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Image Denoising Algorithms: From Wavelet
Shrinkage to Non-local Collaborative Filtering

Aleksandra Pižurica

Abstract—This paper presents an overview of image de-
noising algorithms ranging from wavelet shrinkage to patch-
based non-local processing. The focus is on the suppression
of additive Gaussian noise (white and coloured). A great
attention is devoted to explaining the main underlying ideas
and concepts of representative approaches with illustrative
examples, accessible also to non-experts in the field. A
Bayesian perspective of wavelet shrinkage is given, with
different instances of spatial context modelling (including
local spatial activity indicators, Markov Random Fields,
Hidden Markov Tree models and Gaussian Scale Mixture
models). Extensions to other transform domains (curvelets
and other generalizations of wavelets) are addressed too,
showing the benefits in terms of image quality. Patch-based
image denoising is illustrated with principles of non-local
means filtering and collaborative filtering, explaining also the
connections with dictionary learning. Some general notes on
the performance comparison are given, by summarizing the
benefits and limitations of various approaches against each
other, and pointing to some of the current trends in the field.

Index Terms—Noise reduction, Wavelet shrinkage, Spatial
context, Gaussian Scale Mixture, Markov Random Field,
Hidden Markov Model, Patch-based processing, Non-local
means, Collaborative filtering, Dictionary learning.

I. INTRODUCTION

Image noise manifested as random fluctuations of values
of digital picture elements (pixels) arises inevitably during
image formation; the origins of such image noise are both
in the analogue electronic circuitry in the imaging device
and in the physical phenomena characteristic for a given
imaging modality (e.g., fluctuations in the emitted photon
distributions in X-ray imaging or random scattering of
electromagnetic waves in radar imaging).

Image denoising is desired in many applications, not only
to improve visual appearance or user experience (which is
of particular interest for digital camera images) but also
to facilitate subsequent automatic processing (segmentation
into distinct regions, detection of edges or certain features
of interest). Fig. 1 illustrates an example of applying auto-
matic edge detection to a satellite image before and after
noise reduction. The image was acquired by the Synthetic
Aperture Radar (SAR) [1] and is affected mainly by speckle
noise [2]. Note how many spurious short edges are present
when edge detection is applied to the noisy image. The
actual contours are hidden in the lots of “rubbish” resulting
from noise, while some of the actual coastline contours
are not detected. After noise reduction, the edge detection
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reveals clearly even the contours of the smallest and hardly
visible islands. This is why noise reduction is so important
in practice.

As one of the fundamental problems in digital image
processing, image denoising has been extensively studied
over several past decades. Development of locally adap-
tive spatial filters in the early eighties was an important
breakthrough [3], [4]: the filtering was applied to each pixel
independently (hence allowing simple and fast implemen-
tation, even parallel processing) and the parameters were
automatically tuned at each spatial position according to the
local image content. For example, for the case of additive
white Gaussian noise, the approach of [3] operates as a
locally adaptive Wiener filter [5], where the signal variance
is estimated from a local window around each pixel. The
local spatial adaptation can also be interpreted as means
to achieve non-linearity in the filter design; linear filters,
like the classical Wiener filter would inevitably oversmooth
the image edges. Important classes of nonlinear filters for
image denoising, include order-statistic [6], stack [7], [8],
weighted median [9], [10], morphological [11] and rational
[12] filters; for a compact overview see [13].

Another class of successful and widely used nonlinear
filters are methods based on minimizing total variation
(TV) [14]–[16]. Inspired by anisotropic diffusion [17], the
TV anisotropic diffusion model, known also as the ROF
(Rudin-Osher-Fatemi) model, was first introduced in a sem-
inal work [18]. Faster algorithms for TV filtering include
[19], [20]. Some of the most efficient current image restora-
tion methods have been constructed using TV model with
optimization methods such as alternating direction method
of moments (ADMM) [21], [22], variations or equivalent
formulations thereof, including split-Bregman methods [23]
and other forward-backward splitting schemes [24]. For
some of the recent related developments see [25], [26].
Bilateral filtering [27] enjoys great popularity as a con-
ceptually simple nonlinear filtering scheme, which can be
implemented in a non-iterative manner. The pixel value is
simply replaced by a weighted average of the nearby pixels;
the weights are influenced both by the spatial proximity to
the central pixel and by the similarity in values. The idea
can be traced back to nonlinear Gaussian filters [28], and
the concept has been applied in various other contexts next
to image denoising [29].

An information-theoretic approach to denoising advo-
cated as universal denoiser [30] denoises data sequences
generated by a discrete source and received over a discrete,
memoryless channel assuming no knowledge of the source
statistics (hence the name universal). Excellent performance
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was demonstrated on binary images (halftone images and
scanned text). An extension for greyscale images is in [31].

This paper concentrates on the removal of additive Gaus-
sian noise, which is most commonly addressed noise type
in the image denoising literature. Other important noise
models include impulsive noise arising often from analogue
to digital conversion and due to various transmission errors,
[32], [33], speckle noise [2] affecting all coherent imaging
systems (including ultrasound and radar imaging) and Pois-
son noise that characterizes photon-limited imaging.

From the early nineties until recently, image denois-
ing, and especially Gaussian noise removal, was largely
dominated by wavelet shrinkage methods [34]–[37]. Cur-
rently, patch-based and non-local techniques [38]–[40],
often in combination with wavelet-like representations or
with learned dictionaries of image atoms [41], provide the
state-of-the-art results. The underlying idea behind many
of the recent approaches is to collect similar image patches
throughout the image and to jointly process them, which
is sometimes denoted as collaborative filtering [42]. Here
we focus on highlighting the main concepts and ideas
behind different classes of well known wavelet-shrinkage
and patch-based methods, without going into much tech-
nical details. This article also aims at providing sufficient
background to make the content accessible to non-experts
in the field. Recent methods are reported, e,g., in [37], [43]–
[45] and comprehensive reviews with performance analyses
in [46], [47].

This paper is organized as follows. Section II explains
the assumed noise model and places it in a wider context
of noise modelling in digital imaging sensors. Transform
domain methods (with emphasis on wavelet shrinkage) are
presented in Section III, and patch-based non-local methods
in Section IV. Some insights into how denoising approaches
are evaluated and how different denoising methods are
typically compared are in Section V, together with general
guidelines on choosing the right denoising method for a
given task. The paper ends with some future prospects in
Section VI.

