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3D Microwave Tomography with Huber Regularization Applied
to Realistic Numerical Breast Phantoms

Funing Bai1, Ann Franchois2, *, and Aleksandra Pižurica1

Abstract—Quantitative active microwave imaging for breast cancer screening and therapy monitoring
applications requires adequate reconstruction algorithms, in particular with regard to the nonlinearity
and ill-posedness of the inverse problem. We employ a fully vectorial three-dimensional nonlinear
inversion algorithm for reconstructing complex permittivity profiles from multi-view single-frequency
scattered field data, which is based on a Gauss-Newton optimization of a regularized cost function. We
tested it before with various types of regularizing functions for piecewise-constant objects from Institut
Fresnel and with a quadratic smoothing function for a realistic numerical breast phantom. In the present
paper we adopt a cost function that includes a Huber function in its regularization term, relying on
a Markov Random Field approach. The Huber function favors spatial smoothing within homogeneous
regions while preserving discontinuities between contrasted tissues. We illustrate the technique with
3D reconstructions from synthetic data at 2 GHz for realistic numerical breast phantoms from the
University of Wisconsin-Madison UWCEM online repository: we compare Huber regularization with a
multiplicative smoothing regularization and show reconstructions for various positions of a tumor, for
multiple tumors and for different tumor sizes, from a sparse and from a denser data configuration.

1. INTRODUCTION

Microwave biomedical imaging relies on the capability of microwaves to differentiate among tissues
based on the contrast in their dielectric properties. It is currently being investigated as an alternative
or complementary imaging modality to X-ray mammography for breast cancer screening and/or therapy
monitoring. Malignant-to-normal tissue contrasts of various degrees have been reported [1, 2] and are
ascribed to tumors having a higher water content, hence higher relative permittivity and conductivity
values, than normal tissues. Benefits of microwave breast imaging such as its non-ionizing nature and
moderate cost have stimulated research in this field over the last two decades. Promising clinical 3D
tomographic images are shown in [3] for a screening example of a 1.2 cm sized tumor and for a monitoring
example.

An active microwave imaging system mainly consists of a transmit-receive antenna setup for
illuminating the target and collecting the scattered microwave field data and a reconstruction algorithm
for processing these data to an image. The focus in this paper is on the latter. Let us recall some
early biomedical experiments that yielded two-dimensional (2D) transmission coefficient images [4] and
2D diffraction tomography (DT) images [5] of ex-vivo animal kidneys as well as 2D-DT images of an
in-vivo human forearm [6]. Qualitative approaches also have been proposed, more recently, for breast
cancer imaging, including ultra-wideband synthetic focusing techniques [7–9] and a linear sampling
technique [10]. Since the nineties quantitative reconstruction algorithms based on rigorous solutions of
Maxwell’s equations have been developed to provide images of the complex permittivity profile, see,
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e.g., [11–16] for 2D and [13, 16–19] for 3D frequency-domain techniques and [20–22] for time-domain
(TD) techniques. These algorithms have been tested with biomedical experimental data, e.g., for various
biological phantoms [16, 22–24] and a human forearm [16, 25, 26] in 2D, for plastic rods in saline [27] in
pseudo-3D, for a canine thorax [28] in a 3D scalar approximation and for dielectric balls [29] and a pig
hind-leg [30] in fully-vectorial 3D. Quantitative imaging of the breast is reported, e.g., employing 2D
single-frequency algorithms with synthetic data [26, 31] or with phantom and/or clinical data [32–34],
a 3D single-frequency algorithm in a scalar approximation with synthetic data [35], a 3D TD algorithm
with synthetic and phantom data [36], a 3D multiple-frequency vectorial algorithm with synthetic
data [37–40] and 3D single-frequency fully vectorial algorithms with synthetic data [41–43] and with
single-polarized clinical data [3]. In this paper we consider a 3D single-frequency fully vectorial imaging
algorithm.

Reconstructing the complex permittivity profile is a nonlinear and ill-posed inverse problem. It
is solved by letting a nonlinear optimization scheme minimize a data-fit cost function, where some
kind of regularization is provided to cope with the ill-posedness. The Gauss-Newton method has been
employed for microwave breast imaging by several authors, e.g., [3, 14, 26, 33, 34, 37–45] and it is used
in this paper as well. The cost function in [3, 14, 33, 34, 37–40, 44] is the non-regularized data-fit —
the method is often referred to as the Distorted Born Iterative Method (DBIM) [11]. Its minimum
generally is not well-defined, especially when the number of reconstruction variables is large. In this
case a regularization is applied to the permittivity update in each iteration of the optimization: Tikhonov
regularization — similar to [11, 13] — in [14, 34, 37], a combination of L1 and L2 norm sparsity promoting
regularization in [38] and other compressive sensing schemes in, e.g., [44] and a conjugate gradient
for least squares (CGLS) algorithm in [3, 33, 39, 40]. In the present paper, as in [26, 42, 43, 45] for
microwave breast imaging and as in, e.g., [19, 30, 46–52] for microwave imaging, we adopt a regularized
cost function consisting of the data fit term and a regularization term. The regularization term allows
for easy incorporation of a priori information on the complex permittivity profile. This approach can be
interpreted within a Bayesian framework employing Markov Random Fields (MRF), where the energy
function is defined as a sum of clique potentials; see for microwave imaging, e.g., [50, 51], where a
Gauss-Newton, and [53–55], where other schemes are adopted for the optimization.

