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Sparse recovery in Magnetic Resonance Imaging
with a Markov Random Field Prior
Marko Panić, Jan Aelterman, Vladimir Crnojević, and Aleksandra Pižurica

Abstract—Recent research in compressed sensing of magnetic
resonance imaging (CS-MRI) emphasizes the importance of
modelling structured sparsity, either in the acquisition or in the
reconstruction stages. Subband coefficients of typical images show
certain structural patterns, which can be viewed in terms of fixed
groups (like wavelet trees) or statistically (certain configurations
are more likely than others). Wavelet tree models have already
demonstrated excellent performance in MRI recovery from
partial data. However, much less attention has been given in
CS-MRI to modelling statistically spatial clustering of subband
data, although the potentials of such models have been indicated.
In this work, we propose a practical CS-MRI reconstruction
algorithm making use of a Markov Random Field prior model
for spatial clustering of subband coefficients and an efficient
optimization approach based on proximal splitting. The results
demonstrate an improved reconstruction performance compared
to both standard CS-MRI methods and recent related methods.

Index Terms—MRI, compressed sensing, Markov Random
Field, structured sparsity, alternating minimization.

I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) with its inher-
ently slow data acquisition process [1]–[3] calls for

development of smart undersampling schemes [4], [5] and the
corresponding reconstruction algorithms. Compressed Sensing
(CS) [6], [7], demonstrated potential to improve the acquisition
speed in MRI and since the seminal work of Lustig and col-
laborators [2], [3] on CS-MRI, a number of studies including
[8]–[17], have addressed MRI recovery from partial data.

In a CS-MRI setup, the acquired k-space measurements y ∈
CM of an ideal image x ∈ CN are

y = Ax + n (1)

where M � N , n ∈ CM is white Gaussian noise, and
A ∈ CM×N denotes the undersampled Fourier operator
[2], [3]. Estimation of x from measurements y is an ill-
posed linear inverse problem, because the measurement matrix
A is singular and/or very ill conditioned. Since there is
no unique solution for the underdetermined system in (1),
additional information about x is typically employed in the
form of regularization to stabilize and guide the search towards
relevant solutions. MRI images are naturally compressible in
an appropriate transform domain (such as wavelet or related
sparsyfing transform) [2], meaning that their sorted transform
coefficients exhibit a power-law decay [18]. Let θθθ = Px ∈ CD
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denote transform coefficients with P ∈ CD×N the sparsyfing
transform. A common analysis formulation of the estimator
for x, given (1), is [19]:

min
x∈CN

φ(Px) subject to ‖Ax− y‖22 ≤ ε (2)

where φ : CN 7→ R ∪ {−∞,+∞} is a regularization
function and ε ≥ 0 a parameter related to the noise variance.
Choosing φ as `1 norm: φ(x) = ‖x‖1 leads to the basis
pursuit denoising problem [20]. In CS-MRI, φ is typically
the `1 norm, total variation (TV) norm in the image domain
(P = I) or a linear combination of the two [2], [3], [9],
[14]. Various reported methods focus on different aspects of
this problem, such as improved iterative solvers [9], [11],
the use of efficient sparsifying transforms such as shearlets
and curvelets [12], [21]–[24] or trained dictionaries [25]–[27],
and adaptive sampling schemes [5], [16], [28]. Recent work
demonstrates benefits of encoding structure of the sparse,
information bearing coefficients, either in the acquisition [28]
or in the reconstruction [13], [17] stages. Subband coefficients
of natural images, including MRI, obey certain structure,
which can be viewed in terms of fixed groups (like wavelet
trees) or statistically (certain clustering configuration are more
likely than others). The wavelet-tree approach has already
demonstrated an excellent performance in MRI reconstruction
[17].

Much less attention has been devoted to modelling intra-
scale coefficient dependencies, such as spatial clustering of
subband data in CS-MRI. The so-called Lattice Matching
Pursuit (LaMP) algorithm of [29], which models the support
configurations with a Markov Random Field (MRF) prior,
has demonstrated superior performances in background sub-
traction. LaMP was derived for images that are sparse in
the canonical domain, and hence not directly applicable to
most of the MRI images. By analogy with LaMP, some of us
introduced earlier an algorithm called Lattice Split Bregman
(LaSB) [30]. LaSB combines an MRF prior for the support of
important subband coefficients with an augmented Lagrangian
approach [31]. Although the presentation in [30] was drafted
mainly as a proof of concept, without any elaborate analysis,
the results demonstrated great potential for rapid MRI imaging
which deserves to be studied more deeply. Motivated by these
encouraging results, we develop and evaluate thoroughly an
efficient MRF-based CS-MRI method.

The main contributions of this paper are: (1) We develop an
efficient method for MRI reconstruction from partial Fourier
data making use of a MRF prior for the support configurations
of sparse coefficients. To our knowledge, this is the first
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elaborate study on CS-MRI with MRF priors, although the
potentials of such an approach were earlier demonstrated with
a heuristic method LaSB in [30]. Compared to LaSB, the new
method employs a different optimization technique, a more
general MRF prior and achieves consistently better results; (2)
We extend a constrained split augmented Lagrangian shrinkage
algorithm (C-SALSA) of [19] with an MRF prior. In particular,
we introduce a new regularization step, which admits support
configurations favoured by the prior model. The resulting
algorithm, coined LaSAL outperforms consistently C-SALSA
too; (3) We develop a variant of the proposed method with
compound regularization (MRF prior + TV norm), which
further improves the reconstruction performance. A thor-
ough evaluation is performed on MRI data sets acquired on
Cartesian and radial grids, for which different undersampling
strategies are simulated. For the radially acquired k-space
data we perform undersampling based on golden ratio profile
spacing. MRF-based CS-MRI methods demonstrate a clear
improvement compared to alternative methods.

A preliminary version of parts of this work has been
reported in a conference paper [32]. There is a substantial
difference between this paper and the conference version. The
presentation of the overall approach in the conference version
is much less elaborate, the best performing algorithm with
compound regularization was not presented at all, and the
experimental evaluation was rather limited (to two MRI images
only, without having access to original k-space data).

