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Abstract—Recent work in compressed sensing of magnetic
resonance images (CS-MRI) concentrates on encoding structured
sparsity in acquisition or in the reconstruction stages. Subband
coefficients of typical images obey a certain structure, which
can be viewed in terms of fixed groups (like wavelet trees)
or statistically (certain configurations are more likely than
others). Approaches using wavelet tree-sparsity have already
demonstrated excellent performance in MRI. However, the use of
statistical models for spatial clustering of the subband coefficients
has not been studied well in CS-MRI yet, although the potentials
of such an approach have been indicated. In this paper, we design
a practical reconstruction algorithm as a variant of the proximal
splitting methods, making use of a Markov Random Field prior
model for spatial clustering of subband coefficients. The results
for different undersampling patterns demonstrate an improved
reconstruction performance compared to both standard CS-MRI
methods and methods based on wavelet tree sparsity.

I. INTRODUCTION

Reconstruction of magnetic resonance (MR) images from
compressively sensed partial Fourier data is an ill-posed linear
inverse problem (ILIP)

y = Ax + n (1)

where x ∈ CN denotes the MR image and y ∈ CM are
incomplete measurements obtained through partially observed
Fourier transform A ∈ CM×N ,M � N with added noise
n ∈ CM [1], [2]. The measurement matrix A models the
process of acquiring partial MR image data in the frequency
domain i.e., in the so called k-space. In this setting, the use
of Compressed Sensing (CS) tools to recover the underlying
MR image (MRI) is referred to as CS-MRI. Solving the under
determined system in (1) requires some form of regularization.
CS-MRI approaches make use of the fact that typical MR
images are compressible under a well chosen sparsyfying
transform (such as wavelet-like transforms). Denoting the
sparsifying transform by P ∈ CD×N , the problem in (1) can
be regularized as constrained optimization [3], [4]:

min
x∈CN

φ(Px) subject to ‖Ax− y‖22 ≤ ε (2)

where φ : CD 7→ R∪{−∞,+∞} is a regularization function,
applied here to the image coefficients θ = Px, and ε ≥ 0 is a

parameter, which depends on the noise variance. Choosing `1
(φ(θ) = ||θ||1) norm as the regularization function leads to the
basis pursuit denoising (BPDN) problem [5]. Another common
regularization in image recovery problems is Total Variation
(TV), where the sparsifying transform P is a discrete gradient
operator. CS-MRI approaches often employ compound regu-
larization too (as a combination of TV and `1 norm of the
wavelet-like coefficients) [1], [2], [6], [7].

Numerous algorithms for solving (2) can be categorized
into (i) greedy methods, such as compressive sampling match-
ing pursuit (CoSaMP) [8], subspace pursuit (SP) [9] and
Iterative Hard Thresholding (IHT) [10], [11] and (ii) convex
optimization-based methods, including fast proximal gradient
methods (FISTA) [12] with extensions [6], [13] and variants of
the Augmented Lagrangian (AL) method such as alternating
direction method of multipliers (ADMM) [4] and equivalent
formulations [14], [15].

Recent research shows benefits of modelling structure of the
sparse, information-bearing coefficients either in the acquisi-
tion [16] or in the reconstruction [17] stages. Improved CS-
MRI reconstruction making use of the wavelet tree structure
was recently reported in [18], [19]. In contrast to these
methods, which model the inter-scale dependencies among the
wavelet coefficients, the so-called Lattice Matching Pursuit
(LaMP) algorithm of [20] models the intra-scale coefficient
dependencies, by encoding spatial clustering of the coefficients
within each subband with a Markov Random Field. LaMP
demonstrated superior performance in background subtraction
but was not evaluated in MRI to our knowledge yet. A related
method of [21] named by analogy with LaMP as Lattice Split
Bregman (LaSB) incorporated MRF-based support estimation
within the augmented Lagrangian approach. Although the
presentation of LaSB was rather heuristic (component-wise
soft-thresholding step from the original algorithm was simply
replaced by a lattice selector), the results indicated a great
potential for MRI reconstruction.