Different regularizing functions have been analyzed in the framework of microwave imaging.
Quadratic (L2-norm) smoothing regularization [19, 46], or a Tikhonov potential function [53, 55],
penalizes small differences between neighboring permittivity values, but also smooths out true
discontinuities; it is applied to 3D simulated breast imaging in an additive multiplicative fashion in [43].
For (quasi) piecewise-constant profiles strong edge-preserving capabilities are shown by value picking
(VP) regularization [48, 56], which is a nonspatially structured approach, and by piecewise-smoothed VP
regularization (a combined nonspatially-spatially structured approach) [49], when applied to measured
data from the 3D and 2D Fresnel databases, respectively, but these techniques perform best for a
limited number of different permittivity values. Weighted L2-norm total variation (TV) regularization,
where the weights are reduced at discontinuities, is applied to biomedical imaging in [16, 26, 30] and to
2D simulated breast imaging in [26]. In [45] a soft prior quadratic regularization that exploits spatial
information from alternative imaging modalities (MR or x-ray CT) is successfully applied to 2D breast
phantom imaging, but in this paper we do not assume tissue boundaries to be known.

Various edge-preserving potential functions, which smooth the homogeneous areas of an image
while preserving edges, without a priori knowledge of the edge locations, are employed in [50–54] in
a spatially structured regularization; for example, discontinuity adaptive (DA) models [57] turn off
smoothing less abruptly than line process [53] and weak membrane [54] models; an advantage of the
well-known Huber function [58] is that it is nonquadratic but convex [59]: it consists of a quadratic
function for arguments below a threshold, for smoothing small scale noise, and of a linear function above
the threshold, for preserving discontinuities. In [50, 51] we tested different DA functions, including the
Huber function, with measured scattered field data for 2D and 3D piecewise-constant lossless dielectric
targets in air from Institut Fresnel [60, 61]; the Huber function yielded an average reconstruction error
of 14.9% for the 2D case (see [50] for the error values and [62, p.78] for a correction in the error formula)
— the maximum target-to-background permittivity contrast was 3-to-1; for the 3D case reconstructed
permittivities were within 5% of the actual values for the two-spheres and two-cubes targets [51] —
with maximum target-to-background contrasts of 2.6- and 2.3-to-1, respectively.
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In case of microwave breast imaging the target is lossy and (strongly) inhomogeneous and the
tumor-to-background contrast typically is larger than with the aforementioned targets from the Fresnel
databases. In the present paper, as in [42] where we reported some preliminary results indicating the
potentials of Huber regularization for breast imaging, we adopt a tumor-to-background contrast of 50-
to-10 for the real part and of 10-to-2 for the imaginary part of the complex permittivity. We present a
more elaborate study here than in [42]: we now consider different realistic numerical breast phantoms,
which we derived from two phantoms from the University of Wisconsin-Madison (UWCEM) online
repository [63] and we examine the influence of the tumor size and position as well as of multiple tumors
on the reconstructions. We also consider the effect of the antenna density on the reconstruction quality.
Furthermore, we compare the performance of the Huber regularization with a quadratic smoothing
regularization [19].

The paper is organized as follows. The reconstruction algorithm and Huber regularization are
briefly discussed in Section 2. In Section 3, the methodology for data generation, the phantoms and
antenna configurations are introduced. Results are shown in Section 4. Section 5 concludes the paper.

2. RECONSTRUCTION ALGORITHM

We consider a breast that is immersed in a homogeneous (lossy) medium with known relative complex
permittivity εb — the rest of the body, an enclosure and antenna coupling are not included in our
scattering model. The breast is illuminated successively with different known microwave fields emitted
by elementary dipole antennas that are located on a surface surrounding its front side and that can
be oriented along different polarizations. For each illumination the scattered field components are
measured in receiving locations on the same surface. A single fixed frequency f is adopted and the time
dependency ejωt of the fields is omitted in the following. Our goal is to reconstruct the relative complex
permittivity

ε(r) = ε′(r) − j
σ(r)
ωε0

, (1)

where ε′ is the relative permittivity and σ the conductivity in every point r in a cuboidal reconstruction
domain D that contains the breast and is located inside the transmit/receive surface. Below we
summarize the Gauss-Newton reconstruction algorithm [19, 43, 48] and briefly describe the Huber
regularization [50, 51].

