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ABSTRACT
Hyperspectral imagery contains a wealth of spectral and spa-
tial information that can improve target detection and recogni-
tion performance. Existing feature extraction methods cannot
fully utilize both the spectral and spatial information. Data
fusion by simply stacking different feature sources together
does not work well either, as it does not take into account the
differences between feature sources. In this paper, we present
our recent graph-based approach for fusing multiple feature
sources for land cover classification. Our approach takes into
account the properties of different data sources, and makes
full advantage of different feature sources through the fusion
graph. Experimental results in the classification of real hyper-
spectral images are very encouraging.

Index Terms— Hyperspectral images, remote sensing,
classification, data fusion

1. INTRODUCTION

Recent advances in sensors technology have led to an in-
creased availability of hyperspectral (HS) data at very high
both spatial and spectral resolutions. Many approaches have
been developed to exploit the spectral and the spatial infor-
mation of hyperspectral imagery for classification. Some of
these approaches focus on increasing the spectral discrim-
ination through dimension reduction [1]. Others explore
the spatial information of HS data through morphological
features [2–5].

A limitation of the above approaches is that they rely
mainly on a single type of features (spectral or geometrical
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features) and do not fully utilize the wealth of information
available in the HS data. The spatial information, once com-
bined with the spectral information, can contribute to a more
comprehensive interpretation of objects on the ground. For
example, spectral signatures cannot differentiate between ob-
jects made of the same material (e.g. roofs and roads made
with the same asphalt), while they can often be easily distin-
guished by their geometry. On the other hand, spatial features
alone may fail to discriminate between objects that are quite
different in nature (e.g. grass field, parking or a swimming
pool), if their shape and size are similar. Many approaches
have been developed to fuse the spectral and spatial informa-
tion for the classification of remote sensing data [6, 8–11].
Some of these approaches employ the so-called composite
kernel methods [6, 7] or their generalization [9]. Others de-
fine spatial information through morphological profiles, and
concatenate spectral and spatial features in a stacked archi-
tecture for classification [10, 11].

Despite their simplicity, the feature fusion methods that
simply concatenate several kinds of features together are
rarely useful in practice. These simple stacking methods can
perform even worse than using a single feature, because the
information contained by different features is not equally
represented or measured. The element values of different
features can be significantly unbalanced. Furthermore, the
data obtained by stacking several kinds of features may con-
tain redundant information. Last, but not least, the increase
in the dimensionality of the stacked features, as well as the
limited number of labeled samples in many real applications
may pose the problem of the curse of dimensionality and, as a
consequence, result in the risk of overfitting the training data.

In this paper, we present our methodology for graph-
based fusion of spectral and spatial information, abbreviated



Fig. 1: Morphological opening profile built on the first PC of hyperspectral image. The scale of circular SE varies from 2 to
6, with step size increment of 2. As the size of the SE increases in openings, more small bright objects disappear in the dark
background.

by GFSS, and the we give a unifying view on various possi-
ble application scenarios. GFSS couples dimension reduction
and data fusion of spectral features (from the original HS
image) and spatial features contained in the morphological
features (computed from the HS image). Variants of this
method were very successful in Data Fusion Contests of the
IEEE Geoscience and Remote Sensing Society (GRSS) in
20131, focusing on the fusion of hyperspectral and LiDAR
(Light Detection And Ranging) data [15, 16] and in 2014,
focusing on the fusion of thermal hyperspectral and visible
images [17]. Here we present the essence of GFSS in a com-
prehensive way and we focus on fusing the multiple feature
sources as a prerequisite for classification. We evaluate the
performance of GFSS in combination with support vector
machines (SVM) classifier in a case study on an AVIRIS
hyperspectral data set, and on a multi-sensor data set (hy-
perspectral and LiDAR). The organization of this paper is as
follows. Section 2 provides a brief review of morphological
features. In Section 3, we present our graph-based feature
fusion method. The experimental results on real urban hy-
perspectral images are presented and discussed in Section 4.
Finally, the conclusions of the paper are drawn in Section 5.

