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Abstract— Spectral unmixing is an important technique in
hyperspectral image applications. Recently, sparse regression has
been widely used in hyperspectral unmixing, but its performance
is limited by the high mutual coherence of spectral libraries.
To address this issue, a new sparse unmixing algorithm, called
double reweighted sparse unmixing and total variation (TV),
is proposed in this letter. Specifically, the proposed algorithm
enhances the sparsity of fractional abundances in both spectral
and spatial domains through the use of double weights, where one
is used to enhance the sparsity of endmembers in spectral library,
and the other is introduced to improve the sparsity of fractional
abundances. Moreover, a TV-based regularization is further
adopted to explore the spatial–contextual information. As such,
the simultaneous utilization of both double reweighted l1 mini-
mization and TV regularizer can significantly improve the sparse
unmixing performance. Experimental results on both synthetic
and real hyperspectral data sets demonstrate the effectiveness of
the proposed algorithm both visually and quantitatively.

Index Terms— Double weights, hyperspectral unmixing, sparse
regression, total variation (TV).

I. INTRODUCTION

DUE to low spatial resolution as well as the presence
of microscopic material mixing and multiple scattering,

mixed pixels are commonly present in hyperspectral imagery.
To some extent, the existence of mixed pixels restricts the
processing and application of hyperspectral images in practice
[1], [2]. Thus, spectral unmixing has been an important
technique for hyperspectral data exploitation, which decom-
poses a mixed pixel into a collection of constituent materials
called endmembers and their corresponding abundances [3].
To date, many methods have been proposed for hyperspectral
unmixing, most of which are based on the linear mixing
model (LMM). It assumes that the observed pixel spectrum is a
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linear combination of endmember signatures weighted by their
associated fractional abundances. From LMM, geometrical and
statistical methods are the two most widely used classes of
techniques [5]. However, they generally require the estimation
of the number of endmembers and/or the presence of pure
pixels in a given scene. Recently, sparse unmixing [6] has
been proposed to overcome these issues, which opens up
new perspective to perform spectral unmixing. As a semisu-
pervised approach, it amounts to finding the optimal subset
of signatures from a (potentially very large) spectral library
that can best model each mixed pixel. The sparse unmixing
algorithm via variable splitting and augmented Lagrangian
(SUnSAL) [6], [7] is the seminal work developed for this
purpose, making use of the fact that there are typically
only a few endmembers inside a pixel compared with the
large spectral library. Nevertheless, the high correlation of
spectral libraries imposes some limitations to the perfor-
mance of SUnSAL. To mitigate them, Iordache et al. [8]
introduce the total variation (TV) regularizer to integrate
the spatial–contextual information of hyperspectral data and
propose the SUnSAL-TV algorithm from SUnSAL. However,
SUnSAL-TV may yield oversmoothness and blurred bound-
aries. From different perspectives, the joint sparsity is also
investigated to develop collaborative SUnSAL (CLSUnSAL)
in [9] by assuming that all the observed pixels in a hyper-
spectral image have the same active set of endmembers.
In [10] and [11], an l p (0 < p < 1) norm is utilized to
replace the standard l1 norm in SUnSAL for the purpose of
yielding sparser solution. Though showing some unmixing
performance improvement, this sparsity-promoting norm strat-
egy only exploits the column sparsity of the abundance matrix.

Inspired by the success of the reweighted l1 minimization
for enhancing sparsity [12], a new sparse unmixing algorithm,
called double reweighted sparse unmixing and TV (DRSU-
TV), is proposed in this letter. The proposed DRSU-TV
simultaneously explores the spectral–spatial dual sparsity as
well as the spatial smoothness of fractional abundances. The
main contributions of this letter can be summarized as follows.

1) A double reweighted sparse unmixing model is formu-
lated. Specifically, one weight is introduced to enhance
the column sparsity of the fractional abundances in the
sense that a hyperspectral image typically contains fewer
endmembers compared with the overcomplete spectral
dictionary, whereas the other weight is to promote
sparsity along the abundance vector corresponding to
each endmember.
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2) In view of the importance of considering the spatial
information for sparse unmixing, a TV-based
regularization is further incorporated for encouraging
spatial homogeneity while preserving discontinuities.
Thus, the spatial information is also investigated. The
simultaneous utilization of both TV regularizer and
double reweighted l1 minimization can significantly
improve the sparse unmixing performance.