2.1. Gauss-Newton Minimization of a Regularized Cost Function

The unknown relative complex permittivity ε(r) is discretized in D on a uniform rectangular grid with
N ε cubic cells, resulting in a N ε-dimensional vector ε = [ε1, . . . , εNε ]. We solve the inverse problem for
the permittivity vector by iterative minimization of a cost function

F (ε) = FLS(ε) + μFD(ε), (2)

where FD(ε) denotes the regularization function, μ is a positive regularization parameter and

FLS(ε) =
‖emeas − escat(ε)‖2

‖emeas‖2
(3)

is the normalized least squares data error, with ‖ · ‖ the L2 norm. In Eq. (3), emeas and escat(ε) are
Nd-dimensional vectors that contain the measured scattered field components (complex numbers) for
all used combinations of transmitters and receivers and the corresponding computed scattered field
components for a given permittivity vector ε, respectively. Note that the scattered field is defined as
the total field (with the breast in place) minus the incident field (the breast is not present). For the
computation of escat(ε), i.e., the forward problem solution, we use a fast BiCGSTAB-FFT fully vectorial
forward solver, see [19, 64] for details, which is based on a Method of Moments discretization of a mixed
potential volume integral equation for the electric flux density in D and on a BiCGSTAB-FFT iterative
solution of the resulting linear system, where the initial field is chosen with a “marching on in source
position” technique. Note that the discrete dipole approximation (DDA) in [3, 65] leads to a similar
discretization.
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For the minimization of Eq. (2) we employ the (independent) variables εν and ε∗ν , with (.)∗ the
complex conjugate, and we apply a Gauss-Newton technique, meaning here that the second order
derivatives ∂2F

∂εν∂εν′
and ∂2F

∂ε∗ν∂ε∗
ν′

in the complex Hessian matrix of the Newton update formula are
neglected. The resulting Gauss-Newton update sk at iteration k is used as a search direction and
satisfies the equation [48](

JH
k Jk + λ2ΣD

k

)
sk = −(JH

k [escat(εk) − emeas] + λ2ΩD∗
k ), (4)

where (.)H stands for Hermitian transpose. The trade-off parameter λ is given by λ2 = μ‖emeas‖2. The
Nd × N ε matrix J is the Jacobian matrix, ΩD∗ is a N ε-dimensional vector with first order derivatives
and ΣD a N ε × N ε matrix with second order derivatives of FD(ε). In this paper, the update system
(4) is solved with a BiCGSTAB solver [66] (a subspace preconditioned LSQR method [43] is used when
MS regularization is applied).

The new permittivity vector εk+1 is then obtained by performing an approximate minimization [67]
of the cost function F (εk+1(β)) along a chosen path with parameter β. Usually, as, e.g., in [19], a line-
search is performed along the Gauss-Newton update direction, i.e., εk+1 = εk + βksk. In this paper we
employ the constrained search path from [43], which smoothly incorporates lower and upper bounds on
the real and imaginary parts of the complex permittivity.

2.2. Huber Regularization

It is well known that the MRF provides a convenient and consistent way of modeling the global context
in terms of local interactions between image entities (pixels, voxels, segments, etc.) [57]. We define the
regularizing function FD(ε) as

FD(ε) =
1
2

∑
ν

∑
ν′∈Nν

g(εν − εν′), (5)

where g is a potential function and Nν the neighborhood of ν. We use 26 neighbors in 3D. Let η = εν−εν′
denote the difference between two neighboring complex permittivities. The Huber function gh with
threshold parameter γ is defined as [50, 51]

gh(η) =
{|η|2 |η| ≤ γ,

2γ|η| − γ2 otherwise.
(6)

The model of Eq. (6) can be considered as a 2D extension of the 1D Huber model [57–59] and yields
bounded smoothing. The expressions for the first and second order derivatives of Eq. (5) with the
potential function in Eq. (6) are [50, 51]

ΩD∗ =
∂FD

∂ε∗ν
=

∑
ν′∈Nν

ων′ , (7)

ΣD
ν,ν =

∂2FD

∂εν∂ε∗ν
=

∑
ν′∈Nν

σν′ , (8)

ΣD
ν,ν′ =

∂2FD

∂εν′∂ε∗ν
= −σν′ for ν ′ ∈ Nν (9)

Table 1. Expressions for ων′ and σν′ for the Huber function.

|εν − εν′ | ≤ γ otherwise

ων′ (εν − εν′) γ(εν−εν′)
|εν−εν′ |

σν′ 1 γ
2|εν−εν′ |
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and ΣD
ν,ν′ = 0 for ν ′ /∈ Nν , where expressions for ων′ and σν′ are given in Table 1.