The paper is organized as follows: Section II reviews related
work and introduces some concepts that we use later on. A
general framework for MRF-based CS-MRI is in Section III,
together with the concrete prior and conditional models and
inference method that we employ. The proposed LaSAL algo-
rithm and its variant with the compound prior are presented
in Section IV. The experimental results are given in Section
V and Section VI concludes the paper.

II. RELATED WORK

A. Reconstruction algorithms
Recent CS-MRI methods typically employ iterative re-

construction algorithms, both greedy and optimization-based.
Well-known greedy methods include compressive sampling
matching pursuit (CoSaMP) and subspace pursuit (SP) [33],
[34], iterative hard thresholding (IHT) [10] and its extensions
[35], [36], [15]. Methods employing convex non-smooth regu-
larizers (TV and `1) typically consider, instead of the original
problem in (2), the unconstrained problem [19]:

min
x∈CN

φ(Px) +
µ

2
‖Ax− y‖22 (3)

with µ > 0. Many state-of-the-art methods for solving this
problem belong to the iterative soft-thresholding (IST) [37]
algorithms and their variants TwIST [38], FISTA [39], and
SpaRSA [40]. The solution of (3) is usually defined in terms
of the Moreau proximal mapping of φ [41]

Ψφ(u;µ) = argmin
x∈CN

φ(x) +
µ

2
‖x− u‖22 (4)

For φ(x) = ‖x‖1, this operator is component-wise soft-
thresholding Ψ`1(u;µ) = soft(u, 1/µ), which replaces each

component of u by sign(u)max{|u| − 1/µ, 0}. For the TV
norm: ‖x‖TV=

∑
i

∑
j

√
|xi+1,j − xi,j |2 + |xi,j+1 − xi,j |2,

ΨTV(u;µ) is computed using Chambolle’s algorithm [42].
Among the methods that employ extensions of wavelets as

sparsifying transforms are [12], [22], [23]. A recent method
method pFISTA [24] approximately solves the problem in (3)
with φ(Px) = ‖Px‖1 where P is a tight-frame. Other recent
approaches employ dictionary learning [25], [27] or patch-
based nonlocal operators (PANO) [26].

Although the formulation (3) is equivalent to (2) for the
appropriate µ, and usually easier to solve, the formulation (2)
has an important advantage: the parameter ε in (2) has a clear
interpretation in terms of the noise level, while setting the
correct µ in (3) is not evident in practice and requires a clever
algorithm to adjust it properly. Motivated by this, the authors in
[19] proposed an efficient algorithm for solving the constrained
problem (2) directly. Their method, named constrained Split
Augmented Lagrangian Shrinkage Algorithm (C-SALSA), has
proved excellent performance in MRI-reconstruction. There-
fore we decide to incorporate our MRF-based prior into this
solver, as explained later, in Section IV.

B. Modelling structured sparsity

There are two principal approaches to modelling structured
sparsity (structure of the sparse image coefficients): (1) in
the acquisition stage, through an improved design of the
sampling trajectories, and (2) in the recovery phase, through an
improved regularization of the inverse problem. The first ap-
proach is advocated in [4], [16], [28] where efficient multilevel
sampling schemes are constructed, showing a great potential
over the standard sampling strategies. We focus on the second
approach — modelling signal structure in the recovery phase.

Recent work has shown benefits of using wavelet-tree
structure in the MRI recovery [13], [17]. This approach models
the dependencies among wavelet coefficients on a quadtree
structure through an additional group sparsity regularization
term. Other related approaches employ Hidden Markov Tree
(HMT) models [43], [44], [45]. Less attention has been
devoted to modelling within-band (intrascale) dependencies
in image recovery from compressive measurements. A rep-
resentative of this approach is the LaMP (Lattice Matching
Pursuit) algorithm [29], where a MRF prior models images
that are canonically sparse (in applications such as background
subtraction and moving object detection). A related algorithm
[30] applied an MRF prior to subband data in CS-MRI
recovery. Motivated by the encouraging results of [30], we
build further on this approach and present a solid motivation,
elaborate analysis and thorough evaluation, while previously
only a proof of concept was given. Moreover using a dif-
ferent underlying optimization method and improved MRF
modelling, we improve the performance over [30], and we
also demonstrate, for the first time, potential benefits over the
competing tree-structured approach.

III. MRF-BASED STRUCTURE SPARSITY MODEL

Let PD×N denote some sparsifying transform which yields
coefficients θθθ = Px = {θ1, ..., θD}. The coefficient θi is
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Fig. 1: A graphical representation of variables, operators and their
connections in our model. Left: Hidden labels si, attached to each
subband coefficient θi. Links among neighboring si indicate their
statistical dependencies, encoded in a MRF. Right: A graphical model
showing all the involved variables, measurements and operators in our
problem.

significant if its magnitude is above a certain threshold. We
assign a hidden label si ∈ {0, 1} to θi to mark its significance:
si = 1 if θi is significant and si = 0 otherwise. A particular
configuration s = {s1, ..., sD} is assumed to be a realization of
a Markov Random Field S = {S1, ..., SD}. Fig. 1 illustrates
this whole setup. Note that all measurements gathered in y
are obtained as linear combinations of all N pixel intensities
in x through the operator A. The sparse coefficients θθθ result
from applying the analysis operator P to x. Therefore, each
coefficient θi is a linear combination of all pixel values,
via P. Conversely, each pixel value xi is obtained as a
linear combination of all coefficients θi through the synthesis
operator PH .

A. Recovery problem with structured sparsity

Let us now instantiate a general recovery problem as (2), by
replacing the arbitrary regularizer φ by our structured sparsity
model. We use similar notation to [45]. Given the index set
N = {1, 2, 3, ..., D}, let supp(θθθ) = {i ∈ N : θi 6= 0} denote
the support of θθθ. Further on, for S ⊆ N , θθθ[S] denotes the
elements of θθθ indexed by S, and S̄ is the complement of S
with respect to N . Denote the index set corresponding to the
support s by Ωs = {i ∈ N : si = 1} and define a model for
θθθ that conforms to the particular support configuration s as

Ms = {θθθ ∈ CD : supp(θθθ) = Ωs}. (5)

The objective of our approach is

min
x∈CN

‖Ax− y‖22 subject to Px ∈Mŝ (6)

where ŝ is the estimate of the most likely spatial support
of θθθ = Px. The constraint Px ∈ Mŝ can be equivalently
replaced by supp(Px) = Ωŝ. In solving this problem, we shall
involve a simpler one

min
γγγ∈CD

‖γγγ− θθθ‖22 subject to γγγ ∈Mŝ (7)

for which the solution is γ̂γγH [Ωŝ] = θθθ[Ωŝ] and γ̂γγH [Ω̄ŝ] = 0.
Since si ∈ {0, 1}, this solution can be written as the Hadamard
product γ̂γγH [Ωŝ] = θθθ ◦ ŝ.