Motivated by the encouraging results of [21], we study
further the potentials of MRF priors in CS-MRI. We develop
a new, practical MRI reconstruction algorithm as a variant of
the proximal splitting methods, employing a Markov Random



Fig. 1. A graphical representation of the MRF model for the support labelling
s of image coefficients θ in one subband.

Field prior in the shearlet domain. In essence, the proposed
algorithm embeds a general model based sparsity framework
with MRF priors [22] into a constrained split augmented
Lagrangian method related to C-SALSA [4]. In comparison
to the related LaSB [21], we employ not only a different
optimization method, but also a more general MRF prior
model (allowing different a priori probabilities of significant
and insignificant coefficients), and we now motivate and
present our algorithm in terms of the proximal operators.
The results comply with the findings of [21] in the sense
that making use of the support estimation with MRF priors
enhances the performance of the underlying AL method, but
the new algorithm achieves superior performance with respect
to [21]. Moreover, the results show consistent improvement
over the methods based on wavelet-tree sparsity [18], [19],
both in terms of mean squared error and visually.

II. AN MRF-BASED STRUCTURED SPARSITY MODEL

Our approach aims to incorporate efficiently Bayesian es-
timation of the most likely support configurations within the
iterative method for solving (2). The solver will be updated to
guide the solution towards feasible ones based on the estimated
supports in each iteration.

A. Modelling structured supports

Given the index set N = {1, 2, 3, ..., D}, let supp(θ) =
{i ∈ N : θi 6= 0} denote the support of the sparse signal θ ∈
CD. A structured sparsity signal model M is a set of signals
whose supports belong to the set of presumable structured
supports M [17]. In our practical algorithm, the coefficients
θ = Px are obtained using an undecimated shearlet transform
[23], with the design from [24], although any other wavelet-
like transform can be used instead.

Let a binary label si ∈ {0, 1} mark the significance of the
corresponding coefficient θi: si = 1 if θi is significant (i.e.
“signal of interest”) and si = 0 otherwise. We shall model
plausible support configurations by treating configurations
s = {s1, ..., sD} as realizations of a Markov Random Field
S = {S1, ..., SD}. Denote the index set corresponding to the
support s by

Ωs = {i ∈ N : si = 1} (3)

Suppose ŝ is the most likely support and define a model
confined to this support as

Mŝ = {θ ∈ CD | supp(θ) = Ωŝ}. (4)

Utilizing this model to regularize the problem (1) leads to

min
x∈CN

‖Ax− y‖22 subject to Px = θ ∈Mŝ (5)

which can be considered as a type of discrete projection
formulation defined in [22]. Each iteration of the algorithm
for solving this problem involves a projection operator:

ΠMŝ
(θ) = argmin

γ∈CD

{
‖γ − θ‖22 | supp(γ) = Ωŝ

}
(6)

for which the solution γ̂ is such that γ̂i = θi if ŝ = 1 and
γ̂i = 0 if ŝi = 0.

Our estimation of the supports ŝ will make use of the
maximum a posteriori probability (MAP) criterion. In each
iteration of the selected solver, we employ the temporary signal
estimate θ′ to infer the most likely support in the MAP sense:

ŝ = argmax
s

PS|Θ′(s | θ′) = argmax
s

pΘ′|S(θ′ | s)PS(s) (7)

Then we refine θ′ based on ŝ. The particular prior and the
conditional model from (7), as well as the inference algorithm
for solving it are explained next.

B. MRF prior

The joint probability of a Markov Random Field PS(s) =
P (S = s) is a Gibbs distribution [25] [26]

PS(s) =
1

Z
e−H(s)/T (8)

where the energy H(s) is decomposed as a sum of clique
potentials over all possible cliques: H(s) =

∑
c∈C Vc(s).

The partition function Z =
∑

s∈S e
−H(s)/T , which sums the

probability over the set of all possible configurations S has
the role of a normalization constant, while the “temperature”
T controls the peaking in the probability distribution [25]. We
shall use a common homogeneous model with the first-order
neighbourhood, where

H(s) =
∑
i

V1(si) +
∑
〈i,j〉∈C

V2(si, sj) (9)

with single and pairwise clique potentials defined as

V1(s) =

{
α s = 0

−α s = 1
, V2(s, t) =

{
−β s = t

β s 6= t
(10)

A similar model was used in [21], but with α = 0. We do
allow different a priori probabilities of the two types of labels
α 6= 0, to be able to affect the sparsity of the configurations.
Regardless of the fraction of different label types, the strength
of their spatial clustering is controlled by the parameter β > 0.