2. MORPHOLOGICAL FEATURES

Morphological features are generated by either applying mor-
phological openings or closings by reconstruction [2] on the
image, using a structural element (SE) of predefined size and
shape. An opening acts on bright objects compared with their
surrounding, while closings act on dark objects. For example,
an opening deletes those bright objects that are smaller than
the SE (this means the pixels in the object take on the value
of their surrounding). By increasing the size of the SE and
repeating the previous operation, a complete morphological
profile (MP) is built, carrying information about the size and
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the shape of objects in the image.
A morphological profile (MP) consists of the opening pro-

file (OP) and the closing profile (CP). For the panchromatic
image, MP is built on the original single band image directly.
The OP with M scales at pixel x forms M -dimensional vec-
tor, and so does the CP. By incorporating the OP, the CP and
original image, the morphological profile of pixel x is de-
fined as (2M +1)-dimensional vector. When applying MP to
the hyperspectral data, principal component analysis (PCA)
is widely used as a pre-processing step to reduce the dimen-
sionality of the high-dimensional original data, as well as to
reduce the redundancy within the bands. Then one applies
morphological openings and closings with reconstruction to
construct morphological profile on each PC independently.
An extended MP (EMP) is formed as a stacked vector con-
sisting of all the morphological profiles. Suppose p PCs are
extracted from the original hyperspectral data, then the EMP
of pixel x is a p(2M + 1)-dimensional vector. Fig. 1 shows
a OP built on the first PC. The effect of using morphological
features for classification of remote sensing data from urban
areas has been discussed in numerous studies [2–5, 8–11].

3. THE GRAPH-BASED FUSION METHOD

Suppose we have multiple feature sources that provide dif-
ferent type of information about the objects on the ground,
such that m different attributes {Atr1, · · · , Atrm} are avail-
able. XAtr1 = {xAtr1

i }ni=1, · · ·X
Atrm = {xAtrm

i }ni=1 de-
note the different attributes after normalization to the same
dimension, where xAtr1

i ∈ RD, · · · , xAtrm
i ∈ RD. XSta =

{xSta
i }ni=1 = [XAtr1 ; · · · ;XAtrm ] ∈ RmD denotes the vec-

tor stacked by all feature sources. For example, XSta =
{xSta

i }ni=1 = [XSpe;XSpa], and xSta
i = [xSpe

i ; xSpa
i ] ∈ R2D

denotes stacked spectral and spatial feature sources for HS
data, while for HS and LiDAR data, XSta = {xSta

i }ni=1 =

[XSpe;XSpa;XEle], and xSta
i = [xSpe

i ; xSpa
i ; xEle

i ] ∈ R3D.



{zi}ni=1, and zi ∈ Rd denote the fusion features in a lower
dimensional feature space with d ≤ mD.

We aim at finding a transformation matrix W, which can
couple dimensionality reduction and feature fusion in a way
of:

zi = WT xi (1)

where xi is a variable, which can be set to be xSta
i . The

transformation matrix W should not only fuse different fea-
ture sources in a lower dimensional feature space, but should
also preserve local neighborhood information and detect the
manifold embedded in the high-dimensional feature space. A
reasonable way to find the transformation matrix W is [12]:

argmin
W

(

n∑
i,j=1

||WT xi −WT xj ||2Aij) (2)

where the matrix A is the edge of the graph G = (X,A). We
assume that the edge (between data point xi and xj) Aij ∈
{0, 1}; Aij = 1 if xi and xj are “close” and Aij = 0 if xi and
xj are “far apart”. The “close” here is defined by finding the
k nearest neighbors (kNN) of the data point xi. The kNN is
determined first by calculating a distance between data point
xi and all the data points, then sorting the distance and deter-
mining nearest neighbors based on the k-th minimum distance
(we use the Euclidean distance here).

When the graph is constructed by spectral features (i.e.
G = GSpe = (XSpe,ASpe)), the k nearest neighbors (i.e.
Ai,j = ASpe

i,j = 1, j ∈ {1, 2, · · · , k}) of the data point
xSpe
i indicate that the spectral signatures of these kNN data

points xSpe
j are more similar in terms of the Euclidean dis-

tance. Similarly, when the graph is constructed by spatial
or elevation features (i.e. G = GSpa = (XSpa,ASpa) or
G = GEle = (XEle,AEle)), the k nearest neighbors (i.e.
Ai,j = ASpa

i,j = 1, j ∈ {1, 2, · · · , k}) of the data point
xSpa
i mean that they are more similar in terms of the spa-

tial or elevation characteristics. Let us define a fusion graph
GFus = (XSta,AFus) as follows:

AFus = AAtr1 � AAtr2 � · · · � AAtrm (3)

where the operator ‘�’ denotes element-wise multiplication,
i.e. AFus

i,j = AAtr1
i,j · · ·AAtrm

i,j . Note that AFus
ij = 1 only if all

AAtr1
ij = 1, · · · , AAtrm

ij = 1. This means that the stacked data
point xSta

i is “close” to xSta
j only if their individual feature

points xIndi (Ind ∈ Atr1, · · · , Atrm) are “close” to xInd
j .

