homogeneous
region belonging to a particular class. We assume that each
pixel within the same super-pixel selects the same set of pixels
in the data representation but with different coefficients. The
proposed JSSC model can be described as follows:
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where C; € RMN*"i jg a sparse matrix that corresponds to
the n; pixels in i-th super-pixel; ||Cil|1,2 is the ¢1 2 norm de-
fined as Zjvijf l|c}]|2. Here ¢! is the j-th row of C; and w; is
a normalized weight defined as:
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to make the joint sparsity constraint in each super-pixel bal-
anced. The first term with £; 5 norm enforces the pixels in
one super-pixel to select a common set of samples in the data
representation, which promotes the connectivity of the graph
within the local region. This model can be efficiently solved
by ADMM which will be described in detail next.

Once we obtain the sparse matrix C, the similarity matrix
can be calculated by (2) and further applied in the spectral
clustering method to yield the clustering results in the same
way as SSC.

3.2. Optimization method

In this section we give the optimization method in detail based
on the ADMM. We first introduce an auxiliary variable A and
reformulate the problem (3) equivalently as:
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s.t. diag(C) =0, 1TC =17, C=A (5)



The augmented Lagrangian function f,(C,A;Y1,Y2,Y3)
can be derived as follows:

p
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where Y1,Y5 and Y3 are the Lagrange multipliers, and p is
a weighting parameter. Due to the separable structure of f,,,
we can solve each of C and A separately by fixing one when
solving another. Different steps are described as following.
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3.2.1. Update C

The objective function with respect to C is given by:
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By setting the first-order derivative to zero, a closed form so-
lution in a column-wise manner is obtained as
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where 41, € R,ys, € RMY and y3, € R are the the i-th
element or vector of Y1, Yo and Y3, respectively.
3.2.2. Update A
The objective function with respect to A is:
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which can be separated into p sub-problems of the form
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where Yo, € RMN*"i j5 a matrix with each column indexed
by the pixels in i-th super-pixel. This problem can be solved
by a shrinkage operator [22, 23].

3.2.3. Update other parameters

The next step is to update the multipliers Y1, Yo and p, which
can be achieved by

Yt =Yl 4 pFaTek —1T) (11)
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Table 1. Clustering accuracy for Indian Pines.

Class name | FCM k-means SSC L2-SSC JSSC
Corn-notill | 6239  69.85  60.00  61.09  74.03
Grass-trees | 94.66 53.84 98.36 99.32 100
Soybean- |4 |3 0 7691 7937  86.20
notill
Soybean- | (303 5759 5068 5489 87.79
mintill
OA(%) | 6534  50.17 6511 6778 86.40
K 05118 02833  0.5296 0.5629  0.8069

- Unlabeled

Corn-notill

- Grass-trees
- Soybean-notill

B soybean-mintill

(e) OA=65.11

(f) OA=67.78 (g) OA=86.40

Fig. 1. Indian Pines image. (a) False color image, (b) Ground
truth, and Clustering maps of (¢) FCM (d) k-means. (e) SSC.
(f) L2-SSC. (g) JSSC.

where p > 1 is a parameter that controls the convergence
speed of the optimization. The three updating steps are exe-
cuted iteratively until the stop criterion is satisfied.

4. EXPERIMENTAL RESULTS AND ANALYSIS

Experiments are conducted on two real HSIs to validate the
performance of the proposed method. The results of two
widely used clustering methods FCM [6] and k-means [5],
and state-of-the-art methods SSC [9] and L2-SSC [11] are re-
ported for comparison. Two common performance measures:
overall accuracy (OA) and Kappa coefficient () are used for
quantitative assessment of the clustering performances. The
optimal A of JSSC is set as 10 experimentally.

4.1. Experiments on real data

Experiment 1 was conducted on the Indian Pines, which was
acquired by the Airborne/Visible Infrared Imaging Spectrom-
eter (AVIRIS) sensors from the North-western Indiana in June
1992. A subimage with the size of 85 x 70 is cut as the test
data as it is done in [4], which has in total 4 classes. The false
color image and ground truth are shown in Fig. 1 (a) and (b).
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Fig. 2. Grid search of \ and p for JSSC (the A-axis is in log1¢
and p,, is defined by p/M/N x 10%). Top: Indian Pines;
Bottom: Pavia University.

Table 2. Clustering accuracy for Pavia University.

Class name | FCM  k-means SSC L2-SSC JSSC
Asphalt 0 0 6.12 0 11.76
Meadows 86.33 78.91 57.55 94.27 99.35
Trees 60.32 66.67 95.24 84.13 98.41
Metal 61.37 58.63 98.10 97.34 99.77
Bare Soil 40.72 44.43 39.12 51.78 68.50
Bitumen 100 100 98.49 97.21 99.07

Brick 1.06 0 0 39.36 0
Shadows 100 100 82.55 99.72 89.02
OA(%) 58.53 58.60 61.51 71.61 79.35

K 0.5032 0.5 0.5378 0.6554 0.7404

The parameters for each reference method were carefully
tuned and the best results are reported in Table 1 and Fig.
1. The parameters of the proposed method were optimized
using grid search as shown in Fig. 2, where we vary p in
the range of {10, 20, 40, 80,160, 320} and X in the range of
{1074,1073,1072,1071,10°, 10, 10%,10%,10%}. X = 10
and p = 10 are selected as the optimal parameters for Indian
Pines. The results in Table 1 demonstrate that JSSC achieves
the best OA and « with a significant improvement over others.
In comparison with SSC and L2-SSC, JSSC gets 21.29% and
18.62% enhancements of OA, respectively.

Experiment 2 was conducted on an urban HSI: Pavia Uni-
versity, which was acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor during a flight cam-
paign over Pavia, Northern Italy. An image with size of 200 x
100 is extracted as the test data that includes 8 classes in total.

Unlabeled
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Mecadows
Trees
Metal
Bare Soil

Bitumen

- o Brick
i ¥

o
L ek mon B : T
(e) OA=61.51 (f) OA=71.61 (g) OA=79.35

Fig. 3. Pavia University image. (a) False color image, (b)
Ground truth, and Clustering maps of (c) FCM (d) k-means.
(e) SSC. (f) L2-SSC. (g) JSSC.

The false color image and ground truth can be found in Fig.
3 (a) and (b). The OA with respect to A and p are shown in
Fig. 2. We set A = 10 and p = 80 as the optimal param-
eters. The results are reported in Table 2 and Fig. 3. JSSC
yields again the best performance in terms of OA and &, with
17.84% and 7.74% improvement of OA over SSC and L2-
SSC, respectively. Fig. 3 shows that the clustering results of
JSSC are more accurate and smoother than others with joint
sparsity constraint in the local regions, which leads to a more
precise construction of the similarity matrix. Moreover, re-
sults in Fig. 2 indicate a stable and good performance of JSSC
with A = 10 and p,, € [17, 67| for both data.

5. CONCLUSION

In this paper, we proposed a joint sparsity based sparse sub-
space clustering for hyperspectral images. The local infor-
mation of HSI is first extracted by a super-pixel segmentation
technique and further employed in the subspace-sparse repre-
sentation, which greatly promotes the connectivity of the sim-
ilarity matrix, leading to a superior clustering performance.
An optimization algorithm based on ADMM is also derived
for the resulting JSSC model. Experimental results on two
real HSIs reveal a significant improvement over the state-of-
the-art methods, which confirms the effectiveness of the pro-
posed model.
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