II. NOISE MODEL

We explain the assumed noise model and how it can be
applied more widely in practice, with certain preprocessing
steps that are detailed elsewhere. The denoising schemes
presented in the following Sections apply to the following
additive noise model:

d = f + ϑ (1)

where d = {d1, ..., dn} is the input image, ϑ =
{ϑ1, ..., ϑn} is noise (a vector of random variables), and
f = {f1, ..., fn} is unknown degradation-free image; the
indices correspond to pixel positions, visited in some raster-
scanning order. For zero-mean noise (E(ϑ) = 0), the
covariance matrix is

Q = E[(ϑ− E(ϑ))(ϑ− E(ϑ))T ] = E(ϑϑT ) (2)

On its diagonal are the variances σ2
l = E(ϑ2

l ). If the
covariance matrix is diagonal, i.e., if E(ϑl, ϑk) = 0 for

Fig. 1. An example of speckle noise reduction in a SAR image and
its favourable effect on the subsequent edge detection. (In this example,
Canny’s edge detection [48] and denoising method of [49] were used).

l 6= k, the noise is uncorrelated and is called white. If all ϑl
follow the same distribution, they are said to be identically
distributed. This implies σ2

l = σ2, for all l = 1, ..., n. For
Gaussian noise, with the probability density function (pdf)

pϑ(ϑ) =
1

(2π)n/2
√

det(Q)
e−

1
2ϑ

TQ−1ϑ (3)

it holds that if noise variables are uncorrelated, they are also
statistically independent pϑ(ϑ) =

∏
l pϑl

(ϑl). The reverse
implication (independent variables are uncorrelated) holds
for all densities. A common assumption is that the noise
variables are independent, identically distributed (i.i.d.),
leading to the commonly employed additive white Gaussian
(AWGN) model.

While the conventional AWGN model is typically as-
sumed in the image processing literature, the actual noise
in digital imaging sensors is rather signal-dependent [50]–
[55] and better described by more generic models as [51]:

di = fi + ω(fi)φi (4)

where φi is zero-mean independent random noise with
standard deviation equal to 1, and ω(fi) is the standard
deviation depending on the signal value fi. The noise
term ω(fi)φi is often assumed to be composed of two
independent parts [51]: a Poissonian signal-dependent com-
ponent and a Gaussian signal independent component.
Suppression of this mixed Poisson-Gaussian noise directly
by considering the statistics of the two components has
been addressed, e.g., in [56] and specialized methods for
the suppression of Poisson noise include [57]–[59]. In many
cases of practical interest, it is possible to address the above
described signal-dependent mixed noise model by adapting
the methods aimed for additive white Gaussian noise. The
approximation of the Poisson distribution by the normal one
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P(λ) = N (λ, λ), which holds for relatively large λ leads to
the common approximation of the generic signal-dependent
term in (4) by heteroscedastic Gaussian noise [51], [60],
[61]: ω(fi)φi = ϑhi (fi), where ϑhi (fi) ∼ N (0, afi + b),
with a, b > 0. In general, the mixed noise in (4) can be
efficiently treated by applying the methods developed for
AWGN after applying the so-called variance stabilization
[62], [63]. The key idea is to “standardize” the noise, which
is then removed by the methods developed for AWGN,
and subsequently the inverse of the stabilizing transform
is performed. While the generalized Anscombe transform
is commonly used as the stabilizing transform, improved
solutions are offered in [62], [63]. These and related works
are of great value in practice for they enable the widely
studied denoising methods for Gaussian noise (as those
that will be reviewed next) to be applicable to many
real applications with the noise arising from actual digital
imaging sensors.

Similarly, certain adaptations are needed in real imaging
applications to deal with clipping, i.e., censoring [51]
of the noisy images. The dynamic range of acquisition,
transmission and storage systems is always limited and
therefore the applications of standard denoising methods
that do not take this aspect specifically into account requires
in principle appropriate declipping transformations [60].

Another important aspect in practice is spatial variability
of the noise characteristics. Electronic sensors in combi-
nation with optical components in digital cameras tend
to produce spatially non-uniform noise. This is especially
interesting for the current high dynamic range (HDR)
applications [64], [65] that produce noise of different levels
in different parts of images. Therefore, denoising not only
needs to include noise estimation in local neighborhoods
but also to include a kind of soft transitioning of the
denoising strength spatially. These cases are outside the
scope of the present paper. The reader is referred to studies
that treat specifically realistic capture models for imaging
devices, see, e.g., [50]–[52] and a recent special issue [55]
and articles therein that address different aspects of camera
noise modelling [53], [54], [66]. The effect of mismatch
between the true and the estimated noise parameters is
addressed, e.g., in [67]. Adapting the denoising algorithms
to realistic capture models is crucial for alleviating the lim-
itations of current image denoising algorithms in practice.

III. TRANSFORM DOMAIN IMAGE DENOISING

Most of this Section will be devoted to wavelet domain
denoising, having on mind that the same principles apply
to related transforms that are generalizations of wavelets,
such as curvelets [68] and shearlets [69]–[71]. An alterna-
tive transform-domain denoising strategy, based on shape-
adaptive discrete cosine transform (DCT) is in [72].

The wavelet transform [73]–[76] naturally facilitates con-
struction of spatially adaptive image denoising algorithms.
The essential information content from a signal or an
image is compressed into a relatively few large coefficients,
which coincide with the areas of major spatial activity
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Fig. 2. A wavelet decomposition of a noisy image (DWT – discrete
wavelet transform). The coefficients along one line in a vertical
subband are shown in comparison with the noise-free reference.
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Fig. 3. The effect of wavelet thresholding (top) and representatives of
thresholding non-linearities (bottom).

(edges, corners, peaks, etc.). Additive white noise gets
spread over all the coefficients and at noise levels that
are of practical importance the most important coefficients
typically stand out of noise (see an example in Fig. 2).
This has motivated noise reduction via wavelet thresholding
[34], [35], [77], where all the coefficients with magnitudes
below a certain threshold are set to zero (see Fig. 3, top).
The remaining coefficients are either kept unchanged or
shrunk according to some rule. Hard thresholding keeps
the surviving coefficients unchanged and soft thresholding
reduces their magnitude by the value of the threshold.
A wavelet shrinkage non-linearity can be derived from
Bayesian estimation too [78].

Due to linearity of the wavelet transform, the additive
model (1) remains additive in the transform domain as well:

y = x + n (5)
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Fig. 4. Typical cost functions: (a) mean-square error and (b) uniform.

where y = Wdd are the observed wavelet coefficients,
x = Wdf are the noise-free coefficients, n = Wdϑ
is additive noise, and Wd is an operator that yields the
discretized wavelet coefficients. An orthogonal wavelet
transform maps the white noise in the input image into a
white noise in the wavelet domain, with the same variance
σ2. In the case of bi-orthogonal and non-decimated [76]
transforms, the noise variance differs from one wavelet
subband to another, depending on the resolution level and
on the subband orientation. The proportionality constant
which relates noise variance in a given subband to the input
noise variance is computed using the filter coefficients of
the wavelet transform [79], [80].