In Section 4 we compare Huber regularization with Multiplicative Smoothing (MS) regularization
(a slightly different implementation than in [19] is used here). With MS regularization the cost function
is given by F (ε) = FLS(ε)(1+μFR(ε)), where FR is as (5), with g the Tikhonov function gT (η) = |η|2,
with 6 nearest neighbors in Nν — 3 nearest neighbors are used in [19] — and without the fore factor 1

2 .

3. SYNTHETIC DATA GENERATION

The 3D complex permittivity breast phantoms in this paper are adapted from the UWCEM online
numerical breast phantoms repository [63]. This repository provides anatomically realistic MRI-derived
phantoms, which capture the structural heterogeneity of normal breast tissue and which incorporate
the realistic dispersive dielectric properties of normal breast tissue from 0.5 to 20 GHz [68]. We chose a
frequency of 2 GHz [62]. Since the high resolution of these phantoms (cell size 0.5 mm) is computationally
demanding for the forward problem solution, we derived coarser phantoms (cell size 2.5 mm) for the
synthetic data generation. These data are computed with the fully vectorial forward solver [64], where
the tolerance for the BiCGSTAB routine is set to 10−3. Let us define the signal-to-noise ratio as

SNR = 10 log10
||emeas||2
2Ndσ2

dB, (10)

where σ2 is the variance of additive white Gaussian noise. We set a SNR of 20 dB (10% noise) for all
scattered field data that are inverted in this paper. This value lies in the range of SNRs that were
estimated with our MS regularized reconstruction algorithm for a number of 3D Fresnel data, i.e.,
(14–19 dB) in [56] and (23–30 dB) in [19]. The phantoms and antenna configurations are detailed below.

3.1. Realistic Numerical Breast Phantoms

We selected two phantoms: phantom 1 (ID 071904) from ACR class 1, which is a mostly fatty breast
phantom with some glandular and fibro-connective inhomogeneities, and phantom 3 (ID 010204) from
ACR class 2 with a scattered fibroglandular density. Sagittal slices through these full-resolution
phantoms at 2GHz are depicted in Fig. 1. We adapted the phantoms as follows: the permittivity
of the background medium is chosen as εb = 10.0 − j2.0 (σb = 0.223 S/m) [10, 43]; the background
wavelength then is λb = 4.72 cm; the muscle layer at the chest wall [68] is removed; coarser permittivity
phantoms with a cell size 2.5 mm (= λb/19) are obtained by local averaging. Furthermore, we inserted
one or more spherical tumors with permittivity 50.0 − j10.0 [10, 43] and a diameter in the range 2 cm
to 1.2 cm, which is smaller than the half-wavelength λb/2 = 2.36 cm. Two of these coarser phantoms,
with a tumor located at (3 cm, −3 cm, 0 cm), are depicted in Fig. 2, showing sagittal (xy-)slices near
z = 0 and coronal (yz-)slices through the tumor near x = 3 cm.

3.2. Antenna Configurations

We chose a sparse antenna configuration as in Fig. 3 for the reconstructions in Sections 4.1–4.3, sparse
meaning here that the number of nonredundant data is much lower than the number of reconstruction
variables. The computational grid (gray cuboid) contains the breast phantom with its chest wall located
in the yz facet with x > 0 (e.g., at x = 6cm in Fig. 3). The antennas are positioned on 5 circles on a
hemi-ellipsoidal-like surface around the cuboid. These circles are centered on the x-axis and parallel to
the yz-plane; the first circle is at x = −10 cm, in front of the nipple, and the last circle is at x = 7.5 cm.
Each circle contains 8 equally spaced antenna positions. The spacing between the largest circles is
5 cm (≈ 1.1λb) and the spacing between the antenna positions on the largest circle (diameter 20 cm) is
approximately 7.8 cm (≈ 1.6λb). In each of the 40 positions there are 2 dipoles with polarizations in
orthogonal directions. This yields a total of 80 dipoles, which is half of the number used in [43]. All
80 dipoles are used to sample the field, but only the 64 dipoles (indicated with green markers) on the
four largest circles are used to illuminate the phantom. This yields a total of Nd = 5120 complex field
values. Note that due to reciprocity 496 × 4 = 1984 of these data values are redundant, which is the
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(a ) (b) (c) (d)