C. Conditional model

We adopt the same conditional model pΘ|S(θ|s) as in
[21], [26]. With the conditional independence assumption,
which is common in this setting, we have pΘ|S(θ|s) =∏
i pΘi|Si(θi|si). The observed coefficients are typically noisy

versions of the ideal ones: θ = u + n, where n denotes the
noise component. We select the prior pU (u) as the generalized



Laplacian and we estimate its parameters from the noisy
coefficient histogram, knowing the noise standard deviation
σ (which is in practice reliably estimated from the empty area
on the borders of the MR image and rescaled appropriately in
each subband). Let Th denote the significance threshold for
the ideal noise-free coefficients (u is significant if |u| ≥ Th).
We relate this threshold to the noise level, but in a conservative
manner, such that Th is only a fraction of σ (in practice
10%). The conditional densities pU |S(u|0) and pU |S(u|1) are
then obtained by rescaling the central part (|u| < Th) and
the tails (|u| ≥ Th) of pU (u), respectively, so that they
both integrate to 1. The conditional densities of the noisy
coefficients pΘ|S(θ|s) are obtained from the corresponding
pU |S(u|s). For the additive noise model θ = u + n with
n ∼ N(0, σ), pΘ|S(θ|s) is simply the convolution of pU |S(u|s)
with N(0, σ).

D. Inference algorithm

Various inference algorithms can be employed to find the
MAP estimate in (7), e.g., Iterative Conditional Modes (ICM)
[27], Graph Cuts [28], loopy belief propabation (LBP) [29],
and various Markov Chain Monte Carlo (MCMC) samplers,
such as Metropolis and Gibbs sampler [25]. We used in our
experiments the Metropolis sampler, due to its flexibility and
efficiency in this application. The Metropolis sampler starts
from some initial configuration (i.e., from an initial mask)
and in each step it switches a randomly chosen label si
in the current mask s to produce the so-called “candidate”
mask sC . The candidate gets accepted or not based on the
change in the posterior probability PS|Θ(sC |θ)/PS|Θ(s|θ),
which effectively reduces to

r =

(
pΘi|Si(θi | 1)

pΘi|Si(θi | 0)

)
exp

{
2α+ 2β

∑
j∈Ni

(2sj − 1)

}
(11)

when sCi = 1 and to 1/r when sCi = 0. Practically, the change
is accepted if r exceeds a randomly generated number drawn
from a uniform distribution on [0, 1].

III. PROPOSED ALGORITHM: LASAL

Now we incorporate our MRF-based spatial modelling
framework into an iterative algorithm for recovering x from
incomplete measurements in (1), and enforcing structured
support of the sparse transform coefficients. We start from
the Constrained Split Augmented Lagrangian Shrinkage Al-
gorithm (C-SALSA) of [3], [4], which has been experimen-
tally shown to efficiently solve MRI reconstruction from
compressively sampled data and extend it with the MRF-
based regularization. The authors of [4] motivate solving the
constrained problem (2) directly, as opposed of reverting to
the common unconstrained form minx

1
2 ||Ax−y||22 + τφ(x).

By denoting the feasible set for the unconstrained problem
in (2) as E(ε,A,y) = {x ∈ CN : ‖Ax− y‖22 ≤ ε}, this
problem can be rewritten as

min
x∈CN

φ(Px) + ιE(ε,I,0)(Ax− y) (12)

where ιQ(q) is the indicator function, mapping CM 7→ R
and taking the value 0 when q ∈ Q and +∞ otherwise.
C-SALSA algorithm in [4] is further derived employing the
variable splitting method followed by Augmented Lagrangian
(AL). Our particular interest is in modifying the use of regular-
ization in this method. With constraint equalities w = x and
v = Ax− y, the problem which refers to the regularization
step in C-SALSA from [3] becomes

wk+1 = argmin
w∈CN

{
φ(Pw) +

µ2

2
‖w′ −w‖22

}
(13)

where w′ is auxiliary variable.
In order to incorporate the estimated spatial support ŝ of

the sparse coefficients according to our MRF model, and to
restrict accordingly the solution to the modelMŝ, we employ
an indicator function on a convex set Mŝ as a regularization
function φ in (13). In particular, let θ′ = Pw′ and define

ιMŝ
(θ) =

{
0, if θ ∈Mŝ.