While early work on wavelet-based image denoising was
mostly concerned with defining shrinkage nonlinearities
and deriving optimal uniform thresholds (fixed per whole
subband) [35], [81], [82], it soon became clear that ma-
jor gains could be achieved by adapting these shrinkage
nonlinearities locally, depending on the spatial context
around each coefficient [36], [83]–[90]. Many of these
locally adaptive wavelet shrinkage methods were derived
in a Bayesian framework, under a given prior for spatial
clustering of important wavelet coefficients [83], [84], [88],
[90]–[92], a prior for a local spatial activity indicator [85],
[93] or joint statistics of neighbouring wavelet coefficients
[36], [85], [87], [89], [94]–[98]. In the following, some of
these concepts are outlined after a brief introduction into
Bayesian estimation, signal versus noise characterization
and subband statistics of natural images.

A. Bayesian shrinkage estimators

In general, Bayes’ rules are shrinkers [99]–[101] and
their shape in many cases has a desirable property: it can
heavily shrink small arguments and only slightly shrink
large arguments. The resulting actions on wavelet coef-
ficients can be very close to thresholding. The Bayesian
estimate x̂ minimizes the Bayes risk R, which is the
expected value of a cost C(x, x̂)

R , E{C(x, x̂)} =

∞∫
−∞

∞∫
−∞

C(x, x̂)pX,Y (x, y)dxdy (6)

The cost function is chosen such to measure user satis-
faction adequately and to yield a tractable problem [102].
Typically, the cost function depends only on the error of
the estimate xε = x̂ − x. Rewriting the joint density as

pX,Y (x, y) = pY (y)pX|Y (x|y), the risk becomes

R =

∫ ∞
−∞

pY (y)dy

∫ ∞
−∞

C(x− x̂)pX|Y (x|y)dx (7)

Two typical cost functions are illustrated in Fig. 4: the
mean-square error cost accentuates the effects of large
errors. Notice that in the resulting risk expression Rms =∫∞
−∞ pY (y)dy

∫∞
−∞(x− x̂)2pX|Y (x|y)dx the inner integral

and pY (y) are non-negative. Therefore Rms is minimized
by minimizing the inner integral. Differentiating the inner
integral with respect to x̂ yields

d

dx̂

∫ ∞
−∞

(x− x̂)2pX|Y (x|y)dx

= −2

∫ ∞
−∞

xpX|Y (x|y)dx+ 2x̂

∫ ∞
−∞

pX|Y (x|y)dx︸ ︷︷ ︸
1

(8)

Set this result to zero and the minimum mean-square error
(MMSE) estimate x̂ms follows as the conditional mean:

x̂ms =

∫ ∞
−∞

xpX|Y (x|y)dx (9)

The uniform cost (also called 0-1 loss) function in
Fig. 4(b) assigns zero cost to all errors less than ±∆/2
where ∆ > 0 is arbitrarily small. The corresponding risk is
Runf =

∫∞
−∞ pY (y)dy

[
1−
∫ −x̂unf+∆/2

−x̂unf−∆/2
pX|Y (x|y)dx

]
. To

minimize it, we maximize the inner integral. For arbitrarily
small nonzero ∆, this is equivalent to choosing the value x
at which the posterior density pX|Y (x|y) has its maximum
[102, p.57]. Hence the name maximum a posteriori (MAP)
estimate:

x̂unf = x̂map = arg max
x

pX|Y (x|y) (10)

In many cases of interest, the MAP and the MMSE esti-
mates coincide [102]. For a large class of cost functions the
optimum estimate is the conditional mean whenever the a
posteriori density is symmetric about the conditional mean.

Another class of Bayesian wavelet estimators shrinks a
coefficient directly in proportion to the posterior probability
that this coefficient contains an important signal component
[83], [90], [93], [103]:

x̂ProbShrink = P (H1|y)y (11)

where H1 denotes the hypothesis that the observation y
contains a significant noise-free component, i.e., a signal
of interest. This estimator can be motivated from the view
point of joint signal detection and estimation [104] under
certain assumptions [90], [105], [106].

Either we follow a classical Bayesian estimation ap-
proach or not, in most cases the denoising problem becomes
that of minimizing a sum of two terms: an observation cost
term, penalizing the estimation to depart form the obser-
vation, and a regularization term, penalizing the estimation
to depart from the typical image behaviour. To understand
this, observe that we can represent the prior model in terms
of a priori energy H(x), as pX(x) ∝ exp(−H(x)) (see
Section III-D for a concrete example, although with binary
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labels instead of x) and that pY |X(y|x) ∝ exp(−D(x, y)),
where D(x, y) is some distance between x and y. For i.i.d.
Gaussian noise with standard deviation σ, this is simply
D(x, y) = (y−x)2

2σ2 . Maximizing the a posteriori probability
pX|Y (x|y) is equivalent to maximizing its logarithm, which
in its turn reduces to minimizing λH(x) + D(y, x), with
λ > 0. Here, H(x) is a regularization term and D(y, x) is
the observation cost term, enforcing data fidelity.

B. Signal versus noise characterization

Bayesian shrinkers described above require specification
of the probability density functions of the ideal (noise-free)
coefficients pX(x) on the one hand, and the pdf of the
noisy coefficients pY (y), or the likelihood pY |X(y|x) on the
other hand1. In fact, recognizing and modelling statistical
differences between noise and uncorrupted images is key
to denoising. The distinctive properties of image features
versus noise make it possible to separate the noise from the
image content in the first place, and all (not only Bayesian)
methods make use of this insight, either explicitly or implic-
itly. While random image noise is typically characterized
by a given probability density function, or with a mixture of
multiple components with a relatively simple dependency
on the signal strength and possibly with spatially varying
parameters, depending on some external source, as it was
hinted in Section II, the characterization of natural images
is far more complex. There is a vast literature on natural
image modelling; the reader is referred to [107]–[115].

One can identify at least four distinct paths to character-
ize typical image properties that noise does not have:
• Sparsity in the analysis sense: the image content gets

“packed” into a few large coefficients, while the others
can largely be neglected. Consequently, the statistics
of images in the wavelet- and related domains strongly
departs from Gaussian and follows highly kurtotic
distributions [78] (see also Sections III-C, III-F).

• Sparsity in the synthesis sense: typical noise-free
images can be expressed as linear combinations of
relatively few spatially shifted atoms from a generic,
suitable dictionary. This is related to matching pursuit
[116] and basis pursuit denoising (BPDN) [41], [117]–
[122]; we list some related methods in Section IV-C.

• Spatial clustering: typical images posses spatially con-
nected geometric primitives (such as edges and con-
tours), which produce spatially connected clusters of
large coefficients. Moreover, the regularity of natural
image discontinuities (i.e., relatively soft transitions of
pixel intensities) guarantee survival of the large coef-
ficients across the scales [123] and their reappearance
at the same relative positions in different subbands,
which is exploited in the zerotree coding scheme [124].
See also the methods in Section III-D and III-E.