Figure 1. The complex permittivity in a sagittal slice through the full-resolution UWCEM breast
phantoms at 2 GHz: (a), (b) class 1 phantom and (c), (d) class 2 phantom. (a), (c) Real part and (b),
(d) imaginary part.
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Figure 2. The complex permittivity in slices through the discretized (a)–(d) class 1 phantom and (e)–
(h) class 2 phantom used for synthetic data generation. (a), (c), (e), (g) Sagittal slice near z = 0 cm and
(b), (d), (f), (h) coronal slice near x = 3 cm. (a), (b), (e), (f) Real part and (c), (d), (g), (h) imaginary
part. A horizontal black line indicates the intersection of sagittal and coronal slices. A spherical tumor
is centered at (3 cm, −3 cm, 0 cm), with a diameter of 2.0 cm for the class 1 phantom and of 1.6 cm for
the class 2 phantom. The cell size is 2.5 mm. Axes are in cm.

number of transmitter position pairs, C2
32, times the number of data values per transmitter position,

hence the number of nonredundant data is 3136.
In Section 4.4 a denser antenna configuration (see Fig. 10) comprising 10512 nonredundant data

is described and tested as well. Note that all measurement positions in Section 4 lie within a distance
of 15 cm from the origin, hence they are in the reactive zone for both phantoms — the far field
distances are approximately 1.9 m and 1.3 m for the class 1 and class 2 phantom reconstruction domains,
respectively. As a consequence the estimate for the number of degrees of freedom (NDF) as given in [69]
is not applicable here. Let us apply the estimate from [69] anyway as an indication: for the class 1
phantom it yields approximately 250 antenna positions evenly distributed over a sphere (in the far
field), corresponding with NDF ≈ 125000; for the class 2 phantom it gives approximately 170 antenna
positions and NDF ≈ 57800. It is clear that the numbers of nonredundant data employed in this paper
are much lower than these estimates.
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(a) (b)

Figure 3. A sparse antenna configuration yielding Nd = 5120 data (3136 nonredundant data)
employed in Sections 4.1–4.3: (a) xyz-view and (b) xy-view. Dots indicate antenna positions, green
markers transmitting positions and arrows in two orthogonal directions the dipoles around a cuboid
reconstruction domain. Axes are in m.

3.3. Some Parameters from the Literature

Note that in [3] and [37, 39] only x-directed antennas are used. Furthermore, their algorithms allow
for smaller distances between a cylindrical measurement surface and a breast surface, since the
reconstruction domain also is cylindrical; their antennas are more closely spaced on smaller measurement
surfaces than with the configurations in this paper. For the reconstructions from clinical data in [3] the
reconstruction domain is a cylinder with diameter 14 cm and height 5 cm, hence its volume (≈ 770 cm3)
is about 1.3 to 2.2 times smaller than the volumes we use in Section 4; a 15 cm diameter [32] circular
16-element array with antenna spacing 0.65λb,[3] (λb,[3] ≈ 4.5 cm) is moved along x to 7 positions spaced
apart 5 mm (≈ 0.1λb,[3]) spanning 3 cm, yielding 1680 complex data at 1.3 GHz; this number of data is
about one third of our number Nd = 5120, but the number of 4500 reconstruction variables (≈ 5.5 mm
cell size) in [3] is also one third or a smaller fraction of the number 13440 ≤ N ε ≤ 107520 that we employ
in Section 4. For the reconstructions of class 1 and class 2 phantoms, similar to the ones used in this
paper, [37, 39, 40] adopt a 2 mm cell size within a reconstruction domain defined by the known breast
contours, yielding 120000–360000 unknowns [39]; they employ a 40 element antenna array that consists
of 5 ellipses spaced apart 1 cm and with an approximate diameter of 11 cm, each with 8 electrically-small
dipoles spaced apart approximately 4.5 cm, yielding 1560 time domain signals.

4. RECONSTRUCTION RESULTS

In Section 4.1 we compare reconstructions obtained with Huber (6) and MS (Section 2.2) regularization
for the class 1 phantom with a 2 cm tumor and the class 2 phantom with a 1.6 cm tumor from Fig. 2. We
then continue with Huber regularization. We show some more examples for class 1 phantoms with a 2 cm
tumor in different positions and with two tumors in Section 4.2. Finally we show reconstructions for
smaller tumors in Section 4.3 and we compare with results obtained from a denser antenna configuration
in Section 4.4. Unless otherwise specified, all reconstructions are performed on an inversion grid that is
coarser than the data generation grid. We use this inversion grid also for the forward problem solutions
during the reconstruction. The initial guess is equal to the background permittivity εb everywhere
in the cuboid D, hence we do not use prior knowledge of the breast contour as in [37, 39]. The
tolerance for the BiCGSTAB routine is 10−3 everywhere in this Section. The permitttivity bounds are
1.0 < Re(ε) < 55.0 and −50.0 < Im(ε) < 1.0. We set the parameters μ = 1 × 10−5 and γ = 0.001 for
Huber regularization [42, 51]. For MS regularization we use μ = 1× 10−4 (this choice is not so critical).
The iterations are stopped when the data error shows reductions less than 1%. All computations were
performed on a six-core Intel i7 980x processor (3.33 GHz) with 24 GByte memory. Since for none of
the reconstructions the real part of the permittivity attained values higher than 40, we employ the
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scale [1, 40] in the figures rather than [1, 55] from Fig. 2; for the imaginary part the same scale as in
Fig. 2 is used.