We search for the most likely support ŝ by applying the
maximum a posteriori probability (MAP) criterion:

ŝ = argmax
s

PS|θθθ(s | θθθ) = argmax
s

pθθθ|S(θθθ | s)PS(s) (8)

In practice, we shall re-estimate ŝ in each iteration of
the complete recovery algorithm, starting from the current
(temporary) estimate of the coefficient vector θθθ.

B. MRF prior

The global probability PS(s) of a MRF is a Gibbs distribu-
tion [46], [47]

PS(s) =
1

Z
e−H(s)/T (9)

where the energy H(s) is a sum of clique potentials over
all possible cliques: H(s) =

∑
c∈C Vc(s). The normalizing

constant Z =
∑

s∈L e
−H(s)/T is called the partition function

and the temperature T controls the peaking in the probability
density [46]. We use the Ising model as in [30], where

H(s) =
∑
i

V1(si) +
∑
〈i,j〉∈C

V2(si, sj) (10)

with the single and pairwise potentials defined as

V1(s) =

{
α s = 0

−α s = 1
, V2(s, t) =

{
−β s = t

β s 6= t
(11)

Unlike in [30], we allow different a priori probabilities α 6=
0, so that we can enforce the sparsity of the supports. The
strength of the spatial clustering is controlled by the parameter
β > 0.

C. Conditional model

We adopt the conditional model pΘ|S(θ|s) of [30], [47].
With the common conditional independence assumption, we
have pΘ|S(θ|s) =

∏
i pΘi|Si(θi|si). The observed coefficients

are typically noisy versions of the ideal ones: θ = u+n, where
n denotes the noise component. We select the prior pU (u) as
the generalized Laplacian and we estimate its parameters from
the noisy coefficient histogram, knowing the noise standard
deviation σ [47], [48]. In practice, σ is reliably estimated
from the empty area on the borders of the MR image and
rescaled appropriately in each subband. Let Th denote the
significance threshold for the ideal noise-free coefficients (u
is significant if |u| ≥ Th). We relate this threshold to the
noise level, but in a conservative manner, such that Th is only
a fraction of σ (in practice 10%). The conditional densities
pU |S(u|0) and pU |S(u|1) are then obtained by rescaling the
central part (|u| < Th) and the tails (|u| ≥ Th) of pU (u),
respectively, so that they both integrate to 1. The conditional
densities of the noisy coefficients pΘ|S(θ|s) are obtained from
the corresponding pU |S(u|s). For the additive noise model
θ = u + n with n ∼ N(0, σ), pΘ|S(θ|s) is simply the
convolution of pU |S(u|s) with N(0, σ). Fig. 2 illustrates the
adopted conditional model and the above described procedure.
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Fig. 2: The adopted conditional model from [30], [47]. Note that
pU (u) is obtained from the noisy histogram. Th is the only parameter.

D. Inference algorithm

Various inference algorithms can be employed to find the
MAP estimate in (8), e.g., Iterative Conditional Modes (ICM)
[49], Graph Cuts [50], loopy belief propabation (LBP) [51],
and Markov Chain Monte Carlo (MCMC) samplers, such as
Metropolis and Gibbs sampler [46]. We used the Metropolis
sampler due to its flexibility and efficiency in this application.
The Metropolis sampler starts from some initial configuration
and in each step it switches a randomly chosen label si
in the current mask s to produce the so-called “candidate”
mask sC . The candidate gets accepted or not based on the
change in the posterior probability PS|Θ(sC |θ)/PS|Θ(s|θ),
which effectively reduces to

r =

(
pθi|Si(θi | 1)

pθi|Si(θi | 0)

)λ
exp

{
2α+ 2β

∑
j∈Ni

(2sj − 1)

}
(12)

when sCi = 1 and to 1/r when sCi = 0. Practically, the
change is accepted if r exceeds a randomly generated number
drawn from a uniform distribution on [0, 1]. Parameter λ > 0
effectively simulates sampling at different temperatures; for
details see [47]. This inference algorithm is in fact a step of
the simulated annealing algorithm from [52] for a particular
temperature — one could apply simulated annealing by chang-
ing gradually λ although we didn’t do it in our experiments.

IV. CS-MRI ALGORITHM WITH MRF PRIORS

We now incorporate the spatial support estimation into
practical CS-MRI recovery algorithms. The algorithms that
we develop in this Section are inspired by and can be seen as
extensions of the C-SALSA algorithm of [19].

A. LaSAL

Our optimization problem from (6) is equivalent to (2)
under suitably defined regularization function φ. We follow
the same steps for solving (2) as in [19], and we incorporate
the particular φ that follows from our structured sparsity
model described in the previous Section. To this end, let
E(ε,A,y) = {x ∈ CN : ‖Ax− y‖2 ≤ ε} denote the feasible
set for x. By introducing an indicator function

ιQ(q) =

{
0, q ∈ Q
+∞, otherwise

(13)

the problem in (2) can be written as follows:

min
x∈CN

φ(Px) + ιE(ε,I,y)(Ax). (14)

It has been shown in [19] that this problem is efficiently
solved by a special type of the alternating direction method

of multipliers (ADMM). The key step is variable splitting,
which allows solving the composite problem as a sequence
of minimizations over the separate components. In particular,
for the problem in (14), two splitting variables are introduced
w = x and v = Ax, to split the original problem into separate
mininimizations over each of the two terms. Together with a
“binding” term that connects these two separate minimizations,
we obtain the following three sub-problems:

x{k+1} = argmin
x∈CN

{
‖Ax− u′‖22 + µ‖x− u′′‖22

}
v{k+1} = argmin

v∈CM

{
ιE(ε,I,y)(v)

µ
+

1

2
‖v′ − v‖22

}
w{k+1} = argmin

w∈CN

{
φ(Pw) +

µ

2
‖w′ −w‖22

} (15)

where v′ = Ax{k+1} − b{k}, w′ = x{k+1} − c{k}, u′ =
v{k} + b{k}, u′′ = w{k} + c{k}, and b, c are auxiliary
variables.