• Spatial repetitiveness: typical images present various
degree of self-similarity subject to spatial translation,
which can also be extended to rotation and translation.

1Notice that pX|Y (x|y) ∝ pY |X(y|x)pX(x).

This observation establishes a link between typical
images and texture [125]. Indeed, the non-local means
denoising algorithm [38], [39], [43] and derived ones
were inspired by a texture synthesis method [126]. We
return to this aspect in Sections III-G, IV-A and IV-B.

The seminal work in [123] and many follow-up papers
make use of the fact that signal coefficients and noise
coefficients propagate differently across the scales. The
noise coefficients diminish rapidly as the scale increases,
while the signal coefficients survive as a consequence of
the different local Lipschitz regularity of the signal- and
noise-induced discontinuities [123], [127].

The empirical probability density functions describing
the rate of propagation of the noise-free and noisy wavelet
coefficients across the scales have been reported in [90]
for the case of AWGN. An intersting observation is that
the pdf’s of the wavelet estimators of the local Lipschitz
regularity, named average cone ratios (ACR) in [90], are
only slightly affected by the noise level (and for pure
noise coefficients practically unaffected by the noise stan-
dard deviation). This makes denoising strategy with local
Lipschitz regularity especially iteresting at relatively high
noise levels, where the pdf’s of the magnitudes of the noisy
coefficients and pure noise are largely overlapping. This
aspect as well as joint distributions of the magnitudes and
their propagation across the scales was elaborated on in
[90]. A general procedure for estimating the empirical pdf’s
of the noisy coefficients on the one hand and merely noise
on the other hand, for unknown, arbitrary noise-types has
been presented in [128]. Striking differences in the shape
of joint conditional histograms of pairs of neighbouring
wavelet coefficients of natural images and Gaussian noise
have been shown in [109], [112].

C. Subband statistics, inter- and intrascale dependencies
We now look with somewhat more detail into the statis-

tical properties of natural noise-free images in the wavelet
domain. This subsection will also categorize the denoising
methods to be reviewed next, based on the type of statistical
dependencies among the coefficients that they incorporate.

As Fig. 5 (left) illustrates, histograms of noise-free
wavelet coefficients of natural images are typically sharply
peaked at zero (due to many nearly flat image regions)
and long-tailed (because very large coefficients arise at
positions of image discontinuities). The marginal pdf of
image wavelet coefficients is hence well modelled by
highly kurtotic models, such as generalized Laplacian (i.e.,
generalized Gaussian) [78], α-stable [129] and similar.
Common marginal prior models for wavelet coefficients
are also mixtures of two Gaussians (the Bernoulli-Gaussian
model), where the mixing parameter is constant in a given
subband [130] or estimated for each coefficient [84], [131],
[132]. A number of methods to be reviewed in Section
III-E and III-F, use Gaussian scale mixture models (GSM)
[133], where each coefficient is modeled as the product of a
positive scalar, and an element of a Gaussian random field.

Fig. 5 (right) illustrates also inter- and intrascale de-
pendencies among the wavelet coefficients: notice that
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Fig. 5. Left: An illustration of the marginal subband statistics in noise-free images, manifesting itself in highly kurtotic histograms of wavelet
coefficients. Right: An illustration of intrascale dependencies of image coefficients (large wavelet coefficients are typically spatially clustered) and
interscale dependencies (large coefficients appear at relatively same positions in different subbands).
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Fig. 6. Different ways of using coefficient dependencies for denoising. The interscale dependencies (although not depicted here) can be employed
similarly within each category of the methods.

large coefficients are spatially clustered within the same
subband, and appear at relatively the same positions at
different scales. Joint conditional histograms of pairs of
neighbouring wavelet coefficients (as well as of parent-
child pairs) for natural images show a characteristic bow-tie
shape [78], [109], [112].

Spatially adaptive transform domain methods typically
model one of the following phenomena, depicted in Fig. 6:
• spatial clustering properties of large coefficients;
• local spatial activity indicators;
• joint statistics of groups of coefficients;
• non-local similarities of the spatial context.

Each of these categories is reviewed briefly next.

D. Methods based on spatial clustering models
In order to model spatial clustering properties, it is

convenient to introduce hidden labels li ∈ {0, 1}, which

mark each coefficient xi as significant (if li = 1) or
insignificant (if li = 0). The label li can be seen as a
realization of a random variable Li. By modelling the field
L = {L1, ..., Ln} as a Markov Random Field (MRF) [134],
one can encode efficiently a priori knowledge about cluster-
ing of the significant and insignificant wavelet coefficients.
The joint probability of a MRF is a Gibbs distribution,
where the energy is represented as a sum of the so-called
clique potentials:

P (L = l) =
1

Z
exp

(
− 1

T

∑
c∈C

Vc(l)
)

(12)

Here Z denotes the normalizing constant (partition con-
stant), T the temperature (which controls the peakedness
of the distribution), c is a clique (a set of sites that are
all neighbors of each other for a particular neighbourhood
system), C the set of all possible cliques, and Vc(l) the
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Fig. 7. An illustration of stochastic sampling, employed to estimate
the probabilities that wavelet coefficients at different locations contain a
significant signal component.

clique potential, which is a function of all the labels li
belonging to the clique c. Typically, the goal is to favour
configurations where significant as well as insignificant co-
efficients form spatially connected clusters. Hence, negative
potential is assigned to a clique consisting of the labels of
the same type and a positive potential to a clique consisting
of different labels. Some of the representative approaches
[83], [86], [90], [103] apply stochastic sampling (e.g., the
Metropolis sampler [134]) to estimate the probability that
a given coefficient represents a signal of interest, given
all observed coefficients (within the subband) and the
assumed prior on their spatial clustering. Fig. 7 illustrates
this stochastic sampling procedure, where the probability
of signal presence is conditioned on a given significance
measure of the wavelet coefficients, such as their magnitude
m = {m1, ...,mn}, mi = |yi|. The resulting probabilities
P (Li = 1|m) can be plugged in into various Bayesian
estimators or used directly as shrinkage factors for the
wavelet coefficients:

x̂i = P (Li = 1|m)yi (13)

This estimator will act as a family of shrinkage non-
linearities, adapting itself to the local spatial context (pres-
ence of the detected geometrical structures) within each
subband.