4.1. Reconstructions with Different Regularization Methods

4.1.1. Class 1 Breast Phantom

The diameter of the tumor is 2 cm (≈ λb/2.4), see Figs. 2(a)–(d). The reconstruction grid D has
dimensions 12 cm × 14 cm × 10 cm = 1680 cm3 and counts 24× 28× 20 cells with size 5mm (≈ 0.11λb);
the number of complex permittivity unknowns N ε = 13440 is about 4 times as large as the number of
nonredundant data. We noticed that convergence for both MS and Huber regularization occurred before
9 iterations. The reconstructions after 9 iterations (40 minutes — we did not optimize computation
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Figure 4. Complex permittivity reconstructions of the class 1 phantom from Fig. 2 with a 2.0 cm
diameter tumor at (3 cm, −3 cm, 0 cm), obtained with (a)–(d) Huber regularization and (e)–(h) MS
regularization. (a), (c), (e), (g) Sagittal slice near z = 0cm and (b), (d), (f), (h) coronal slice near
x = 3 cm. (a), (b), (e), (f) Real part and (c), (d), (g), (h) imaginary part. A horizontal black
line indicates the intersection of sagittal and coronal slices. The cell size is 5 mm. Axes are in cm.
Nd = 5120 and SNR = 20 dB.

-5

0

5

x

-505
y

10

20

30

40

50

(a )

-505
y

-4

0

4

z

10

20

30

40

50

(b)

-5

0

5

x

-505
y

-14

-12

-10

-8

-6

-4

-2

0

(c)

-505
y

-4

0

4

z

-14

-12

-10

-8

-6

-4

-2

0

(d)

Figure 5. The complex permittivity in slices through a 5mm cell size locally averaged version of the
discretized class 1 phantom of Figs. 2(a)–(d); this phantom does not serve for data generation, but as
a visual reference for the reconstructions of Fig. 4. (a), (c) Sagittal slice near z = 0 cm and (b), (d)
coronal slice near x = 3 cm. (a), (b) Real part and (c), (d) imaginary part. A horizontal black line
indicates the intersection of sagittal and coronal slices. Axes are in cm.
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times) are depicted in Fig. 4, which shows the real and imaginary parts of the complex permittivity
in nearly the same sagittal and coronal slices as with the exact phantom of Fig. 2 for the Huber (top
row) and MS (bottom row) regularizations. The breast contour and the locations and dimensions of
the healthy heterogeneities in the center and near the nipple and of the tumor are reconstructed in all
images; the dimensions of the tumor are somewhat overestimated with the Huber method but it is clear
from Figs. 4(a)–(d) that the tumor is better delineated than in the MS images from Figs. 4(e)–(h),
which are more smoothed. The real part of the glandular tissues is underestimated for all images, but
more for MS — an underestimation is also visible in Fig. 9 of [40]; some higher values (ε′ ≈ 35) are
visible in the glandular tissues nearby the tumor with the Huber function. For the imaginary part of the
glandular tissues, we also see some high absolute values in the Huber images. With both methods the
maximum permittivity values of the tumor are similar (approximately 20 − j6.7) and underestimated
(exact value: 50 − j10) but significantly higher than the surrounding adipose permittivity; the relative
error of this maximum tumor permittivity is smaller for the imaginary part (33%) than for the real part
(60%).

Finally we computed the RMS errors for both reconstructions with respect to the 5 mm cell size
locally averaged version of the exact phantom of Figs. 2(a)–(d) shown in Fig. 5, where MS stands for
the mean value of the squared differences over all cells in D. These errors are quasi identical for the
real parts (2.955 for Huber and 2.947 for MS regularization) and show a reduction of 8% for Huber
relative to MS regularization for the imaginary parts (1.01 for Huber and 1.09 for MS regularization).
Even though the RMS errors are quite similar for both methods, it is clear from a visual inspection that
Huber regularization preserves better the sharpness of the details of interest.

