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Abstract— Automatic paint loss detection is desired for sup-
porting conservation/restoration treatments of paintings. Firstly,
producing condition reports with appropriate damage surveys re-
quires now a lot of manual work from the restorers. Secondly,
paint losses have to be accurately detected prior to running virtual
restoration. Large variation of paint loss in size, shape, intensity
as well as varying and complex background make this problem
a challenging task. We develop a multimodal paint loss detection
method based on sparse representation, which incorporates the in-
formation from multiple imaging modalities in a high-dimensional
kernel feature space and makes use of the spatial context. To cope
with unreliable labelled data, we introduce a majority voting ap-
proach. Experimental results with the data set of the Ghent Altar-
piece demonstrate the effectiveness of the proposed approach.

1 Introduction
Digital painting analysis has been a rapidly growing field, at-
tracting a lot of interest recently in the signal processing com-
munity [1]. The tasks such as characterization of painting style
and forgery detection [2, 3], crack detection [4], authorship
identification [5], classification of ancient coins [6], canvases
[7] and portraits [8], removal of canvas patterns [9] and inpaint-
ing [10, 11] have demonstrated the great potential of digital im-
age processing techniques.

Loss of paint is typically caused by abrasion and mechani-
cal fracture. In old oil paintings, paint losses were often over-
painted during various restoration campaigns. Modern conser-
vation treatments typically require not only removal of old var-
nish, but also removal of old retouches and overpaint, which
may reveal paint losses underneath [13]. Detection of such
paint loss areas is of great importance to painting conservators
for estimating the extent of the damaged area, which needs to
be maintained for documenting purposes, but also as a crucial
step for virtual inpainting to provide simulations for the actual
restoration. Despite the importance of automatic paint loss de-
tection, this problem has received little attention in the liter-
ature so far. Nowadays, paintings are typically scanned with
a multitude of imaging modalities. During restoration cam-
paigns, additional scans are typically made at various stages
of the rest oration treatment. Examples are shown in Fig. 1.
(a) - (e). We want to exploit such multi-modal information to
detect paint losses more reliably. Our approach will be based
on constructing (training) a dictionary of prototypes that can be
used to effectively, i.e. sparsely, represent paint loss samples.

Sparse Representation Classification (SRC) [14] proved to
be effective in various image classification tasks, especially in
computer vision and remote sensing. It assumes that each test

sample can be sparsely represented as a linear combination of
atoms from a dictionary which is constructed by the selected
training samples. Directly applying SRC to our task results
in poor performance due to the large variability of paint loss,
and complex background. To cope with these challenges, it is
necessary to incorporate appropriately both spatial context and
inter-modal dependencies. Our previous work employed sev-
eral spatial features within local patches and achieved a good
detection performance [13]. However, hand-crafting such fea-
tures leaves much choice and would involve ad-hoc choices and
a lot of manual tuning. Therefore, in this paper we propose a
multimodal paint loss detection method based on sparse rep-
resentation that directly exploits the information from multiple
imaging modalities in the kernel feature space and integrates
the spatial information of context into the model.

2 The proposed method
The multiple imaging acquisitions are typically captured via
different imaging devices and often have different resolutions.
Thus image alignment for all the modalities, which is also
called image registration, should be first completed. Here we
use a joint photometric and geometric image registration tech-
nique [15] to register these images. We concatenate the pixels
within a square window in the registered data cube into a vec-
tor. By using a kernel function, the vector is projected to a
high-dimensional kernel feature space. Next to the two classes:
‘paint loss’ and ‘background’, we specify a third class ‘crack’,
which is by art restorers treated differently than larger portions
of missing paint called paint loss.