A closely related class of methods applies the Hidden
Markov Tree (HMT) modeling framework [84], [92], [131],
[132], [135], which is naturally related to a decimated
wavelet representation where the parent – child relation-
ships are captured on a quadtree structure (see Fig. 8).
The pdf of noise-free wavelet coefficients is modelled by a
Gaussian mixture model of [130]:

p(xi) = p0
iN (0, σ2

i,0) + p1
iN (0, σ2

i,1) (14)

where p0
i = P (Li = 0), p1

i = 1 − p0
i . Each parent-

child link has a state transition matrix, characterized with
‘persistence probabilities’ p0→0

i and p1→1
i and ‘novelty

probabilities” p0→1
i = 1 − p0→0

i and p1→0
i = 1 − p1→1

i .
The parameters, grouped into a vector θ are computed
by “upward-downward” algorithms through the tree, and
model training detailed in [84]. Once the parameters are

l ∈ {0,1}
pY |L (y | 0)

pY |L (y |1)

Fig. 8. An illustration of the HMT model. Left: a stochastic process on
a quadtree, with hidden labels (red dots) attached to wavelet coefficients
(black dots). Right: the marginal pdf as a mixture of two Gaussians.

estimated, the wavelet coefficients are estimated as

x̂i = E(xi|yi,θ) =
∑

q∈{0,1}

P (Li = q|yi,θ)
σ2
q,i

σ2
n + σ2

q,i

yi

(15)
where σn is the noise standard deviation. Commonly men-
tioned problems are a large number of unknown parameters,
convergence and lack of spatial adaptation. The spatial
context can be introduced via an additional hidden label,
leading to a local contextual HMT model [131].

E. Methods based on spatially local signal modelling

Spatial clustering methods from the previous Section
model global clustering properties based on local inter-
actions. E.g., the MRF-based approach models plausible
support configurations (masks indicating the positions of
important discontinuities) for the entire subband. Effective,
low-complexity wavelet domain image denoisers can be
also constructed by adapting a shrinkage non-linearity only
locally, according to a value of a given local spatial activity
indicator, such as the local variance, the locally averaged
coefficient magnitude, the value of the “parent” coefficient
or a certain combination of these.

The main idea is that such an activity indicator can
provide a more reliable information about the presence
of actual signal structures at the current position than
the coefficient magnitude alone. This concept has been
employed within a number of different schemes, some of
which are briefly outlined below. In all of these, a family
of shrinkage characteristics exists such that the coefficient
of a given magnitude becomes less suppressed if the local
spatial activity is higher and vice-versa (see an illustration
in Fig. 6, upper right).

When the distribution of noise-free wavelet coefficients
pX(x) is modelled as a product of a Gaussian random
variable and a multiplier derived from its local surrounding,
the MMSE estimate in (9) becomes the locally adaptive
Wiener filter [85], [87], [89], [136]. For example, it can
be observed that the histogram of the wavelet coefficients,
in a given subband, scaled by their local standard devia-
tions approaches well the Gaussian distribution [85]. By
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modelling the wavelet coefficients as conditionally inde-
pendent zero mean Gaussian random variables, given their
local variances, the MMSE estimator is a locally adaptive
Wiener filter: x̂l = σ2

y,lyl/(σ
2
y,l + σ2

n), which is practically
implemented as

x̂l =
σ̂2
y,l

σ̂2
y,l + σ2

n

yl (16)

where σ̂y,l is an estimate of σy,l, formed based on the coef-
ficients from a local window Nl. The maximum likelihood
(ML) estimate of the signal variance is2

σ̂2
y,l(ML) = max

(
0,

1

n

∑
i∈Nl

y2
i − σ2

n

)
(17)

It has been observed that histograms of these estimates
of the signal variance follow an exponential distribution,
which motivated deriving the MAP estimate3 under the
exponential prior p(σy) = λe−λσ

2
y , as [85]

σ̂2
y,l = max

(
0,

n

4λ

(
−1 +

√
1 +

8λ

n2

∑
i∈Nl

y2
i

)
− σ2

n

)
(18)

where n denotes the number of the coefficients in a given
subband. The resulting approach is known as LAWMAP,
from locally adaptive window-based denoising using MAP.
Related approaches include [136] and [87], [89] which
employ Gaussian Scale Mixture models (the spatial activity
indicator is a random multiplier for the Gaussian density).

An elegant BiShrink estimator employs the parent coef-
ficient as a local spatial activity indicator. Denoting by ypl
the parent of the coefficient yl (the wavelet coefficient at
the corresponding relative location in the coarser subband
of the same orientation), the BiShrink estimator of [137] is

x̂l =

(√
y2
l + (ypl )2 −

√
3σ2

n

σ

)
+√

y2
l + (ypl )2

yl (19)

where (x)+ = x if x ≥ 0, and is zero otherwise. This
estimator was derived under the MAP criterion, assuming
an empirically established joint parent-child distribution
p(xl, x

p
l ) = 3

2πσ2 exp
(
−
√

3
σ

√
x2
l + (xpl )

2
)

.
In essence, a well defined local spatial activity indicator

refines estimation of the probability that a given coeffi-
cient represents a signal of interest. A spatially adaptive
ProbShrink estimator of [90] defines the LSAI as a locally
averaged coefficient magnitude zl = 1

|N(l)|
∑
k∈N(l) |yk|

and estimates the noise-free coefficient as

x̂l = P (H1|yl, zl)yl =
ηlξlµ

1 + ηlξlµ
yl (20)

where ηl = p(yl|H1)/p(yl|H0), ξl = p(zl|H1)/p(zl|H0)
and µ = P (H1)/P (H0), with H0 and H1 denoting the
hypotheses that the signal of interest is absent or present
in yl, respectively. The required ηl, ξl and µ are estimated
from the observed noisy coefficient histogram, under an

2This follows from σ̂2
y,l,ML = arg maxσ2

y>0

∏
i∈Nl

p(yi|σ2
y) when

p(yj |σ2
y) = N (0, σ2

y + σ2
n).

3The MAP estimate: arg maxσ2
y>0

∏
i∈Nl

P (yi|σ2
y)p(σ2

y).

Fig. 9. An illustration of denoising digital camera image with spatially
adaptive wavelet shrinkage. Left: original image. Right: the result of
applying ProbShrink estimator from Eq (20).

appropriate prior for the noise-free coefficients, like the
generalized Laplacian.

