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ABSTRACT 

Hyperspectral images (HSIs) often suffer from various 

annoying degradations, which poses huge challenges for 

the practical applications. Fortunately, clean HSI is 

intrinsically low-rank, which opens up a broad category of 

HSI processing and analysis methods with high robustness 

against the complicated mixture of various noises and 

outliers. Based on the low rank property of HSI, this paper 

provides a comprehensive review on restoration, multi-

angle registration and unmixing methods for HSIs 

developed very recently, and insights for further 

investigations. 

 

Index Terms— Low-rank, hyperpsectral image, 

restoration, registration, unminxing 

 

1. INTRODUCTION 

Hyperspectral imaging sensors, which combine the imaging 

and spectroscopy science together, provide up to nm-level 

spectral resolution and diagnostic spectral feature, 

supporting the improved analysis tasks [1], such as 

classification, unmixing, target detection and so on. 

Therefore, with the fine spectral discrimination, 

hyperspectral images (HSIs) have been widely used in 

various fields, including earth observation, environmental 

monitoring, food analysis, criminal identification and so on.  

However, on the other hand, assuming that the spatial 

resolution is fixed, due to the pursuit of high spectral 

resolution, the energy used to produce each hyperspectral 

band, which spans a narrow wavelength range, is limited. 

As a result, the useful imaging information can be easily 

overwhelmed by various kinds of noise [2], such as 

Gaussian noise and impulse noise. In addition, dead 

pixel/line and stripes commonly exist in HSIs because of 

the failure or abnormal response of the sensor device. Most 

of the traditional HSI restoration methods fail in practice 

because they typically assume only one or two kinds of 

noise, while the actual noise is more complex, which 

negatively affects the performance of HSI analysis tasks. 

In very recent years, the low-rank model achieved great 

success because of its powerful ability to find and exploit 

the intrinsic low-dimensional structure of high dimensional 

data [3]. As HSIs are typically volumetric data of high 

dimension, the low-rank model is feasible for the HSI tasks 

and helps to improve the robustness against the various 

noises. Therefore, this paper reviews the low-rank based 

HSI processing and analysis methods developed recently, 

including restoration, multi-angle registration and 

unmixing, and points out the potential further 

investigations. 

 

2. TECHNICAL BACKGROUND 

2.1. Low-rank Matrix Recovery (LRMR) Model 

The LRMR model was originally proposed by Wright et 

al. [4], and further improved by Candes et al. [3] with the 

idealization as a “robust principal component analysis” 

(RPCA) problem. Assuming that a low-rank matrix 
m nL  is corrupted by a gross sparse error 

matrix m nS  and a small entry-wise Gaussian noise 

matrix
m nN , then the observed data matrix 

m nD  

can be decomposed as the sum of a Gaussian matrix, a 

sparse matrix and a low-rank matrix, that is: 

  D L S N  (1) 
The LRMR model aims at recovering the clean low-rank 

matrix L  from the contaminated observations D , and can 

be formulated as: 

0
min ( ) . - -

F
rank s t  

L,S
L S D L S  (2) 

where   is a constant related to the standard deviation of 

random noise N , and   is the regularization parameter 

used to tradeoff the relative contributions.  

Due to the high non-convexity of the optimization 

problem, it is common to relax (2) by replacing the  
0

- 

norm with the 
1
- norm, and the rank measure with the 

nuclear norm [4], respectively, which yields the following 

convex surrogate: 

1
min . - -
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
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The optimization problem (3) can be effectively solved with 

the inexact augmented Lagrange multiplier (ALM) method 

[6] or the “Go Decomposition” (GoDec) algorithm [7]. 



2.2 Low-rank Property of Clean HSI 

The baseline of the low-rank based HSI analysis tasks 

attributes to the low-rank property of the clean HSI, which 

can be exploited from the perspective of a linear spectral 

mixing model [8], [9]. The linear mixing model attempts to 

decompose the clean HSI matrix into a product of a pure 

spectral endmember matrix and an abundance matrix. 