II. METHODOLOGY

This section details the proposed DRSU-TV algorithm,
including the model formulation and its optimization by the
alternating direction method of multipliers (ADMM) [13].

A. Formulation of Proposed DRSU-TV Model

Let A ∈ R
L×m denote a spectral library having m spec-

tral signatures. Instead of the spectral endmembers directly
extracted or generated from the hyperspectral data, linear
sparse unmixing amounts to finding the optimal subset of
spectral samples in A to best model each mixed pixel in the
scene. Typically, we have

y = Ax + n (1)

where y and n are the observed spectral and noise vectors,
respectively. x ∈ R

m×1 denotes the fractional abundance
vector with regard to the library A, subject to two physical
constraints: abundance nonnegativity constraint and abundance
sum-to-one constraint (ASC) (i.e., x ≥ 0 and

∑m
i=1 xi = 1).

Here, only a few of the signatures contained in A are likely
contributing to the observed mixed pixel, such that x contains
many zero values (i.e., it is sparse).

In [6] and [7], sparse unmixing is formulated as an l2 − l1
norm optimization problem by surrogating the l0 norm of the
original regularization, that is

min
x

1

2
‖y − Ax‖2

2 + λ‖x‖1, s.t. x ≥ 0 (2)

with λ being a regularization parameter. The first term
accounts for the pixel reconstruction error, while the second
term imposes sparsity in the solution. The ASC constraint is
not explicitly added in (2) because of the following: 1) it
should be replaced by a generalized ASC due to strong sig-
nature variability in a real image, which will be automatically
imposed by the nonnegativity of the sources (i.e., x ≥ 0) [7]
and 2) the combination of ASC with the l1-norm regularization
does not induce sparsity [11]. The SUnSAL algorithm is
proposed to solve (2) in [6] and [7], which, however, is heavily
influenced by the high correlation of spectral libraries due to
the underdetermined nature of (2). To admit a sufficiently
sparse solution for sparse unmixing will guarantee a more
accurate abundance estimation. In this context, given the
spectral library, the sparsity-promoting norm regularization
seems to be a natural way. In [9], CLSUnSAL imposes the
joint sparsity with an l2,1 mixed norm among the endmembers
simultaneously for all of the pixels. In [10] and [11], the l p

(0 < p < 1) norm is proposed as an alternative to the l1 norm
in SUnSAL for the purpose of promoting sparsity besides
allowing the ASC. Nevertheless, this kind of strategy only

exploit the sparsity of actual spectral signatures in spectral
library, i.e., that among columns of the abundance matrix.

From a different perspective, we propose to utilize the
reweighted l1-norm idea originally introduced in [12], which
can efficiently enhance the sparsity of the solution and improve
the estimation performance over the l1 norm. This way we
investigate the spectral–spatial dual sparsity to construct a
double reweighted sparse unmixing model. For any given
hyperspectral image with n pixels, (1) can be written in
a compact matrix form, i.e., Y = AX + N, where Y =
[y1, · · · , yn] ∈ R

L×n is the observed data matrix, and X =
[x1, · · · , xn] ∈ R

m×n and N = [n1, · · · , nn] ∈ R
L×n ,

respectively, refer to the abundance and noise matrices. The
sparse unmixing of double reweighted l1-norm minimization
is formulated as follows:
min

X

1

2
‖Y − AX‖2

F + λ‖W2 � (W1X)‖1,1, s.t. X ≥ 0 (3)

where the operator � denotes the elementwise multi-
plication (i.e., Hadamard product) of two variables, and
‖X‖1,1 ≡ ∑n

j=1 ‖x j ‖1 with x j being the j th column of X.
In (3), the first weight W1 is introduced to promote the

column sparsity of the fractional abundances in the sense that
a hyperspectral image typically contains fewer endmembers
compared with the overcomplete spectral dictionary. Due to
the unavailability of X, we adopt an iterative reweighted
approach [12] to design W1

W(t+1)
1 = diag

[
1

‖X(t)(1, :)‖1 + ε
, . . . ,

1

‖X(t)(m, :)‖1 + ε

]