The first sub-problem x{k+1} is solved by the Gauss-Seidel
method leading to a simple update equation. The second sub-
problem v{k+1} obviously does not depend on µ (because
the indicator function defined in (13) takes only the values 0
or +∞) and is simply the orthogonal projection of v on the
closed ε-radius ball centered at y [19]:

ΨιE(ε,I,y)
(v) = y +

{
ε v−y
‖v−y‖ 2

, if ‖v − y‖2 > ε

v − y, if ‖v − y‖2 ≤ ε
(16)

The third sub-problem w{k+1} has been typically solved by
defining φ as the `1-norm. We define instead the regularization
function φ(θθθ) as a δ-loss function, prohibiting all realizations
θθθ that do not conform to the estimated support ŝ. With the
model Mŝ from (5), we define formally

φ(θθθ) =

{
0, if θθθ ∈Mŝ

∞, if θθθ /∈Mŝ

(17)

Substituting θθθ = Pw, the third sub-problem in (15), following
the transformation procedure given in [24], becomes

θθθ{k+1} = argmin
θθθ∈Range(P)

{
φ(θθθ) +

µ

2
‖θθθ′ − θθθ‖22

}
(18)

This problem has the same solution as its equivalent con-
strained formulation from (7), and thus θθθ{k+1} = θθθ′ ◦ ŝ where

[θθθ′ ◦ ŝ]i =

{
θi, if ŝi = 1

0, if ŝi = 0
(19)

This completes the specification of our algorithm, named by
analogy with the related methods as LaSAL, from Lattice
Split Augmented Lagrangian. Its pseudo-code is listed in Algo-
rithm 1. The step ŝ← MAP-support{θθθ′} denotes the support
estimation using the MAP criterion in (8). The parameter
0 < µ ≤ 1, which controls the level of regularization, can be
safely set to 1 as it was also done in [19], without a significant
performance loss. We still decided to keep µ as a parameter
in the algorithm, because we observed that allowing values of
µ ≤ 1 can yield a slightly higher peak signal to noise ratio
(PSNR) in the reconstructions (up to 0.5 dB). Furthermore,
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Algorithm 1 LaSAL

Input: k = 0, µ > 0,v{0},w{0},b{0}, c{0}

1: repeat
2: r{k} = µ(w{k} + c{k}) + AH(v{k} + b{k})
3: x{k+1} = (µI + AHA)−1r{k}

4: v{k+1} = ΨιE(ε,I,y)
(Ax{k+1} − b{k})

5: θθθ′ = P(x{k+1} − c{k})
6: ŝ← MAP-support{θθθ′}
7: w{k+1} = PH(θθθ′ ◦ ŝ)
8: b{k+1} = b{k} − (Ax{k+1} − v{k+1})
9: c{k+1} = c{k} − (x{k+1} −w{k+1})

10: k = k + 1
11: until some stopping criterion is satisfied

sagittal1 sagittal2 mouse1 mouse2

axial1 axial2 axial3

Fig. 3: Test images sagittal1 and sagittal2 are two slices from data
set 1 comprising 248 images. The bottom three images are from [24],
[26] and [25] resp. All images are 256×256, except axial3, which is
512×512.

observe that the update of the auxiliary variable c (line 9) is
performed in the image-domain (while the equivalent step of
the analysis-formulation of the related C-SALSA is applied in
the transform domain, and with PH applied to the first sum
in r{k}). This is because we use w = x in variable splitting
instead of w = Px which leads to this type of update. Finally,
as the stopping criterion we use in practice a fixed number
of iterations (typically 50), because in all the simulations
the differences in the resulting reconstruction error become
practically negligible after this many iterations.

B. LaSAL2

We extend now the objective function in (14) with another
regularization term: TV norm ‖x‖TV. The resulting objective
function is an instance of the general form

min
x∈CN

J∑
j=1

gj(H
(j)x) (20)

with J = 3, H(1) = P, H(2) = I, H(3) = A, g1(u) = φ(u),
g2(u) = ‖u‖TV and g3(u) = ιE(ε,I,y)(u). A detailed explana-
tion and a compact pseudo-code for solving (20) is given in
[19]. Here, we simply extend LaSAL from Algorithm 1 with
an additional step that concerns with the TV regularization.
This also requires introducing an additional auxiliary variable
(d{k}, next to b{k} and c{k} in Algorithm 1). By applying

Algorithm 2 LaSAL2

Input: k = 0, µ1, µ2 > 0,v{0},w{0}, z{0},b{0}, c{0},d{0},
1: repeat
2: r{k} = µ1(z{k} + c{k}) + AH(v{k} + b{k})
3: x{k+1} = (µ1I + AHA)−1r{k}

4: v{k+1} = ΨιE(ε,I,y)
(Ax{k+1} − b{k})

5: z′ = 1
(µ1+µ2)

(
µ1(x{k+1}−c{k}) +µ2(w{k}+d{k})

)
6: z{k+1} = ΨTV(z′;µ1 + µ2)
7: θθθ′ = P(z{k+1} − d{k})
8: ŝ← MAP-support{θθθ′}
9: w{k+1} = PH(θθθ′ ◦ ŝ)

10: b{k+1} = b{k} − (Ax{k+1} − v{k+1})
11: d{k+1} = d{k} − (z{k+1} −w{k+1})
12: c{k+1} = c{k} − (x{k+1} − z{k+1})
13: k = k + 1
14: until some stopping criterion is satisfied

variable splitting [53], the minimization sub-problem corre-
sponding to the TV regularization can be written as

z{k+1} = argmin
g∈CN

{
‖z‖TV +

µ1 + µ2

2
‖z′ − z‖22

}
= ΨTV(z′;µ1 + µ2)

(21)

where z′ = 1
(µ1+µ2)

(
µ1(x{k+1} − c{k}) + µ2(w{k} + d{k})

)
is a linear combination of the current solution x{k+1} and the
regularized solution w{k} from the previous iteration, with
parameters where µ1, µ2 > 0. For computing ΨTV(u;µ) we
used 5 iterations of Chambolle’s algorithm [42] (more itera-
tions only increased the computational cost with negligible im-
provement in PNSR). A pseudo-code of the resulting method
that we named LaSAL2 is given in Algorithm 2. The source
codes of both LaSAL and LaSAL2 algorithms are available at
https://telin.ugent.be/∼sanja/MRIreconstruction/LaSAL.