Assuming that the clean HSI without any noise with the 

size of M N B   is lexicographically reordered as a 2-D 

matrix 
B MNX , and denoting the spectral endmember 

matrix and the abundance matrix as 
B KA  and 

K MNC , respectively,  the linear mixing model can be 

formulated as: 

X AC  (4) 

where M , N and B denote the height, width and band 

number of the HSI, and K  represents the number of 

spectral endmembers. As the upper bound value of the 

number of endmembers K  is usually relatively small, then 

the rank of the matrix X  is bounded, i.e., 

 ( ) min ,rank K B MNX , which explicitly suggests the 

low-rank property of the clean HSI. 

 

3. LOW-RANK BASED HSI PROCESSING AND 

ANALYSIS METHODS 

3.1 HSI Restoration 

Here we consider four kinds of noise involved in the 

corruption of HSI, including Gaussian noise, impulse noise, 

dead pixels or lines, and stripes. Firstly, we build up the 

HSI degradation model, which models the HSI imaging 

process and describe the mathematical relationship between 

the desired clean HSI image and the observed one. Ideally, 

the HSI degradation model can be given as: 

Y = X + E + N  (5) 

where Y , E  and N denote the lexicographically reordered 

version of the observed HSI, the combination of impulse 

noise, dead pixels or lines, and stripes, and Gaussian noise, 

respectively. 

It is apparent that there exists high similarity between 

the LRMR model (1) and the HSI degradation model (5). 

With the low-rank property of the clean HSI, the matrix X  

is clearly low-rank. Fortunately, as the impulse noise, dead 

pixels or lines, and stripes only corrupt some parts or some 

bands of the HSI, the matrix E  is sparse. So, it is natural 

to apply sparse and low-rank matrix decomposition (3) to 

the noisy matrix Y  and obtain the clean HSI X  [9]. 

Comparing with the traditional HSI restoration methods, 

the LRMR method achieves outstanding denoising 

performance [10]. However, the LRMR method mainly 

relies on the high correlation between spectral bands, and 

lacks appropriate spatial constraints [10]. Therefore, 

various approaches have been reported to improve the 

LRMR model from different perspectives [10]-[13]. A 

notable representative is the total-variation-regularized low-

rank matrix factorization (LRTV) method [11], which 

improves the LRMR method by imposing the TV 

regularization across the spatial domain, and can be 

formulated as: 
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where || ||HTVX  represents the hyperspectral total variation 

model, and ( )rank X is added to explicitly constrain the 

number of the endmembers. The ALM method can be 

utilized to resolve the optimization model (6) [5], [11]. 

3.2 Multi-angle HSI Registration 

As a prerequisite of all applications, the registration of 

multi-angle HSI (MA-HSI) faces the problem of effective 

feature extraction and the robustness to degradations and 

occlusions. Here all the angle images of the same earth 

surface are denoted as  0 1= sD Y Y Y， ，...,  with 

0Y denoting the reference nadir image, where 1s   denotes 

the number of angles. Assuming that 1 sH H，...,  denotes 

the optimal spatial transformations of 
1 sY Y，...,  with 

respect to the reference image 0Y , they can be transformed 

into the coordinate system of the reference image. The 

matrix version of the well-registered MA-HSI is formulated:  
(( 1) )

0 1 1[ | | | ]T T T MN s B
s s

     A D H X X H X H  (6) 
where H  is a general term for all the transformation 

parameters. It is clear that the stacked version well-

registered MA-HSI A  is also low-rank. 

Therefore, with low-rank constraint as the registration 

feature, the robust registration for MA-HSI can be 

transformed to solve the set of transformations H by 

optimizing the following rank minimization problem, 

termed robust registration rank minimization (RRRM) [14]: 

,
min ( ) . . 
A H

A D H Arank s t  
(7) 

Considering the degradations and occlusions brought by 

different imaging angles between the MA-HSIs, the 

optimization model can be modified as follows: 

* 1
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(8) 

 The ALM optimization method can be adopted to solve the 

model (8) after linearization [14]. 