F. Methods using joint statistics of groups of coefficients

As opposed to calculating a single number from a group
of wavelet coefficients in order to describe the spatial activ-
ity in a local neighbourhood, one can also model groups of
wavelet coefficients jointly. Such models can also suppress
correlated noise where the previously described methods
fail. The work of [89] is pioneering in this field, and has
inspired others that we review here. For the purpose of
clarity, we start from a vectorized version of the ProbShrink
estimator from [98], which replaces (20) by

x̂l = P (H1|yl)yl (21)

where yl denotes a vector of wavelet coefficients from
a window centred at l. Fig. 10 illustrates characteristic
parts of this estimator on a simplified example, where yi
consists of two neighbouring coefficients only, showing
the statistics of the corresponding noise-free vectors xi
and the resulting estimator from (21). An important aspect
here is generalizing the definition of the signal of interest
to a multivariate case. Typically, the signal of interest
was defined as a noise-free component above a certain
threshold T = kσ, where k is a proportionality constant
and σ noise standard deviation. This can be written as:
S(x) = I(|x| ≤ kσ) = I(|x/σ| ≤ k), where I(x) is
the indicator function (I(x) = 1 if x is true and zero
otherwise). A multivariate extension is:

S(x) = I(‖Cn
−1/2x‖ ≤ k) (22)

While the estimator (21) in general outperforms its simpler
version with LSAI from (20), the advantage becomes
especially obvious when it comes to the suppression of
correlated noise. As Fig. 11 illustrates, ProbShrink from
(20), which was quite successful in removing white noise
from a digital camera image in Fig. 9, now completely fails
in removing the correlated noise, while its vector version
(21) removes even this difficult noise type remarkably well.
This is because the univariate estimator (20) is blind for the
noise structure, while its vector version (21) takes the noise
structure into accounnt through the noise covariance matrix
Cn appearing in (22). Similar performance is guaranteed
by other wavelet domain methods using joint coefficient
statistics, such as [36], [89], [95], [96], [98]
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x̂i = P(H1 | yi )yi

Fig. 10. An illustration of the vector ProbShrink estimator from Eq (21) on a simplified example where joint statistics is calculated for pairs of
wavelet coefficients. Top row illustrates fitting a joint pdf, where H0 and H1 denote the hypotheses corresponding to the absence and the presence
of the signal of interest, respectively. The bottom row shows the two joint conditional densities corresponding to H0 and H1 (i.e., pX|L(x|0) and
pX|L(x|1), respectively, where the random variable L labels the central coefficient as insignificant or significant) and the resulting estimator.

Best known wavelet shrinkage method based on the
joint statistics of the wavelet coefficients is the Bayesian
Least Squares estimator using Gaussian Scale Mixture
model (BLS-GSM) [36]. The coefficients within each local
neighbourhood are modelled by a product of a Gaussian
zero mean vector uj and an independent positive scalar
random variable

√
z, called random multiplier:

xj
d
=
√
zuj (23)

where d
= denotes equality in distribution. Under this

model, the vector x is an infinite mixture of Gaussian
vectors, whose density is determined by the covariance
matrix Cu and the mixing density pZ(z): pX(xj) =∫
p(xj |z)pZ(z)dz, with p(xj |z) = N (xj ; 0, zCu). The

density of the observed vector yj =
√
zuj + nj is also

zero mean Gaussian, with covariance zCu + Cn, which
yields

E(xj |yj , z) = zCu(zCu + Cn)−1yj (24)

The BLS estimator seeks the least squares estimate of
the central coefficient xj of the vector xj , which is the
conditional mean

x̂j = E(xj |yj) =

∫ ∞
0

pZ|Y(z|yj)E(xj |yj , z)dz (25)

In practical calculations, E(xj |yj , z) is obtained by diag-
onalizing (24) and restricting it only to the central coef-
ficient xj , and the posterior distribution of the multiplier
pZ|Y(z|yj) is obtained from the Bayes’ rule pZ|Y(z|yj) =

pY|Z(yj |z)pZ(z)/
∫∞

0
pY|Z(yj |z)pZ(z)dz under the as-

sumed prior on z and using the normal distribution
N (yj ; 0, zCu + Cn) for pY|Z(yj |z), as detailed in [36].
This estimator has been since its introduction in 2003
among the most effective wavelet shrinkage methods to
date. One limitation is that the signal covariance matrix
is assumed to be constant within a subband up to a scaling
factor. A richer representation and somewhat improved per-
formance is hence offered by extensions, such as spatially
varying GSM models [96] and orientation adaptive GSM
[95]. A true generalization is offered by the mixture of
GSM, known as MGSM [138], [139]. An efficient imple-
mentation of the MGSM model, called mixture of projected
GSMs (MPGSM) was reported in [97]. Another extension
is the so-called fields of GSM [140], which combines GSM
with MRF modelling achieving thereby another level of
adaptation to the actual signal structure. The improved
performance comes at the expense of a more complex
model.

G. Methods using non-local similarities

The fourth and the last category of spatially adaptive
wavelet shrinkage methods from Fig. 6 employs non lo-
cal dependencies among the transform coefficients and
their surroundings. Natural images exhibit non-local self-
similarities: relatively small image areas reappear often
with exactly or nearly the same content at different places
in the image. Grouping and processing together these
similar image patches leads to the state-of-the-art denoisers.
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Fig. 11. An illustration of correlated noise suppression using joint
statistics in the wavelet domain. Left: Input image affected by correlated
noise. Middle: the result of applying ProbShrink estimator from Eq (20).
Right: the result of applying vector ProbShrink estimator from Eq (21).
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Fig. 12. An illustration of the Mixtures of Gaussian Scale Mixtures
(MGSM) model of [138], [139].

Although this approach was originally applied in the image
domain [38], [39], it can also be implemented in the wavelet
domain or another transform domain, as well as in a hybrid
way (combining the image and the transform domains) as
in [42]. These methods will be addressed with some more
detail in Section IV.

H. Gain from over-complete representations

All the denoising principles and estimators described so
far in this Section are also directly applicable in other
“wavelet-like” domains and pyramidal decompositions,
such as the dual tree complex wavelet transform [141],
[142] steerable pyramids [36], curvelets [68], shearlets
[71] and contourlets [143]. These and related transforms
have been proposed to improve the directional selectivity
and approximation properties when it comes to analysing
images and other multi-dimensional signals, which is also
reflected in an improved denoising performance. Applying
the same wavelet shrinkage rule in a redundant, non-
decimated wavelet transform instead of the critically sam-
pled (orthogonal) one, improves easily the signal-to-noise-
ratio (SNR) of the denised image by 1dB or even more
(see, e.g., [93], [144]). In the same way, porting the wavelet
shrinkage estimator to a highly redundant and orientation
selective transform, such as the steerable pyramid, curvelet
or shearlet transform yields yet another significant im-
provement in terms of SNR as well as in terms of visual
quality [71], [145], [146]. Figure 13 illustrates this with
an example where the same estimator (in this particular

Fig. 13. The effect of using different multiscale transforms. Top: an
original image and its noisy version. Bottom: the results of applying the
same shrinkage rule (see text) in the wavelet domain (left) and in the
curvelet domain (right). Notice different artefacts in these two results,
each reflecting the particular base functions.

Fig. 14. An illustration of NLM from Eq (26), (27). In practice, it runs
within a sliding window, as marked by the shaded block in this image.

case, ProbShrink from (20)) is applied in a non-decimated
wavelet transform and in the curvelet domain. The artefacts
due to unsuppressed noisy coefficients are now much less
disturbing; these artefacts always reflect the shape of the
base functions, resembling chekerboard patterns in the case
of wavelets and faint lines with curvelets.