V. EXPERIMENTS

A. Data sets and reference methods

We evaluate the proposed method on different MRI images,
both using simulations starting from high-resolution MRI
images, shown in Fig. 3, and using real data acquired in k-
space. The first data set comprises 248 T1 MRI brain slices
acquired on a Cartesian grid at Ghent University hospital
(only two slices are shown in Fig. 3). The second set consists
of two images of mouse brain with different modalities (T1
and T2) acquired on a Cartesian grid at Bio-Imaging Lab
at the University of Antwerp. The remaining three images
in Fig. 3 are from [24] (axial1), [26] (axial2) and [25]
(axial3). All the test images have resolution 256×256, except
axial3, which is 512×512. We simulate different sub-sampling
trajectories: random lines, radial, Fibonacci spiral [54] and
random sampling, illustrated in Fig. 4. All trajectories are
defined as binary matrices on the Cartesian grid, which act as
masks for selecting the corresponding Fourier coefficients. The
data set that was acquired directly in k-space is an MRI scan
of a pomelo (see Section V-E), acquired by radial acquisition,
at the Bio-Imaging Lab in Antwerp.
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Fig. 4: Examples of sampling trajectories used in the experiments:
random lines, radial, Fibonacci spiral and random.

As reference methods, we use C-SALSA [19], the aug-
mented Lagrangian method (Split-Bregman) SB [12] and
LaSB [30], all implemented with the same shearlet transform.
We also provide comparison with WaTMRI [13], [17], FCSA
[14] and FCSANL [55] using the original implementations of
the authors (http://ranger.uta.edu/∼huang/index.html), and with
pFISTA [24], dictionary learning approach DLMRI [25] and
a patch-based method PANO [26], on images for which these
methods were optimized. As an evaluation criterion we use the
peak signal to noise ratio (PSNR) computed on the magnitude
image. For the data acquired directly in k-space (no reference
image available), we compute the structural similarity index
(SSIM) [56] of the reconstructions from partial data relative
to the reconstruction from all the available measurements.

Fig. 5: Examples illustrating grid search results for the MRF param-
eters (α, β) (left) and regularization parameters (µ1,µ2) (right).

B. Parameter selection

As a sparsyfing transform, we use a nondecimated shearlet
transform with 3 scales and by default 16, 8, and 4 orientations
per scale, respectively, implemented as in [57].

The parameters (α, β) of the MRF model are optimized
by grid search. Although the optimal values may slightly
differ depending on the particular image, sampling rate and
sampling trajectory, we observed a stable performance in a
relatively wide range of the parameter values, as illustrated
in the example from Fig. 5 (left). This diagram corresponds
to LaSAL, applied on the test image sagittal1, with 48%
of samples on a radial trajectory. Similar diagrams were
obtained with other images and other sampling trajectories.
We concluded that the same parameter values can be safely
used for a wide range of sampling rates and for different
images. The recommended values are α=0.01; β=0.16, with
λ = 0.2 in (12). All the image reconstruction results reported
in this paper were produced with these values. We did observe
that somewhat more stable performance is in some cases

reached with slightly different parameter values and at the
price of slightly reduced PSNR, but this differences are not so
significant in our experience.

We also optimize the parameter µ of LaSAL and (µ1, µ2)
of LaSAL2 by grid search. It is important to note that all
these parameters can be simply set to 1, without sacrificing
significantly the reconstruction performance. This is evident
from the grid search diagram in Fig. 5 (right) and agrees
also with the general theory in [19]. Still, we observed that
somewhat better reconstruction performance may be reached
in practice by allowing other values of these parameters,
so we opted to keep the possibility for their experimental
optimization. In particular, we recommend µ = 0.04 for
LaSAL, and µ1 = 0.11, µ2 = 0.01 for LaSAL2 which are
used for all experiments in the paper.

C. Benefit from the MRF model

We first explore how the incorporated MRF-based spatial
context model influences the reconstruction performances.
This can be directly observed by excluding the MRF-
modelling part of LaSAL (lines 5–7 in Algorithm 1) and
replacing it simply by soft-thresholding in the shearlet domain
w{k+1} = PH(Ψ`1(P(x{k+1}−c{k};µ))), which reduces our
method to the corresponding version of C-SALSA [19].

The results in Fig. 6 demonstrate a clear improvement due
to the MRF model. LaSB and SB share the same optimization
algorithm, while LaSB is enriched with an MRF model.
Similarly, C-SALSA and LaSAL share the same optimization
method, extended with an MRF prior in LaSAL. We observe
that in the same way as LaSB improves over SB, our new
algorithm LaSAL improves over C-SALSA consistently for
all sampling rates. Moreover, LaSAL yields a consistent
improvement over LaSB, except at very low sampling rates.
With the spiral trajectory, for sampling rates above 0.3, this
improvement in PSNR is more than 1 dB and above 1.7 dB for
the sampling rate around 0.5. Similar behaviour, with slightly
smaller differences is observed in the case of radial trajectory.

Fig. 6 (bottom row) also shows the advantage of the
compound prior: LaSAL2 indeed improves over LaSAL. The
results also demonstrate improvement over the reference meth-
ods SB and LaSB implemented with compound priors, denoted
for consistency as SB2 and LaSB2. The improvement of
LaSAL2 over these methods is consistent at all sampling rates
and for both sampling trajectories. The difference in PSNR
relative to both LaSAL and LaSB2 ranges from 1 dB to more
than 2 dB, while the improvement over SB2 is 3 to 5 dB.

D. Comparison with other methods

The reference methods FCSA [14], FCSANL [55] and
WaTMRI [17] employ a compound regularization: TV and
`1 (FCSA and WaTMRI) or non-local TV and `1 (FCSANL).
WaTMRI employs next to it a tree-structured sparsity model.
We adopt the experimental setup of [14], [17], [55] using ran-
dom sampling matrices with variable density1. Seven sampling
rates (14%, 20%, 25%, 32%, 38%, 42% and 50%) are used,

1http://ranger.uta.edu/∼huang/index.html
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Fig. 6: Reconstruction results for sagittal1 with different sampling
rates using radial (left) and Fibonacci spiral (right) trajectories.

and for each of them ten sampling matrices are randomly
generated and the average PSNR over the ten corresponding
reconstructions is recorded.