The modified SRC model with respect to sparse coefficients
of x ∈ Rm in the projected kernel feature space is

α̂ = argmin
α

‖φ(x)−φ(D)α‖2 s.t. ‖α‖0 < K0, (1)

where φ : Rm → F ⊂ Rm̂ is an implicit mapping function
that projects x to a higher dimensional space; φ(D) = [φ(d1),
φ(d2), ...,φ(dN)] is the dictionary in the projected space and
di ∈ Rm (i = 1,2, ...,N) are the training samples. Once the
sparse coefficients are calculated, the class-specific residuals
can be computed by

ri(φ(x)) = ‖φ(x)−φ(Di)α i‖2

= 〈φ(x)−φ(Di)α i, φ(x)−φ(Di)α i〉1/2

= (κ(x,x)−2α
T
i KDi +α

T
i KDiDiα i)

1/2, (2)

where κ : Rm × Rm → R is a kernel function defined by
κ(xi,xj) = 〈φ(xi),φ(xj)〉; KDi ∈RNi is a vector associated with



Figure 1: Top row: multiple imaging scans, which include (a) macrophotography before cleaning, (b) macrophotography after cleaning, (c) infrared macropho-
tography before cleaning, (d) infrared reflectography after cleaning and (e) X-radiography before cleaning. Bottom row: (f) Annotated patch 1 used for training,
(g) detection map obtained by applying SRC, (h) detection map obtained by the proposed method, (i) inpainting results using the method of [12] with the SRC
map from (g) and (j) inpainting result with the map obtained by our method.

class i in KD ∈RN = [κ(di,x), · · · ,κ(dN,x)]T ; KDiDi ∈RNi×Ni

is a matrix corresponding to class i in KDD ∈RN×N with entries
KDD(i, j) = κ(di,dj) and α i is a vector associated with class i
in α . Then we label the class of a test sample by

class(x) = argmin
i=1,2,3

ri(φ(x)). (3)

We denote by Mapcrack the obtained binary crack map. By
collecting all the residuals ri(φ(xi)), we form the residual cube.
Here we denote by R ∈ RM×N×3 the reshaped residual cube,
where each layer corresponds to one class.

Typically, paint losses will occupy an area larger than a sin-
gle pixel. Hence, pixels within a relatively small neighbour-
hood are likely to belong to the same class and share sim-
ilar sparse representation coefficients. Therefore we apply a
smoothing filter to each layer of the residual cube to make the
coefficients of neighbouring pixels similar to each other. In par-
ticular, we use for this purpose a weighted least square (WLS)
[16] filter. The binary paint loss map, Map′ , can be calculated
by selecting the smallest smoothed residual. This smoothing
has an adverse effect on thin cracks, which tend to be assigned
to paint loss (or to background). To solve this, we use the crack
map Mapcrack generated prior to smoothing, as follows

Map = Map
′ �Mapcrack. (4)

The training samples in D of (1) play an important role as
they are used to supervise the model to generate the corre-
sponding characteristics of paint loss and background. How-
ever, for most cases, compared with the samples of background,
the number of paint loss samples is rather small. In addition,
accurate annotation on a pixel level is a highly challenging task,
which may lead to mislabelled samples. Errors can be caused

by blurring in low-resolution images, large transitions and low
contrast between target and background, noise, artefacts and so
on. To cope with this problem, we suggest a majority voting
strategy:

identity(x j) = argmax
c

pc
j (5)

where the fraction pc
j =Nc

j/K is an empirical probability for the
pixel j to belong to the class c. K is the number of simulations
and Nc

j the number of times that pixel j was assigned to class
c ∈ {Paint loss,Other}.

3 Results and discussion

We illustrate the detection result on a part of the panel prophet
Zachary, image patch 3 in Fig. 1 (b). The training samples are
from other two image patches in Fig. 1 (b), which were an-
notated by a painting conservator. Fig. 1 (f) shows one of the
annotated image patchs. We set the number of training sam-
ples in each class to 80 and K to 10. The imaging modalities
in Fig. 1 (a), (b) and (c) are used. Fig. 1 (h) and (j) illustrate
paint loss detection results of the proposed approach and virtual
inpainting using the detected mask and the inpainting method
from [12]. For comparison, we also show the paint loss map in
Fig. 1 (g) that is produced by applying the original SRC with
multimodal images and majority voting. The corresponding in-
painting result is reported in Fig. 1 (i). Obviously the proposed
method reduces significantly false detections. Consequently,
we avoid previous excessive oversmoothing and undesired re-
moval of cracks during virtual restoration.
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