3.3 HSI Unmixing 

To alleviate the negative influence of the sparse noise for 

unmixing, it is natural to integrate the sparse noise 

detection and hyperspectral unmixing (HU) in a unified 

framework. By integrating (4) and (5), we can obtain the 



     
(a) (b) (c) (d) (e) 

Fig. 1. Restoration results of band 187 in the urban image data experiment: (a) original, (b) SSAHTV, (c) VBM3D, (d) LRMR and (e) LRTV. 
 
extended linear mixing model with the consideration of 

sparse noise: 

  Y AC E N  (9) 

With this model in mind, the generalized robust HU model 

can be formulated as [15]: 

 2

, ,

1
min  || || ( ) ( )

2
F t h g      

A C E
Y E AC E A C  (10) 

where  t  is the sparsity-inducing function which 

promotes the detection and removal of the sparse noise, 

 h  and  g  denote the suitable constraints on the 

endmember matrix A and abundance matrix S, respectively. 

As a specification of model (10), 
1,2|| || and 

1/2|| ||  are 

utilized to induce the removal of noise and the sparsity of 

abundance fraction, so the L1/2-norm regularized robust 

non-negative matrix factorization (L1/2-RNMF) method was 

presented and expressed as [15]: 

2

1,2 1
, , 2

1
min  || || || || || || . . 0, 0

2
F s t      

A C E
Y E AC E C A C  (11) 

The extended multiplicative iterative algorithm can be 

utilized to simultaneously solve the endmember matrix A  

and abundance matrix C . 

As another instantiation, with the available spectral 

library as the prior endmember dictionary, Aggarwal et. al. 

built the robust sparse HU model in the presence of mixed 

noise as [16]: 

2

1 2,1 1
,

1
min  || || || || || || + || ||

2
F       

C E
Y E AC E C C  (12) 

where 
2,1|| ||C  and 1|| ||C  denote joint sparsity and total 

variation constraint on the abundance matrix C , 
respectively. The split-Bregman approach can be used to 

retrieve the abundance fraction [16].  

 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

4.1 HSI Restoration 

The HYDICE urban image with the size of 

307 307 210   is utilized in our HSI restoration 

experiment. All the water absorption bands (104–108, 139–

151, and 207–210) are removed, leaving 162 low-noise 

bands and 27 high-noise bands [15]. The SSAHTV [17], 

and VBM3D [18], LRMR [9] and LRTV [11] methods are 

selected for comparisons. The experimental results are 

illustrated in Fig.1. It can be clearly observed that the 

VBM3D method cannot remove the stripes. The SSAHTV 

method can remove the stripes to a certain extent, but 

causes the restoration results to be over-smooth. The LRMR 

and LRTV methods can both simultaneously remove the 

stripes and preserve the image details, and LRTV further 

improves the results of LRMR by imposing the spatial 

constraints. More experimental results and quantitative 

evaluations can be found in [8], [10], and [13]. 

4.2 MA-HSI Registration 
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(e) (f) (g) (h) 

Fig. 2. Details of the registration results by the different methods. The first row 

CHRIS_FY and second row CHRIS_UK. From the first column to the last: 

SIFT+NCC, MANUAL, RRRM, and the reference image, respectively. 
 