IV. PATCH-BASED METHODS

Patch based methods manipulate small image blocks
(patches). By grouping similar contexts throughout the
image, significant improvements are achieved over the more
traditional pixel-based and local techniques.
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A. Non-local means and generalizations

Averaging over a number of small areas that are equal up
to an added white noise component, suppresses the noise
while ideally preserving the underlying structure. Instead
of searching explicitly for nearly identical neighbourhoods,
one can allow merging all neighbourhoods with weighting
factors that depend on their proximity to the neighbour-
hood of the processed pixel. This way, non-local methods
estimate every pixel intensity based on information from
the whole image, making use of the non-local pattern
similarities. The idea comes from texture synthesis [126].

The Non-Local Means (NLM) filter [38], [39] considers
the AWGN model (1) and estimates a noise-free pixel
intensity as a weighted average of all pixel intensities
in the image, where the weights are proportional to the
similarity between the local neighbourhood of the pixel
being processed and local neighbourhoods of surrounding
pixels (see Fig. 14). Denote by di = fi + ϑi a noisy pixel
at position i and by di a small window of noisy pixels
centered at i. The non-local means estimate of the noise-
free pixel is

f̂i =

∑
j w(i, j)dj∑
j w(i, j)

(26)

where the weights w(i, j) measure mutual similarity be-
tween the two local neighbourhoods di and dj :

w(i, j) = exp
(
−||di − dj ||2

2h2

)
(27)

with a parameter h > 0. The complexity of NLM is
quadratic in the number of pixels in the image, which
makes the technique computationally intensive and even
impractical in some real applications. The processing is
typically confined to sliding windows rather than running
over the whole image. Various improvements have been
reported for enhancing the visual quality and reducing the
computation time. These include better similarity measures
[147], adaptive local neighbourhoods [148], and various
algorithmic acceleration techniques [149]. With a pre-
whitening filter, the NLM filter can be applied to correlated
noise as well (see Fig. 15).

B. Collaborative filtering

The so-called collaborative filtering approach [42]
groups similar 2D neighbourhoods, applies a 3D trans-
formation (like 3D wavelet or discrete cosine transform)
to these groups of similar 2D patches and removes noise
from the 3D coefficients. After the inverse transform,
the patches are returned to their corresponding locations.
Fig. 16 illustrates this principle. Searching for similar 2D
patches involves block matching; hence this approach was
named in [42] BM3D (referring to block matching and 3D
transformation). The noise reduction in each of the 3D
cubes is performed by a shrinkage operation (like hard-
or soft-thresholding or by Wiener filtering). Practically, the
BM3D method is implemented in two stages: in the first
stage, patch grouping and collaborative filtering with simple
hard thresholding are applied to produce a basic estimate

Prewhitening	
   Weight	
  func/on	
  

NLMeans	
   f̂i

di
di
prewhit

w(i, j)

Fig. 15. A pre-whitening filter can be employed to adjust the computation
of the weight coefficients of the NLM filter, such to enable suppression
of correlated noise. Top-to bottom: an adjustment of NLM for correlated
noise [149], an input image with coloured noise and the filtering result.

(i.e., an initial estimate of the noise-free image). This
basic estimate is then exploited in the second stage to find
more reliably self-similar noisy patches and to obtain an
estimate of the true energy spectrum needed for the Wiener
filtering of the noisy 3D cubes. The denoising superiority
of BM3D has been attributed to enhanced sparsity in the
transform domain: a 3D wavelet or a related transform
applied to stacks of similar patches will yield much sparser
coefficients than a collection of 2D transforms applied to
each patch separately. A related method was introduced in
[150] using both geometrically and photometrically similar
patches to optimize the parameters of the Wiener filter.

Even though these methods provide current state-of-
the-art in denoising, they are inherently limited by the
efficiency of the underlying patch matching. The search for
similar patches is most often restricted to a relatively small
portion of the image, because allowing the search over the
entire image tends to be prohibitively expensive. Hence, the
denoising performance gets occasionally considerably de-
graded locally due to the lack of similar patches that could
effectively be found. In response to these shortcomings, it
has been studied how to make use of information from the
entire image more efficiently, without having to visit all the
spatial locations when searching for similar patches. E.g.,
a global denoising method of [45] employs the Nÿstrom
method, to exploit the global image information while
sampling only a fraction of the total pixels. The actual
denoising performance was similar to BM3D, but the oracle
performance showed promise for further research.

C. Dictionary learning based methods

Recent image processing methods often employ over-
complete dictionaries of learned image atoms for sparsely
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Fig. 16. An illustration of the BM3D method [42].

representing image patches. Instead of employing a pre-
defined set of basis functions, these approaches learn a
dictionary from examples. Triggered by the pioneering
work [151] on learning a sparse code of natural images,
numerous dictionary learning methods have been designed,
K-SVD [41] being one of the most frequently used ones.
Comprehensive tutorials on dictionary learning for sparse
image representation include [120], [152].

The main idea of denoising methods based on dictionary
learning is to present each image patch (of a predefined
size) as a linear combination of relatively few atoms from
the corresponding learned dictionary Γ, while respecting
the proximity with the degraded, observed image version. In
practice, it means that the estimate of the underlying noise-
free image f̂ and the sparse coefficients α̂i for each of its
patches fi need to be simultaneously estimated. Denoting
by ri a vector that extracts i-th image patch of a given
size from f (in a raster-scan fashion), the problem can be
formulated as follows [118]:

{{α̂i}i, f̂} = arg min
f

(
λ||f − g||22

+
∑
i

µi||αi||0 +
∑
i

||Γα̂i − rif ||22
)

(28)

where λ and µi are positive constants. In this expression,
the first term imposes the proximity between the measured
image d and its denoised (and unknown) version f . The
second and the third terms make sure that in the constructed
image every patch fi = rif in every location i has a sparse
representation with bounded error. In general, there are two
options for training the dictionary Γ [118]: 1) using patches
from the corrupted image d itself or 2) training on a corpus
of patches taken from a high-quality set of images.