(4)

in which ε > 0 is a stabilization parameter and X(t)(i, :)
represents the i th row of X estimated in the tth iteration.
Here, W1 ∈ R

m×m exhibits a diagonal form, with each
entry being inversely proportional to the l1-norm value of the
corresponding abundance vector estimated from the previous
iteration. This suggests that large weights could be used to
discourage nonzero row vectors in the recovered abundance
matrix, whereas small weights could be used to encourage
nonzero row vectors. Although W1 enhances the sparsity of
endmember spectra in library A, it equally treats all of the
entries in each abundance vector. Actually, the hyperspectral
abundance maps are inherently sparse. That is to say, it is
generally unlikely that the same material is present in every
pixel of the given scene. Therefore, the second weight W2
is proposed to promote sparsity along the abundance vector
corresponding to each endmember. Similarly, we define its
element of W2 ∈ R

m×n as follows:
W(t+1)

2 (i, j) = 1

X(t)(i, j) + ε
. (5)

Obviously, the large weights of W2 discourage nonzero entries
in the estimated abundance, and vice versa. As such, the
double reweighted l1 norm will simultaneously give rise to the
sparsity promotion of nonzero abundance vectors as well as
that of their nonzero entries by iteratively penalizing the com-
ponents with the low row-norm and/or low abudance value.

Furthermore, in view of the importance of considering the
spatial information for sparse unmixing [8], we consider the
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fact that hyperspectral images often exhibit high-spatial corre-
lation among the neighboring pixels, implying that the abun-
dance maps can be regarded as piecewise smooth. A TV-based
regularization is further incorporated in (3) for encouraging
spatial homogeneity while preserving discontinuities. As such,
we have the following DRSU-TV model, that is

min
X

1

2
‖Y − AX‖2

F + λ‖W2 � (W1X)‖1,1

+ λTVTV(X), s.t. X ≥ 0 (6)

where TV(X) ≡ ∑
j,k∈ε ‖x j − xk‖ [8]. It is worth noting

that W1 and W2 make DRSU-TV different from existing
algorithms. But when W1 and W2 are set to the identity matrix
and the all-ones matrix, respectively, the proposed DRSU-TV
algorithm will reduce to SUnSAL-TV as well as SUnSAL
further with λTV = 0.

B. Optimization by the ADMM

To solve (6), it is proposed to adopt the ADMM [13].
Specifically, following [7]–[9] and [13], we have the con-
strained equivalent formulation of (6), given by

min
X,V1,V2,V3,V4,V5

1

2
‖Y − V1‖2

F + λ‖W2 � V2‖1,1

+ λTV‖V4‖1,1 + ιR+(V5)

s.t. V1 = AX, V2 = W1X, V3 = X, V4 = HV3, V5 = X

(7)

where H includes two linear operators computing the hori-
zontal and vertical differences, respectively [8], and ιR+(X) =∑n

j=1 ιR+(x j ) is the indicator function with ιR+(x j ) = 0
when x j belongs to the nonnegative orthant, otherwise
ιR+(x j ) = +∞. Then, (7) can be further expressed in a
compact form

min
X,V

g(V) s.t. GX + BV = 0 (8)

where V = (V1, V2, V3, V4, V5), g(V) = (1/2)‖Y − V1‖2
F +

λ‖W2 � V2‖1,1 + λTV‖V4‖1,1 + ιR+(V5), and G and B are,
respectively, given by

G =

⎡

⎢
⎢
⎢
⎢
⎣

A
W1

I
0
I

⎤

⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎣

−I 0 0 0 0
0 −I 0 0 0
0 0 −I 0 0
0 0 H −I 0
0 0 0 0 −I

⎤

⎥
⎥
⎥
⎥
⎦

. (9)

By introducing the scaled Lagrange multipliers D = (D1, D2,
D3, D4, D5), the augmented Lagrangian associated with the
optimization of (8) is written as

L(X, V, D) ≡ g(V) + μ

2
‖GX + BV − D‖2

F (10)

where μ > 0 is a penalty parameter. The ADMM iteratively
minimizes L(X, V, D) with respect to X and V followed by
an update of D in three consecutive steps. Thus, we have

X(t+1) = (
AT A + (

W(t)
1

)T W(t)
1 + 2I

)−1

× (
AT (

V(t)
1 + D(t)

1

) + (
W(t)

1

)T (
V(t)

2 + D(t)
2

)

+ (
V(t)

3 + D(t)
3

) + (
V(t)

5 + D(t)
5

))
(11)

and then the optimization for V is performed as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V(t+1)
1 = 1