Fig. 7 (top left) shows the result for sagittal1 from Fig. 3.
Obviously, the proposed LaSAL and LaSAL2 algorithms
yield consistent improvement over all three reference methods
FCSA, FCSANL and WaTMRI at all sampling rates. This
improvement is in the range of 1.4 – 3 dB for LaSAL and
in the range of 2.3 – 4.1 dB for LaSAL2. Similar conclusions
hold for sagittal2 (Fig. 7, top right): the improvement for
LaSAL is now in the range of 0.5 – 2.6 dB and for LaSAL2 the
same as on sagittal1. Two other diagrams in Fig. 7 show the
PSNR results for the T1 and T2 mouse brain images. LaSAL2
yields again superior performance compared to all other tested
methods. Among the three reference methods, FCSANL is
now the best performing. LaSAL2 improves over this method
at all sampling rates in the range of 0.6 dB to 2.7 dB for
mouse1 and in the range 2.2 – 3 dB for mouse2.

We also perform evaluation on the complete dataset of 248
MRI brain slices. Fig. 9 shows the mean PSNR per iteration
across all the 248 images for different algorithms. LaSAL2
yields considerably higher PSNR than the reference methods:
the improvement is more than 3.5 dB. Even LaSAL, which
employs no TV regularization, improves over FCSANL and
WaTMRI for about 2.4 dB, and reaches its highest PSNR in
fewer iterations than the reference methods. In the same figure,
we show the resulting distribution of the PSNR values per
iteration. It can be seen that after 5 iterations LaSAL reaches
a huge improvement in PSNR over all the reference methods,
while LaSAL2 outperforms LaSAL after 30 iterations.

This huge improvement in PSNR comes at a price of an
increased processing time. The computation times reported
below were obtained on Intel c© CoreTM i7 processor (2.4 GHz,
8GB RAM). For LaSAL and LaSAL2, with a non-optimized

TABLE I: Comparison with PANO [26] and DLMRI [25]

axial2, random lines 40% axial3, radial 14%
Method PSNR [dB] Time [s] Method PSNR [dB] Time [s]

LaSAL 43 111 LaSAL 36.6 507
LaSAL2 45 105 LaSAL2 39.4 231
PANO 41.3 74 DLMRI 37.5 763

Matlab implementation and (16, 8, 4) shearlet bands per scale,
the processing time for a 256 × 256 image is 1.50 s per
iteration, out of which 1.41 s goes on the support estimation,
resulting in about 75 s for 50 iterations. For comparison, the
fastest reference methods in 50 iterations require: FCSANL
– 0.7 s, FCSA – 0.6 s, WaTMRI – 0.8 s, and C-SALSA –
10.9 s. There is much room for improving the computation
time of our method by improving efficiency of the support
configuration, e.g. by considering alternatives to Metropolis
sampling, such as iterated conditional modes (ICM) [49] or
belief propagation.

For comparisons with pFISTA [24], we use their data –
axial1 in Fig. 3 and the original code provided by the authors.
Fig. 10 shows the results for random and radial sampling
trajectories with the sampling rate of 30%. Three variants of
pFISTA from [24] are tested, using contourlets, shift-invariant
discrete wavelet (SIDWT) and patch based directional wavelet
(PBDW). We now used for LaSAL and LaSAL2 fewer shearlet
bands (8, 4 and 2 per scale), resulting in comparable or smaller
processing times with pFISTA, PANO and DLMRI. For the
radial trajectory, the best performing variant of pFISTA gives
a similar (slightly better) results than LaSAL, but LaSAL2
clearly yields the higher PSNR value. With random sampling,
both LaSAL and LaSAL2 outperform clearly all the variants
of pFISTA, and LaSAL2 is again the best performing method.
Moreover, in all the cases LaSAL reached the maximum PSNR
faster than pFISTA (see the caption of Fig. 3).

For comparisons with PANO [26] and DLMRI from [25],
we used the images from the corresponding papers (axial2 and
axial3 from Fig. 3, resp.), the sampling trajectories that were
used in the corresponding papers as indicated in Table. I, and
the original publicly available codes. The resulting PSNR and
processing times are listed in Table. I. LaSAL2 outperforms
both PANO and DLMRI method on their respective test data.
LaSAL2 was somewhat slower than PANO and significantly
(more than three times) faster than DLMRI.

We also compared our approach to [22] and [23] on the test
data from the original papers. Compared to the reported results
in [22], LaSAL yields an improvement of nearly 2 dB, taking
approximately the same time, and LaSAL2 an improvement of
more than 3 dB. The source code of [23] was unavailable, but
compared to the reported results from this work, LaSAL yields
similar or slightly better signal to noise ratio and LaSAL2
yields an improvement of 2.5 dB.

E. Experiments on radially sampled data

Here we perform experiments on a data set acquired with
radial sampling in the k-space — an MRI scan of a pomelo,
consisting of 1608 radial lines, each with 1024 samples. We
form under-sampled versions by leaving out some of the radial
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Fig. 7: Results with random sampling and different sampling rates on
images sagittal1 and sagittal2 (top); mouse1 and mouse2 (bottom).

Fig. 8: Reconstructed sagittal1 image from 20% of random mea-
surements. First row: zero-fill (19.87 dB) and WaTMRI (28.78 dB),
Second row: LaSAL (31.06 dB) and LaSAL2 (33.43 dB).

lines. In particular, we implement undersampling based on the
golden ratio profile spacing [58], which guarantees a nearly
uniform coverage of the space for an arbitrary number of the
remaining radial lines. The procedure is as follows. Starting
from an arbitrary selected radial line, each next line is chosen
by skipping an azimuthal gap of 111.246◦. In practice we
cannot always achieve this gap precisely (since we have a
finite, although large, number of lines to start with). Therefore
we choose the nearest available radial line relative to the
position obtained after moving. Since we deal here with non-
uniformly sampled k-space data, we need to employ the non-

Fig. 9: PSNR values obtained from 248 MRI brain slices from the
first data set, with random sampling. Mean PSNR (top left) and the
PSNR distribution for LaSAL2 (top right), LaSAL (bottom left) and
WaTMRI (bottom right). The results are presented as a box plot:
the edges of the each box represents 25th and 75th percentile while
the central mark (red line) in the box is median. The whiskers extend
to the most extreme PSNR values which are not considered outliers
while outliers are plotted separately with red crosses.