∞, if θ /∈Mŝ.
(14)

Assuming that P is the analysis operator of a 1-tight (Parseval)
frame and that PHP = I holds, w′ = PH(Pw′) = PHθ′.
With this, the minimization in (13) becomes

θk+1 = argmin
θ∈CD

{
ιMŝ

(θ) +
µ2

2
‖PH(θ′ − θ)‖22

}
(15)

We have that ‖PH(θ′ − θ)‖22 = (θ′ − θ)
H
PPH(θ′ − θ) =

(θ′ − θ)
H

(θ′ − θ) = ‖(θ′ − θ)‖22 where PPH is the orthog-
onal projection onto the range of P. Therefore the solution
of the problem in (15) takes the form of a proximal operator
defined for the indicator function which is a projection opera-
tor ΠMŝ

(θ′) given in (6). The proposed method converges
in practice (as we show next) although we cannot present
theoretical guarantee for the convergence at this point (the
MRF prior is non-convex and the employed inference scheme
for the spatial support is approximate).

By analogy with LaMP and LaSB algorithms, we name
our method LaSAL from Lattice Split Augmented Lagrangian.
Pseudo-code of the proposed method is listed under Algorithm
1. It differs from C-SALSA [4] only in steps from 8 till 11.

IV. EXPERIMENTS

In this Section, we evaluate the proposed method on an
MRI data set (brain scan) acquired on a Cartesian grid and
provided by the Ghent University hospital (UZ Ghent)1, which
was also used in [15], [21] and on a test image used in
[18] [19] 2. Although the data were acquired on a Cartesian
grid we will simulate its reconstruction with radial as well
as with random sampling trajectories. All trajectories are
defined as binary matrices on the Cartesian grid selecting.
Fig. 2 shows the test images and the sampling trajectories
employed in the experiments. We use a nondecimated shearlet
transform implemented with the method from [24] with 3

1Data acquired in collaboration with Prof. Dr. Karel Deblaere at Radiology
Department of UZ Ghent



Algorithm 1 LaSAL
Require: k = 0, µ1, µ2 > 0, κ = µ1

µ2
,y, ε,x0,w0,v0,b0, c0

1: repeat
2: u = y + vk + bk

3: u′ = wk + ck

4: xk+1 = (I− κ
1+κA

HA)(κAHu + u′)
5: v′ = Axk+1 − y − bk

6: vk+1 = ΠιE(ε,I,0)
(v′)

7: w′ = xk+1 − ck
8: θ′ = Pw′

9: ŝ← MAP-estimation{θ′}
10: θk+1 = ΠMŝ

(θ′)
11: wk+1 = PHθk+1

12: bk+1 = bk − (Axk+1 − y − vk+1)
13: ck+1 = ck − (xk+1 −wk+1)
14: k = k + 1
15: until some stopping criterion is satisfied
16: return x = xk+1

scales and 16, 8, and 4 orientation per scale, respectively.
MRF parameters are selected heuristically. We compare the
results of the proposed LaSAL to C-SALSA [4], augmented
Lagrangian (Split-Bregman) method [15] and LaSB [21], all
implemented with the same shearlet transform. Further on, we
provide comparison with the state-of-the-art CS-MRI methods
employing wavelet-tree sparsity WaTMRI [18], [19], FCSA
[6] and FCSANL [13] using the original implementation of
the authors from http://ranger.uta.edu/∼huang/index.html.

The results in Fig. 3 show that introducing structure en-
coding via the MRF model clearly improves the performance
over the original C-SALSA and SB methods, using the same
sparsifying transform. Also LaSAL reaches higher peak signal
to noise ratio (PSNR) compared to LaSB and hence we can
deduce that allowing different a priori probabilities of labels
α 6= 0 in the MRF model and employing a slightly more
complex iterative procedure is justified.