1 + μ

[
Y + μ

(
AX(t+1) − D(t)

1

)]

V(t+1)
2 = soft

λ/μW(t)
2

(
W(t)

1 X(t+1) − D(t)
2

)

V(t+1)
3 = M

(
X(t+1) − D(t)

3 + HT
(
V(t)

4 + D(t)
4

))

V(t+1)
4 = softλTV/μ

(
HV(t+1)

3 − D(t)
4

)

V(t+1)
5 = max

(
X(t+1) − D(t)

5 , 0
)

(12)

where soft
λ/μW(t)

2
(·) and softλTV/μ(·), respectively, denote the

nonuniform and uniform soft thresholding operators [14], [15],
and M = (HT H + I)−1. Finally, the scaled Lagrange multi-
pliers in D are sequentially updated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D(t+1)
1 = D(t)

1 − AX(t+1) + V(t+1)
1

D(t+1)
2 = D(t)

2 − W(t)
1 X(t+1) + V(t+1)

2

D(t+1)
3 = D(t)

3 − X(t+1) + V(t+1)
3

D(t+1)
4 = D(t)

4 − HV3
(t+1) + V(t+1)

4

D(t+1)
5 = D(t)

5 − X(t+1) + V(t+1)
5 .

(13)

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, unmixing experiments are performed on both
the synthetic and real hyperspectral images to illustrate the
effectiveness of our proposed DRSU-TV algorithm. Results
of SUnSAL, CLSUnSAL, and SUnSAL-TV are given for
comparative purposes. To make a fair comparison, the quasi-
optimal parameter setting for the underlying regularization
parameters (i.e., λ or/and λTV) of each algorithm is found
in a finite set {0.0005, 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0,
1.5, 2}. For DRSU-TV, W1 and W2 are, respectively, initial-
ized to be the identity matrix and the all-ones matrix.

A. Synthetic Data Experiments

The spectral library used in these synthetic image exper-
iments is A ∈ R

224×240, which is generated by randomly
selecting 240 different materials from the U.S. Geological
Survey (USGS) library. The USGS library is available online at
http://speclab.cr.usgs.gov/spectral.lib06. It comprises spectral
signatures with reflectance values given in 224 spectral bands
and distributed uniformly over the interval 0.4–2.5 μm. Two
different simulated data cubes are generated with this spectral
library.

1) Simulated Data Cube 1 (DC1): The first simulated data
have 75 × 75 pixels and 224 bands per pixel based on
LMM by using five randomly chosen spectral signatures
from the library A as the endmembers and generating
the abundances following the methodology of [8].

2) Simulated Data Cube 2 (DC2): These simulated data
contain 70 × 70 pixels and 224 bands per pixel. Nine
spectral signatures are randomly selected from the
library A as the endmembers and generating the abun-
dances according to the Gaussian fields method [16].

Finally, DC1 and DC2 are degraded by Gaussian noise
with three levels of the signal-to-noise ratio, i.e., 20, 30,
and 40 dB.
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TABLE I

SRE (IN DECIBELS) VALUES ON THE SYNTHETIC DATA SETS

Fig. 1. Abundance maps obtained by different unmixing methods for the fifth
endmember in DC1 with SNR = 20 dB. (a) Ground truth. (b) CLSUnSAL.
(c) SUnSAL-TV. (d) DRSU-TV.

For quantitative evaluation, the signal-to-reconstruction
error (SRE) is adopted as the objective metric [7]. The SRE in
decibels is defined as SRE = 10 log10(E[‖x‖2

2]/E[‖x − x̂‖2
2]),

where x̂ is the estimation of the true fractional abundance
vector x and E[·] stands for expectation function. This metric
indicates the quality of the reconstruction of spectral mixtures,
for which the larger its value is, the better the performance of
the algorithm for recovering the abundances is.

Table I shows the SRE (dB) results obtained by four sparse
unmixing algorithms on DC1 and DC2 under all considered
SNR levels. From Table I, we can observe that the overall per-
formance of each unmixing algorithm tends to degrade as the
noise level increases. SUnSAL yields the worst unmixing per-
formance, followed by CLSUnSAL. Comparatively speaking,
SUnSAL-TV and DRSU-TV perform better by incorporating
the spatial–contextual information of the hyperspectral data.
Moreover, DRSU-TV is obviously superior to SUnSAL-TV
no matter what the level of noise is for two synthetic data
sets. This is as expected, since W1 improves the ability of
identifying endmembers, while both W2 and TV regularizer
can further guarantee the quality of the abundance images.
Nevertheless, we would like to note that the SRE gain of
DRSU-TV over SUnSAL-TV is dependent on the noise level
and the number of endmembers. For the case of DC2 with
SNR = 20 dB, the unmixing is becoming difficult, such that
the resulting gain decreases to about 5 dB.