4.1.2. Class 2 Breast Phantom

The diameter of the tumor is 1.6 cm (≈ λb/3) for this smaller phantom, see Figs. 2(e)–(h). The
reconstruction grid D is a cube with size 10 cm and counts 25× 25× 25 cells with size 4 mm (≈ 0.08λb),
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Figure 6. Complex permittivity reconstructions of the class 2 phantom from Fig. 2 with a 1.6 cm
diameter tumor at (3 cm, −3 cm, 0 cm), obtained with (a)–(d) Huber regularization and (e)–(h) MS
regularization. (a), (c), (e), (g) Sagittal slice near z = 0cm and (b), (d), (f), (h) coronal slice near
x = 3 cm. (a), (b), (e), (f) Real part and (c), (d), (g), (h) imaginary part. A horizontal black
line indicates the intersection of sagittal and coronal slices. The cell size is 4 mm. Axes are in cm.
Nd = 5120 and SNR = 20 dB.
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Figure 7. Complex permittivity reconstructions with Huber regularization of class 1 phantoms with a
2.0 cm diameter tumor at different positions in the xy-plane: tumor centered (a)–(d) at (2 cm, −2 cm,
0 cm), (e)–(h) at (1 cm, −1 cm, 0 cm) and (i)–(l) at (0 cm, 0 cm, 0 cm). (a), (c), (e), (g), (i), (k) Sagittal
slice near z = 0cm and (b), (d) coronal slices through the tumor at x = 2.2 cm, (f), (h) at x = 1.2 cm
and (j), (l) at x = 0.2 cm. (a), (b), (e), (f), (i), (j) Real part and (c), (d), (g), (h), (k), (l) imaginary
part. A horizontal black line indicates the intersection of sagittal and coronal slices. The cell size is
5mm. Axes are in cm. Nd = 5120 and SNR = 20 dB.

hence the number of complex permittivity unknowns is N ε = 15625. The results after 9 iterations are
depicted in Fig. 6. The MS images are again more smoothed; the visibility of the tumor in the MS
imaginary part now is weaker than with the larger tumor in the class 1 phantom. With the Huber
images the tumor is clearly visible at the correct location and the average permittivity values of the
central fibroglandular heterogeneity are rather well reconstructed, in particular for the imaginary part.
As with the class 1 phantom the maximum permittivity values of the tumor (approximately 21− j6.3)
are underestimated (exact value: 50 − j10); the relative error of this maximum tumor permittivity is
37% for the imaginary part and 58% for the real part.

4.2. Different Tumor Positions and Multiple Tumors

We first let the 2 cm diameter tumor move from the original position (3 cm, −3 cm, 0 cm) in the class
1 phantom in Fig. 2 along a diagonal in the xy-plane to the center of the grid, yielding the positions
(2 cm, −2 cm, 0 cm), (1 cm, −1 cm, 0 cm) and (0 cm, 0 cm, 0 cm). The same inversion grid as before
with cell size 5 mm is employed. From the imaginary part in the reconstruction of Fig. 7(c) we notice
that the tumor is clearly visible to the right of the glandular tissues at (2 cm, −2 cm, 0) and that its
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value (≈ −9) is close to the actual value (−10); the real part is approximately 22. As the tumor is
moved closer to the center of the grid, overlapping more and more with the original glandular tissues, its
maximum permittivity in Fig. 7 (middle and bottom rows) changes to approximately (40− j14) (exact
value: 50 − j10); the relative error of this maximum tumor permittivity is 40% for the imaginary part
and 20% for the real part.

We now consider a class 1 phantom as in Fig. 2 and we insert an identical tumor to the left of the
central tissues at (3 cm, 3 cm, 0 cm). From the reconstructions in Fig. 8 we notice that both tumors are
correctly located and that the reconstruction quality is not degraded by the additional tumor; the tumor
values even are slightly better than those in Fig. 4 with maximum values of approximately 20− j7.5 for
the right and 24 − j8.9 for the left tumor; the relative errors of these maximum tumor permittivities
are 25% and 11% for the imaginary parts and 60% and 52% for the real parts, respectively.

From Sections 4.1 and 4.2 we conclude that a (high permittivity) 2 cm tumor can be clearly
(visually) distinguished within (low permittivity) adipose tissue, although its reconstructed permittivity
values are lower than the actual ones. Such tumor is less distinguishable within (high permittivity)
glandular tissues; the reconstructed values at its location then are closer to the actual ones.
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Figure 8. Complex permittivity reconstruction with Huber regularization of a class 1 phantom with
two 2.0 cm diameter tumors centered at (3 cm, −3 cm, 0 cm) and (3 cm, 3 cm, 0 cm) in the xy-plane.
(a), (c) Sagittal slice near z = 0 cm and (b), (d) coronal slice near x = 3cm. (a), (b) Real part and (c),
(d) imaginary part. A horizontal black line indicates the intersection of sagittal and coronal slices. The
cell size is 5 mm. Axes are in cm. Nd = 5120 and SNR = 20 dB.