V. CHOOSING THE RIGHT METHOD

The ultimate objective of image denoising is to produce
an estimate f̂ of the unknown noise-free image f , which
approximates it best, under given evaluation criteria. Like
in any estimation problem, an important objective goal
is to minimize the error of the result as compared to
the unknown, uncorrupted data. A common criterion is
minimizing the mean squared error (MSE)

MSE =
1

N
||f − f̂ ||2 =

1

N

N∑
i=1

(fi − f̂i)2 (29)

One can express the signal to noise ratio (SNR) in terms
of the mean squared error as

SNR = 10 log10

||f ||2

||f − f̂ ||2
= 10 log10

||f ||2/N
MSE

(30)

where SNR is in dB. In image processing, the peak signal
to noise ratio (PSNR) is more common. For grey scale
images it is defined in dB as

PSNR = 10 log10

2552/N

MSE
(31)

The aforementioned performance measures treat an im-
age simply as a matrix of numbers and as such do not reflect
faithfully perceived visual quality. For example, it is a well
established fact that people tolerate certain amount of noise
in an image better than a reduced sharpness and this cannot
be captured by a mean squared error. Our visual system is
also highly intolerant to various artifacts, like “blips” and
”bumps” [34] in the reconstructed image. The importance
of avoiding those artifacts is not only cosmetic; in certain
applications (like astronomy, or medicine) such artifacts
may give rise to wrong data interpretation. Moreover, the
visual quality is highly subjective [153], and it is difficult to
express it in objective numbers. There exist certain objec-
tive criteria, for expressing the degree of edge preservation
(e.g., [154]). The structural similarity index (SSIM) [155]
is a metric that was specifically designed for predicting
the perceived quality of digital images. Image denoising
methods are typically compared based on objective metrics
(PSNR) and perceptual metrics, such as SSIM. For an
overview of recent visual quality metrics and databases for
image quality evaluation, see, e.g., [156].

Each of the different denoising approaches presented
above may have certain advantages over the others, either
in terms of the achievable quality of results, preservation of
particular type of details or in terms of complexity, perfor-
mance guarantees or capability to be extended to more gen-
eral and mixed noise types, etc. Based on the many reported
studies, including studies on the performance bounds [157]
and recent comprehensive technical reviews [47], it can be
concluded that non-local methods yield in most cases better
results than the local ones in terms of PSNR and SSIM
measures. Their performance is typically improved by using
multiresolution representations. The use of overcomplete
(redundant) representations offers improved performance
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for both local and non-local techniques, and the adaptive
bases usually provide better performance than the fixed
(non-adaptive) ones.

The improvements from non-local processing and from
using adaptive bases typically come at a price of a consider-
ably increased complexity and computation time. Moreover,
even though non-local patch based methods yield superior
quality in most cases, they are also prone to increased risks
of deleting tiny non-repetitive image details and introducing
falsely a non-exiting detail, due to combining the image
content non-locally. Hence, the advantages and limitations
of the different approaches should be evaluated in view of
the priorities for a particular application. When denoising
is applied to digital camera images or television images,
methods that yield sharp and visually pleasing results
should be preferred. In other applications, where the goal is
to facilitate feature extraction or content interpretation (as it
is often the case in remote sensing and medical imaging),
some other priorities may be set, among which avoiding
artefacts that could interfere with the image content.

VI. FUTURE PROSPECTS

Patch-based processing exploiting self-similarity in the
image is becoming a widely accepted approach in image
processing in general, including image restoration and
denoising. However, patch-based methods are strictly de-
pendant on patch matching and their ability is hamstrong
by the ability to reliably find sufficiently similar patches
[45]. Hence, development of efficient strategies for finding
self-similar patches (e.g., using smart indexing schemes
and innovative hashing methods) is expected to have a
huge impact on future developments in image processing
in general, including denoising. A very interesting recent
research line is incorporating the characteristics of the
human visual system to measure the patch similarity [158].

Further on, dictionary learning methods in combination
with non-local processing, offer a great potential for denois-
ing. However, recent studies like [47] underline the prob-
lems arising from the lack of structure in the dictionaries
employed by the current methods and identify the use of
more structured dictionaries as one of the main research
lines for advancing further image denoising. Some ideas
in this respect can be drawn from the research on locally
learned dictionaries [157], structured dictionary learning
[159] and clustering-based sparse representations [160].

Interestingly, there is no formal model yet for expressing
pattern repetitiveness in images and image redundancy,
which is a surprising fact considering the importance and
success of non-local patch based methods. Perhaps this is
a promising line for future research.

Learning dictionaries of image atoms already makes a
bridge between image processing and machine learning dis-
ciplines. Other connections with machine learning appear
in recent image denoising works too [161]. Deep learning
[162]–[164] as an emerging approach within the machine
learning community is currently being explored as one of
the new avenues in image denoising. In general, learning

algorithms for deep architectures are centred around the
learning of useful representations of data, which are better
suited to the task at hand, and are organized in a hier-
archy with multiple layers [165]. Representatives of deep
learning methods for image denoising include [166], [167]
based on convolutional neural networks (CNN) [168] and
[169] based on deep belief networks (stacked autoencoders)
[162], [170]. These approaches are already challenging in
performance the state-of-the-art in image denoising and are
rapidly progressing.
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[129] A. Achim and E. E. Kuruoğlu, “Image denoising using bivariate α-
stable distributions in the complex wavelet domain,” IEEE Signal
Process. Lett., vol. 12, no. 1, pp. 17–20, Jan. 2005.

[130] H. A. Chipman, E. D. Kolaczyk, and R. E. McCulloch, “Adaptive
Bayesian wavelet shrinkage,” J. of the Amer. Statist. Assoc, vol. 92,
pp. 1413–1421, 1997.

[131] G. Fan and X. G. Xia, “Image denoising using local contextual hid-
den Markov model in the wavelet domain,” IEEE Signal Processing
Letters, vol. 8, no. 5, pp. 125–128, May 2001.

[132] J. Romberg, H. Choi, and R. Baraniuk, “Bayesian tree structured
image modeling using wavelet-domain hidden Markov models,”
IEEE Trans. Image Process., vol. 10, no. 7, pp. 1056–1068, July
2001.

[133] D. Andrews, , and C. Mallows, “Scale mixtures of normal distri-
butions,” J. Royal. Statist. Soc. B, vol. 36, no. 1, pp. 99–102, 1974.

[134] S. Z. Li, Markov Random Field Modeling in Image Analysis.
Springer, 2009.

[135] J. Romberg, H. Choi, R. Baraniuk, and N. Kingsbury, “Multiscale
classification using complex wavelets and hidden Markov tree
models,” in Proc. IEEE Internat. Conf. on Image Proc. ICIP,
Vancouver, Canada, 2000.

[136] X. Li and M. Orchard, “Spatially adaptive denoising under over-
complete expansion,” in Proc. IEEE Internat. Conf. on Image Proc.,
Vancouver, Canada, Sept. 2000.
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[152] I. Tošić and F. P., “Dictionary learning: What is the right represen-
tation for my signal?” IEEE Signal Process. Mag., vol. 28, no. 2,
pp. 27–38, Mar. 2011.

[153] P. Barten, Contrast Sensitivity of the Human Eye and Its Effects on
Image Quality. Bellingham, WA: SPIE Press, 1999.

[154] F. Sattar, L. Floreby, G. Salomonsson, and B. Lövström, “Image
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