Meanwhile, we take SNR = 20 dB as an example for
the purpose of visual interpretation. However, limited to the
space and in view of the relatively worse results of SUnSAL,
Figs. 1 and 2 show the abundance maps estimated by the
CLSUnSAL, SUnSAL-TV, and DRSU-TV algorithms, respec-
tively, for the fifth endmember in DC1 and for the first, second,
and fifth endmembers in DC2. In addition, the corresponding
fractional abundance estimations obtained for each endmember
material in A (as a function of pixel index in scenes DC1
and DC2 with SNR = 20 dB), along with the ground-
truth abundances, are shown in Figs. 3 and 4, in which the

Fig. 2. Abundance maps obtained by different unmixing methods for the
first, second, and fifth endmembers in DC2 with SNR = 20 dB. (a) Ground
truth. (b) CLSUnSAL. (c) SUnSAL-TV. (d) DRSU-TV.

Fig. 3. Ground-truth and estimated abundances obtained for each endmember
material in the spectral library for 50 pixels in DC1 when SNR = 20 dB.

line denotes the abundance of a certain endmember in only
50 selected pixels. From Figs. 1 and 2, it can be observed
that the abundance images obtained by CLSUnSAL seem
to be noisy, although the row sparsity constraint promotes
the solutions of CLSUnSAL. On the contrary, the estimated
abundances of SUnSAL-TV and DRSU-TV are more accurate
and have a better visual effect. However, a close look of
Figs. 1(c) and (d) and 2(c) and (d) reveals that DRSU-TV
presents less blurring and oversmoothness in the abundance
estimations than SUnSAL-TV, whose abundance values have
better consistency with the ground-truth values because of
considering the spatial information and enhancing the sparsity
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Fig. 4. Ground-truth and estimated abundances obtained for each endmember
material in the spectral library for 50 pixels in DC2 when SNR = 20 dB.

Fig. 5. Fractional abundance maps estimated for the AVIRIS Cuprite
subscene with the USGS library. (Left to right) Alunite, Buddingtonite, and
Chalcedony. (a) CLSUnSAL. (b) SUnSAL-TV. (c) DRSU-TV.

of fractional abundances simultaneously. The same conclusion
can also be confirmed by the observation of Figs. 3 and 4,
for which there are less abundance lines of false spectral
signatures in the abundance matrix obtained by DRSU-TV
than by CLSUnSAL and SUnSAL-TV.

B. Real Data Experiments

The real hyperspectral image used in the experiments
is a subset of 250 × 191 pixels and 188 bands from
the publicly available Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) Cuprite data collected in 1997. The
Cuprite site is well understood mineralogically, and it has
several exposed minerals of interest. The standard spectral
library for these data is the USGS library containing 498 pure
endmember signatures. Essential calibration was undertaken
in order to mitigate the mismatch between the hyperspectral
image and the signatures in library [7]. The estimated results of
CLSUnSAL, SUnSAL-TV, and DRSU-TV are shown in Fig. 5.
As evidenced in Fig. 5, three algorithms have shown the good

unmixing results. Compared with CLSUnSAL and
SUnSAL-TV, our proposed DRSU-TV yields the better
abundance maps with high spatial consistency of minerals
of interest. The estimated abundances by SUnSAL-TV may
exhibit an oversmooth visual effect.

IV. CONCLUSION

In this letter, we have developed the DRSU-TV algorithm
to address the hyperspectral unmixing problem, for which
the newly introduced double weights improve the sparsity of
the endmembers in spectral library and abundance fraction of
every endmember, while the TV-based regularization enforces
the spatial smoothness of abundance map. The underlying
optimization problem is solved by the ADMM. The experi-
mental results show that the DRSU-TV algorithm substantially
improves the unmixing performance with regard to the state-
of-the-art techniques. Future work will focus on how to choose
the parameters adaptively for the DRSU-TV algorithm.
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