TABLE I 

COMPARISON OF CC AMONG THE DIFFERENT METHODS 

Site Angle SIFT+NCC MANUAL RRRM 

CHRIS_

FY 

+36° 0.9306 0.9546 0.9714 

−36° 0.9278 0.9659 0.9783 

+55° 0.9073 0.9179 0.9739 

−55° 0.9141 0.9482 0.9685 

CHRIS_

UK 

+36° 0.9364 0.9589 0.9736 

−36° 0.9385 0.9667 0.9780 

+55° 0.9026 0.9191 0.9687 

−55° 0.9240 0.9434 0.9779 

 
Two sets of 5 angle CHRIS/Proba image are utilized in 

the MA-HSI registration experiment, which are termed 

CHRIS_FY and CHRIS_UK both with 18 spectral bands, 

17 m nadir resolution and size of 748 744 . The 0° angle 

image is chosen as the reference image, and the remaining 

four angle images are selected as the sensed ones to be 

registered. The RRRM method [14], the SIFT+NCC 



method in [19] and the MANUAL method based on visual 

inspection are selected as comparison methods. The 

experimental results and quantitative evaluations are shown 

in Fig.2 and TABLE I, respectively. In each row of TABLE 

I, the best results for the quality index are labeled in bold, 

and the second best results are underlined. From the image 

details shown in the red square box, it can be observed that 

the RRRM method outperforms SIFT+NCC and can 

achieve almost the same effect as the MANUAL method 

from visual comparison. From TABLE I, it can be observed 

that the quantitative evaluation results are consistent with 

the visual comparisons and RRRM generally achieves 

better results in all angles. More experimental results and 

quantitative evaluations can be found in [14]. 

4.3 HSI Unmixing 

    
(a) 

    
 (b) 

    
(c) 

Fig. 3. Abundance maps of each endmembers using different methods with the 

189 noisy bands. From the first row to the last: benchmark, L1/2-NMF and L1/2-

RNMF. From the first column to the last: asphalt, grass, roof and tree. 

 
TABLE II. 

SAD VALUES OF THE DIFFERENT METHODS WITH THE NOISY IMAGE. 

 
L1/2-

RNMF 

L1/2-

NMF 
rNMF EDCNMF SISAL 

Asphalt 

Grass 

Roof 

Tree 

0.0844 

0.0786 

0.0652 

0.0692 

0.0948 

0.0918 

0.1746 

0.1028 

0.0767 

0.1579 

0.3982 

0.1401 

0.1001 

0.1055 

0.2418 

0.1413 

0.2144 

0.2320 

0.1083 

0.1592 

Mean 0.0744 0.1160 0.1932 0.1472 0.1785 

 
The HYDICE urban image with 162 low-noise and 27 

high-noise bands is used in the HSI unmixing experiment. 

There exist four types of land covers: asphalt, grass, roof 

and tree. The benchmark abundance maps of each signature 

shown in Fig. 3(a) were achieved via the method in [20]. 

Fig. 3 (b) and (c) shows the unmixing results of L1/2 

regularized NMF and RNMF, respectively, which clearly 

shows the superiority of the L1/2-RNMF method over the L1/2-

NMF method with the consideration of the negative effect 

of the sparse noise. Table II gives the mean SAD values 

obtained by the L1/2-RNMF method and several other state-

of-the-art unminxing methods to present the quantitative 

evaluations, including robust NMF (rNMF) [21], 

endmember dissimilarity constrained NMF [22] 

(EDCNMF), and simplex identification via split augmented 

Lagrangian (SISAL) [23]. In each row of TABLE II, the 

best results for the quality index are labeled in bold, and the 

second best results are underlined. It can be observed that 

L1/2-RNMF method achieves the best quantitative results. 

More experimental results and quantitative evaluations can 

be found in [15]. 

 

5. CONCLUSIONS AND FUTURE DIRECTIONS 

Based on the inherent low-rank property of clean HSI, 

this paper provides an overview of the robust HSI 

restoration, registration and unmixing methods. By 

modeling the sparse noise and outliers with one sparse 

matrix implanted within the corresponding HSI analysis 

framework, the robustness can be greatly improved. The 

further investigations mainly focus on better modelling of 

HSI noise and the exploitation of new related applications, 

such as super-resolution, fusion, classification, change 

detection and so on. 
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