Fig. 4 – Fig. 6 show performance comparison with the
alternative wavelet-tree sparsity methods WaTMRI [18], [19],
FCSA [6] and FCSANL [13]. The results in Fig. 4 correspond
to random sabsampling matrices. We performed experiments
with six different sampling rates: 14%, 20%, 25%, 32%, 38%
and 42%. For each sampling rate, ten random subsampling
matrices were generated and the average PSNR values were
recorded. For the sagittal MRI image (from Fig. 2, left),
the proposed LaSAL outperforms the wavelet tree sparsity
methods on all the sampling rates. For the second test image,
LaSAL outperforms the reference methods only at sampling
rates above 20% , but the difference in PSNR at those
rates is significant (even more than 2dB). Fig. 5 shows the
evolution of the resulting PSNR per iteration, in the case of
20% and 25% randomly chosen measurements for the two
test images. Although in the first several iterations LaSAL
seems unstable, it reaches stable performance afterwards and
yields a significantly higher PSNR than FCASNL, FCSA and

Fig. 2. Left to right: A sagittal slice from the MRI data set (256x256), a
standard test image ‘MRI-brain’ used in [18] [19] (256x256), and examples
of radial and random sampling trajectories.

Fig. 3. Left: PSNR values of the reconstructed sagittal MRI slice using radial
sampling trajectories with different sampling rates. Right: Reconstruction
performances on the same image with 20% of measurements with radial
trajectory.

Fig. 4. PSNR values of the reconstructed sagittal MRI slice (left) and the
‘MRI-brain’ image (right) using random sampling trajectories with different
sampling rates.

Fig. 5. PSNR values of the reconstructed sagittal MRI slice (left) and the
‘MRI-brain’ image (right) in 50 iterations using random sampling trajectories
with 20% and 25% of measurements, respectively.

WaTMRI. The visual results in Fig. 6 demonstrate a superior
performance of LaSAL, compared to wavelet tree sparsity
methods, in reconstructing image details.



Fig. 6. Reconstruction of the sagittal MRI slice (left column) and the
‘MRI-brain’ image (right column) using 20% of measurements with random
sampling. First row: reference ideal images. Second row: reconstructed with
WaTMRI [19]. Last row: reconstructed with LaSAL.

V. CONCLUSION

This work confirmed the potential of the MRF modelling
framework for the recovery of compressively sampled MRI
data, that was earlier hinted in [21]. Moreover, we now
presented a more comprehensive study and developed a novel
algorithm which incorporates the MRF modeling framework
into a constrained split augmented Lagrangian method. The
resulting algorithm improves upon C-SALSA in MRI recon-
struction and it also outperforms the earlier method from
[21]. The results also demonstrate superior performance with
respect to the alternative wavelet-tree sparsity methods both
in terms of quantitative performance measures and visually.
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“Augmented Lagrangian based reconstruction of non-uniformly sub-
nyquist sampled MRI data,” Signal Processing, vol. 91, no. 12, pp.
2731–2742, 2011.

[16] B. Adcock, A. C. Hansen, and B. Roman, “The quest for optimal
sampling: Computationally efficient, structure-exploiting measurements
for compressed sensing,” arXiv preprint arXiv:1403.6540, 2014.

[17] R. G. Baraniuk, V. Cevher, and M. B. Wakin, “Low-dimensional
models for dimensionality reduction and signal recovery: A geometric
perspective,” Proceedings of the IEEE, vol. 98, no. 6, pp. 959–971, 2010.

[18] C. Chen and J. Huang, “Compressive sensing MRI with wavelet tree
sparsity,” in Advances in neural information processing systems, 2012,
pp. 1115–1123.

[19] C. Chen and J. Huang, “Exploiting the wavelet structure in compressed
sensing MRI,” Magnetic resonance imaging, vol. 32, no. 10, pp. 1377–
1389, 2014.

[20] V. Cevher, M. F. Duarte, C. Hegde, and R. Baraniuk, “Sparse signal re-
covery using Markov random fields,” in Advances in Neural Information
Processing Systems, 2009, pp. 257–264.
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