The connected data points xSta
i and xSta

j have similar charac-
teristics on all attributes. If any individual feature point xIndi

is “far apart” from xInd
j , thenAFus

ij = 0. In real data (e.g., HS
data), the data points from the roofs (xSta

i ) and roads (xSta
j )

are both made with the same materials (e.g. asphalt) and have

Fig. 2: HSI data sets used in our experiments. Left: false
color image of Indian Pines; Right: ground truth of the area
with 13 classes.

similar spectral characteristics (ASpe
i,j = 1), but different spa-

tial information (i.e. shape and size) (ASpa
i,j = 0), so these

two data points are not “close” (i.e. AFus
i,j = 0). On the other

hand, the data points from the grassy areas (xSta
i ) and soil ar-

eas (xSta
j ) have different spectral characteristics (ASpe

i,j = 0),
but similar spatial information (ASpa

i,j = 1), so AFus
i,j = 0 and

these two data points are “far apart”. When using the con-
straint in [13] for avoiding degeneracy:

WT (XSta)DFus(XSta)T W = I (4)

where DFus is a diagonal matrix with DFus
i,i =

∑n
j=1A

Fus
i,j

and I the identity matrix, we can obtain the transformation
matrix W = (w1,w2, · · · ,wr) which is made up by r eigen-
vectors associated with the least r eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λr of the following generalized eigenvalue problem:

(XSta)LFus(XSta)T w = λ(XSta)DFus(XSta)T w (5)

where LFus = DFus − AFus is the fusion Laplacian matrix.

4. EXPERIMENTAL RESULTS

The first dataset that we used in the experiments was captured
by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
over northwestern Indiana in June 1992, with 220 spectral
bands in the wavelength range from 0.4 to 2.5µm and spa-
tial resolution of 20 meters by pixel. The calibrated data are
available online (along with detailed ground-truth informa-
tion) from http://cobweb.ecn.purdue.edu/˜biehl/. The whole
scene, consisting of the full 145× 145 pixels, which contains
13 classes, see Fig. 2. Table 1 shows the number of labeled
samples in each class. Note that the color in the cell denotes
different classes in the classification maps (Fig. 2).

Another experiment is done on a hyperspectral image and
a LiDAR data which were acquired by the NSF-funded Center
for Airborne Laser Mapping (NCALM) on June 2012 over
the University of Houston campus and the neighboring urban
area. The hyperspectral imagery has 144 spectral bands with



Table 1: Indian Pines HS data used in the experiments.

Class No. Class Name # Samples Class No. Class Name # Samples
1 Corn-notill 1434 2 Corn-min 834
3 Corn 234 4 Grass/Pasture 497
5 Grass/Trees 747 6 Hay-windrowed 489

7 Soybeans-notill 968 8 Soybeans-min 2468

9 Soybeans-clean 614 10 Wheat 212

11 Woods 1294 12 Bldg-Grass-Trees 380

13 Stone-steel towers 95

Fig. 3: Multisensor data set: Houston University. Top: false
color image of hyperspectral image; bottom: LiDAR data.

wavelength range from 380 nm to 1050 nm. Both datasets
have the same spatial resolution (2.5m). The whole scene of
the data, consisting of the full 349 × 1905 pixels, contains 15
classes. Fig. 3 shows false color image of HS data and the
LiDAR image. For more information, see [15].

To apply the morphological profiles to hyperspectral im-
ages, principal component analysis (PCA) was first applied
to the original hyperspectral data set, and the first k principal
components (PCs) were selected (representing 99% of the cu-
mulative variance) to construct the EMP. A circular SE rang-
ing from 1 to 10 with step size increment of 1 was used. 10
openings and closings were computed for each PC, as well as
on LiDAR data.

The SVM classifier with radial basis function (RBF) [14]
kernels is applied in our experiments. SVM with RBF ker-
nels has two parameters: the penalty factor C and the RBF
kernel width γ. We apply a grid-search on C and γ using 5-
fold cross-validation to find the best C within the given set
{10−1, 100, 101, 102, 103} and the best γ within the given set
{10−3, 10−2, 10−1, 100, 101}. We compare our graph-based
approach GFSS with the following schemes: (1) Using orig-

Table 2: Classification accuracies on Indian Pines HS data
obtained by different approaches.