Fig. 10: Comparison with pFISTA [24] on the test image axial1. Left:
radial sampling (maximum PSNR values reached in LaSAL – 27s;
LaSAL2 – 51 s; pFISTA-PBDW – 47 s;). Right: random sampling
(maximum PSNR values reached in LaSAL – 39 s; LaSAL2 – 78 s;
FISTA-PBDW – 58 s).

uniform FFT procedures [58], which are commonly used in
MRI reconstruction and readily available. The three reference
methods (WaTMRI, FCSA and FCSANL) give similar results
on this image, so we choose for comparison WaTMRI. Fig. 11
shows visual comparison and SSIM values for LaSAL2 and
WaTMRI. At sampling rates up to 30%, LaSAL2 reaches the
highest SSIM, while for higher sampling rates it yields the
same SSIM scores as LaSAL. For all sampling rates, both
LaSAL and LaSAL2 outperform WaTMRI.

F. Convergence

The optimization problem that our method solves is non-
convex. For a similar non-convex problem with MRF regular-
ization the authors in [44], argued that a local optimum can be
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Fig. 11: Reconstructions of the radially sampled pomelo. Top left:
reconstructed from all available data with the conjugate gradient al-
gorithm (reference image). Top right: WaTMRI reconstruction from
20% samples, SSIM = 0.65. Bottom left: LaSAL2 reconstruction
from the same 20% samples, SSIM = 0.80. Bottom right: SSIM
values for different sampling rates.

Fig. 12: Experimental evaluation of the stability of the proposed
methods on different test images. Left: sagittal1, 50% sampling.
Right: axial2, 48% sampling.

efficiently obtained by applying alternating minimization. The
same argument holds for our method. Although we cannot
provide a theoretical proof of convergence, we provide a
solid empirical proof of convergence through simulation with
different images and different trajectories. The experiments
were conducted on various images using radial, spiral and
random trajectories.

Fig. 12 shows results for two different images and different
sampling trajectories. It can be observed that both LaSAL
and LaSAL2 reach stable PSNR for all trajectories. In the
case of LaSAL, only negligible oscillations persist around the
converged value, while in the case of LaSAL2 no oscillations
are observed. Changing the parameters of the MRF model can
result in a higher maximum PSNR, at the cost of a less stable
convergence.

We also investigated the effect of initializing the recon-
struction differently: with a zero image, with white Gaussian

Fig. 13: Influence of the initialization on the reconstruction per-
formance illustrated on reconstructions of saggital1 from 20% of
measurements. Left: initializations with zero-image and random
noise; random trajectory. Right: initializations with different MRI
images (axial1 and axial2); radial trajectory.

noise image (zero mean, standard deviation 50) and with
another MRI image as it is illustrated in Fig. 13. In the
case of random noise initialization, we run 10 experiments
and averaged results. The evolution of PSNR per iteration,
after some initial iterations, practically does not depend on
the initialization. We obtain similar results when initializing
the reconstruction with an MRI image that is different from
the one being reconstructed (see the diagram on the right of
Fig. 13). In all our experiments, LaSAL and LaSAL2 reached
their stable PSNR values that did not depend on the initial
image.

Next, we analyze consistency of the proposed estimators.
Estimation (reconstruction) of the original image from un-
dersampled measurements is statistically consistent if the
probability of reconstructing the true image converges to 1
as the number of measurements tends to infinity:

lim
n→∞

Pr(|T (yn)− x| < ε) = 1 (22)

where T denotes estimator, n the number of samples in
the measurements vector y and x the ground truth. Our
proposed estimators LaSAL and LaSAL2 alternate between
two minimization problems in an iterative procedure for image
reconstruction. The first problem is minimization of an energy
function composed of a data fitting term and a prior energy
term, expressed as the energy of an Ising MRF model. This
minimization results in an estimated support of the signal
in a transformation domain. A detail analysis of Gibbs-
Markov random fields models including statistical consistency
of minimum contrast estimators employing these models is
provided in [59]. The second problem is an objective function
minimization that estimates the signal, constrained to the
particular domain (signal space) imposed by the previously
estimated signal support. Since this particular objective func-
tion is convex, its consistency is trivially proven.

LaSAL and LaSAL2 procedures alternate between the two
estimators, inferring jointly the signal and its support in a
transform domain. Proving the consistency of each estimator
separately does not lead directly to the consistency proof of
the joint estimator; the conditions are studied in literature [60],
but such a rigorous analysis exceeds the scope of this work.

We provide a finite sample convergence analysis of the
joint estimator using an experimental setup similar to the
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Fig. 14: Experimental evaluation of the finite sample convergence
of the proposed methods. MSE (left) and its variance (right) in
reconstruction trials with three images at different sampling rates
with random trajectories. For each sampling rate 50 experiments
were conducted with different realizations of random trajectories and
averaged MSE and its variance are plotted.

one in [61]. This experiment evaluates statistically image
reconstruction quality as a function of an increasing number
of measurements. At each of the considered sampling rates,
we perform reconstructions over 50 realizations of randomly
generated acquisition trajectories (where each reconstruction
contains over 65000 pixels for a 256×256 image) and we
record the averaged mean squared error (MSE) and its variance
over all the realizations. The evaluation of MSE in this
setting is commonly motivated in the statistical literature by
Chebychev’s inequality, from which it follows that:

Pr(|T (yn)− x| ≥ ε) ≤ E((T (yn)− x)2)

ε2
(23)

Fig. 14 shows the results obtained for three different input
images. Relatively high values of variance at small sampling
rates (less than 30%) can be attributed to the fact that random
trajectories may miss (almost completely) or not the lowest
frequency components which are essential for the quality of
reconstruction. We conclude that as the number of measure-
ments increases, the MSE and its variance decrease and tend
to zero, as expected.