Raw MPsHSI Sta LPP GFSS
No. of Features 220 83 303 30 36

OA (%) 55.64 83.67 73.01 84.36 87.27
AA (%) 65.65 87.82 81.55 87.86 89.85

κ 0.506 0.815 0.697 0.823 0.855
Corn-notill 40.38 77.75 53.14 76.36 83.33
Corn-min 54.44 93.29 87.53 90.89 93.17

Corn 66.67 87.18 87.18 82.05 90.60
Grass/Pasture 72.43 77.26 75.86 77.06 79.07
Grass/Trees 81.39 92.37 93.17 97.99 98.26

Hay-windrowed 98.77 99.59 99.59 95.71 96.73
Soybeans-notill 52.17 78.31 62.60 81.82 83.06
Soybeans-min 34.40 77.07 61.10 75.24 82.13

Soybeans-clean 36.97 76.38 69.38 71.17 74.59
Wheat 96.23 99.53 99.53 99.53 99.53
Woods 79.06 87.09 80.60 97.99 93.59

Bldg-Grass-Trees 45.97 97.89 92.63 98.42 98.16
Stone-steel towers 94.74 97.89 97.89 97.89 95.79

inal HSI (Raw); (2) Using the MPs computed on the first k
(k = 4 for Indian Pines, k = 2 for Houston University)
PCs of the original HSI (MPsHSI ) as in [2], or using MPs
built in the same way on the LiDAR data (MPsLiDAR); (3)
Stacking all spectral features and MPs together (Sta), similar
as in [11]; (4) Features fused by using the graph constructed
by stacked features XSta [13] (LPP). For Indiana Pines hy-
perspectral data, we select 20 labeled samples per class for
training. The classifiers were evaluated against the remaining
labeled samples by measuring the Overall Accuracy (OA), the
Average Accuracy (AA) and the Kappa coefficient (κ). For
multisensor data sets, available training and testing set are
given in Table 3. Table 2 and Table 3 show the accuracies
obtained from the experiments, and Fig. 4 shows the classifi-
cation maps.

It can be found that only using single spectral/spatial fea-
ture is not enough for a reliable classification. However, the
results also show that it is better sometimes to use a sin-
gle feature source than simply stacking many of them for



(a) (b) (c) (d) (e)

Fig. 4: Classification maps on Indian Pines data produced by the described schemes. Thematic map using (a) original HS data;
(b) MPs of HS data; (c) Sta; (d) the LPP; (e) GFSS.

classification. Compared to the situation with single spatial
feature (EMP), the OA of simply stacking original spectral
and spatial features (Sta) decreases for more than 10 percent,
while increasing the dimensionality. This indicates that the
spatial information contained by the original EMP was not
well exploited in such a stacked architecture. Indeed, when
stacking all features together, the element values of differ-
ent features can be significantly unbalanced, and the informa-
tion contained by different features is not equally represented.
The same problems arise when using the stacked features to
build a graph in LPP. For Indian Pines hyperspectral data, the
graph-based approach GFSS produced the best results, with
OA improvements of 4-30% over only using the single spec-
tral/spatial feature source, with improvements of 14% over
stacking both the spectral and the spatial features by Sta, and
with 3% improvement over the LPP. We have the similar find-
ings for fusion of HS and LiDAR data in Houston University,
see Table 3.

5. CONCLUSION

In this paper, we give a comprehensive presentation of a
graph-based feature fusion method, which enables to include
multiple information (e.g., spectral, spatial and elevation)
in the classification process. The morphological features,
which carry the spatial/elevation information, are first gen-
erated on the first few PCs of HS image. Then, we build
a fusion graph where only the feature points that are sim-
ilar in all attributes are connected. Finally, we solve the
problem of data fusion by projecting all the features onto a
linear subspace. This projection guarantees preservation of
the local geometry properties. The neighboring relations are
kept after the dimension reduction. Experiments on both real
hyperspectral image and multisensor data demonstrate that
graph-based fusion method can greatly benefit the accuracy
of the subsequent classification.

Acknowledgment
The authors would like to thank Prof. Landgrebe for provid-
ing the AVIRIS Indian Pines dataset; the Hyperspectral Im-
age Analysis group, and the NSF-Funded Center for Airborne
Laser Mapping at the University of Houston for providing the
Houston University hyperspectral image.

6. REFERENCES

[1] B. C. Kuo and D. A. Landgrebe, “Nonparametric
weighted feature extraction for classification”, IEEE
Trans. Geosci. Remote Sens., vol. 42, no. 5, pp. 1096-
1105, May 2004.

[2] J. A. Benediktsson, J. Palmason, and J. R. Sveinsson,
“Classification of hyperspectral data from urban areas
based on extended morphological profiles”, IEEE Trans.
Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, Mar.
2005.

[3] W. Liao, R. Bellens, A. Pižurica, W. Philips and Y. Pi,
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