It is interesting to examine also the empirical estimates
of the probabilities Pr(|T (yn) − x| ≥ ε), which can be
obtained from the same experimental setup. For each n, we
find an empirical estimate P̃ r(|T (yn)−x| ≥ ε) as the fraction
of the total number of experiments for which the absolute
error of the reconstruction was exceeding ε. We illustrate
these empirical probabilities for one of the test images in
Fig. 15. The diagrams show that at very high sampling rates
the empirical probability P̃ r(|T (yn) − x| ≥ ε) indeed tends
to zero for ε > 0.008 (LaSAL) or ε > 0.003 (LaSAL2) on
grayscale images in the range [0,255]. These results indicate
that the proposed algorithm reliably converges to solutions that
lie within a standard deviation that can be ignored safely in
any practical application.

VI. CONCLUSION

This work confirmed the potential of the MRF modelling
framework for the recovery of compressively sampled MRI
data, that was earlier hinted in [30]. Moreover, we now
presented a more comprehensive study and developed a novel

Fig. 15: Empirically estimated probability P̃ r(|T (yn) − x| ≥ ε)
for various values of ε and different number of measurements n =
SP ×N , where SP denotes the sampling rate and N is the size of
the ideal image x. Top: reconstructions with LaSAL (on sagittal1)
Bottom: the corresponding results for LaSAL2.

algorithm which incorporates the MRF modeling framework
into a constrained split augmented Lagrangian method. The
resulting algorithm improves upon the C-SALSA method in
MRI reconstruction and it also outperforms the earlier method
from [30]. The results also demonstrate superior performance
of the proposed algorithm in comparison to state-of-the-art
methods, both in terms of quantitative performance measures
and visually. There is much room to optimize the computations
in our method, especially regarding the inference procedure
in the MRF-based support estimation. Belief propagation
algorithms may be considered as well as various parallelization
procedures to optimize the code. This aspect will be part of
our future research.
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“Augmented Lagrangian based reconstruction of non-uniformly sub-
nyquist sampled MRI data,” Signal Processing, vol. 91, no. 12, pp.
2731–2742, 2011.

[13] C. Chen and J. Huang, “Compressive sensing MRI with wavelet tree
sparsity,” in Advances in neural information processing systems, 2012,
pp. 1115–1123.

[14] J. Huang, S. Zhang, and D. Metaxas, “Efficient MR image reconstruction
for compressed MR imaging,” Medical Image Analysis, vol. 15, no. 5,
pp. 670–679, 2011.

[15] S. R. Rajani and M. Ramasubba Reddy, “An iterative hard thresholding
algorithm for CS MRI,” in SPIE Medical Imaging, 2012, pp. 83 143W1–
83 143W7.

[16] B. Adcock, A. C. Hansen, C. Poon, and B. Roman, “Breaking the
coherence barrier: asymptotic incoherence and asymptotic sparsity
in compressed sensing,” CoRR, vol. abs/1302.0561, 2013. [Online].
Available: http://arxiv.org/abs/1302.0561

[17] C. Chen and J. Huang, “Exploiting the wavelet structure in compressed
sensing MRI,” Magnetic Resonance Imaging, vol. 32, no. 10, pp. 1377–
1389, 2014.

[18] V. Cevher, “Learning with compressible priors,” in Advances in Neural
Information Processing Systems, 2009, pp. 261–269.

[19] M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo, “An aug-
mented Lagrangian approach to the constrained optimization formulation
of imaging inverse problems,” IEEE Trans. Image Process., vol. 20,
no. 3, pp. 681–695, 2011.

[20] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1,
pp. 33–61, 1998.

[21] D. S. Smith, L. R. Arlinghaus, T. E. Yankeelov, and E. B. Welch,
“Curvelets as a sparse basis for compressed sensing magnetic resonance
imaging,” in SPIE Medical Imaging. International Society for Optics
and Photonics, 2013, pp. 866 929–866 929.

[22] X. Qu, W. Zhang, D. Guo, C. Cai, S. Cai, and Z. Chen, “Iterative
thresholding compressed sensing MRI based on contourlet transform,”
Inverse Probl. Sci. Eng., vol. 18, no. 6, pp. 737–758, 2010.

[23] S. Pejoski, V. Kafedziski, and D. Gleich, “Compressed sensing MRI
using discrete nonseparable shearlet transform and FISTA,” IEEE Signal
Process. Lett., vol. 22, no. 10, pp. 1566–1570, 2015.

[24] Y. Liu, Z. Zhan, J. Cai, D. Guo, Z. Chen, and X. Qu, “Projected
iterative soft-thresholding algorithm for tight frames in compressed
sensing magnetic resonance imaging,” IEEE Trans. Med. Imag, vol. 35,
no. 9, pp. 2130–2140, 2016.

[25] S. Ravishankar and Y. Bresler, “MR image reconstruction from highly
undersampled k-space data by dictionary learning,” IEEE Trans. Med.
Imag, vol. 30, no. 5, pp. 1028–1041, 2011.

[26] X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen, “Magnetic
resonance image reconstruction from undersampled measurements using
a patch-based nonlocal operator,” Medical image analysis, vol. 18, no. 6,
pp. 843–856, 2014.

[27] Y. Huang, J. Paisley, Q. Lin, X. Ding, X. Fu, and X.-P. Zhang, “Bayesian
nonparametric dictionary learning for compressed sensing MRI,” IEEE
Trans. Image Process., vol. 23, no. 12, pp. 5007–5019, 2014.

[28] B. Adcock, A. C. Hansen, and B. Roman, “The quest for optimal
sampling: Computationally efficient, structure-exploiting measurements
for compressed sensing,” arXiv preprint arXiv:1403.6540, 2014.

[29] V. Cevher, M. F. Duarte, C. Hegde, and R. Baraniuk, “Sparse signal re-
covery using Markov random fields,” in Advances in Neural Information
Processing Systems, 2009, pp. 257–264.

[30] A. Pižurica, J. Aelterman, F. Bai, S. Vanloocke, Q. Luong, B. Goossens,
and W. Philips, “On structured sparsity and selected applications in

tomographic imaging,” in SPIE Conference on Wavelets and Sparsity
XIV, vol. 8138, 2011, pp. 81 381D–1–12.

[31] T. Goldstein and S. Osher, “The split Bregman method for `1-regularized
problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 323–
343, 2009.
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