4.3. Smaller Tumor Sizes

We consider class 1 phantoms with a single tumor positioned in (3 cm, −3 cm, 0 cm) with a diameter:
2.0 cm (≈ λb/2.4), 1.6 cm (≈ λb/3), 1.4 cm (≈ λb/3.4) and 1.2 cm (≈ λb/4). The equivalent diameters
corresponding with the (2.5 mm cells) discretized tumor volumes respectively are 1.97 cm, 1.64 cm,
1.34 cm and 1.19 cm. We used 5120 data from the antenna configuration of Fig. 3. Sagittal slices of
the reconstructions with a cell size of 5mm (N ε = 13440) are shown in the top two rows of Fig. 9.
We also did reconstructions with a cell size of 2.5 mm (N ε = 107520), see the other rows of Fig. 9,
where we employed the same values for the BiCGSTAB routine tolerance and the parameters μ and γ
as before. We notice lower glandular permittivity (absolute) values with the 2.5 mm cell size than with
the 5 mm cell size reconstructions; this might be due to the increased weight of the regularization term
relative to the data error in (2), given the larger number of cells in the summation (5). It can be seen
that the 1.6 cm diameter tumor is reconstructed at the right location in Fig. 9(b), but where the 2.0 cm
diameter tumor in Fig. 9(a) is a bit oversized, this smaller one is a bit undersized. When the diameter
decreases to 1.4 cm, only a faint change with respect to the surrounding permittivity is observed at the
tumor location in Fig. 9(c) for the 5 mm cell size and in the 3D iso-surface; the tumor with diameter
1.2 cm is not visible in Fig. 9(d). Differential imaging techniques can be applied to resolve “invisible”
tumors [37, 39]. Note further that the small lump — approximately 1 cm in Fig. 2(a) — of glandular
tissue near the nipple is not resolved, but that the permittivity (absolute) values are significantly higher
around the nipple. More simulations to study the influence of the tumor position and of the surrounding
tissues and to fine tune regularization and computational parameters are needed to gain more insight
into the reconstruction of small tumors.
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Figure 9. Complex permittivity reconstructions with Huber regularization of class 1 phantoms with
different tumor diameters: (a) 20 mm, (b) 16 mm, (c) 14 mm and (d) 12 mm. Top 2 rows: (upper)
real part and (lower) imaginary part for a 5mm cell size; middle 2 rows: (upper) real part and (lower)
imaginary part for a 2.5 mm cell size; axes are in cm. Bottom 2 rows: 3D iso-surfaces of the (upper)
real part and (lower) imaginary part; axes are in m. Nd = 5120 and SNR = 20 dB.
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(a) (b)

Figure 10. A denser antenna configuration yielding Nd = 20736 data (10512 nonredundant data)
employed in Section 4.4: (a) xyz-view and (b) xy-view. Dots indicate antenna positions, green
markers transmitting positions and arrows in two orthogonal directions the dipoles around a cuboid
reconstruction domain. Axes are in m.

4.4. Reconstructions with a Denser Antenna Array

We show reconstructions for phantoms with similar tumors as in Section 4.3, but these phantoms
were obtained from the high resolution phantom by applying a local averaging cell size of 4 mm. The
equivalent tumor diameters corresponding with the (4 mm cells) discretized tumor volumes are 1.90 cm,
1.64 cm, 1.35 cm and 1.14 cm. We used a more dense antenna configuration than with the previous
reconstructions, see Fig. 10. It consists of 5 circles with diameter 18 cm and one smaller circle with
diameter 9 cm, spaced 2.8 cm (≈ 0.6λb) in the x-direction. The small circle is at x = −8.4 cm in front
of the nipple and the last circle is at x = 5.6 cm at the chest wall. There are 12 antenna positions on
each circle, spaced 4.7 cm (≈ λb) for the large circles, yielding 72 positions in total, and 2 polarizations
per position. We used all positions for transmitting and receiving, hence the number of complex field
data is Nd = 20736, which is 4 times the number of data used before. Note that nearly half of these
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Figure 11. Complex permittivity reconstructions with Huber regularization of class 1 phantoms with
different tumor sizes and using Nd = 20736 field data from Fig. 10: (top row) real part and (bottom
row) imaginary part. The tumor diameters are (a), (e) 20 mm, (b), (f) 16 mm, (c), (g) 14 mm and (d),
(h) 12 mm. The cell size is 5mm. SNR = 20 dB.
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data are redundant due to reciprocity, yielding 10512 nonredundant data.
We used a 5mm cell size for the reconstructions, hence N ε = 13440. This number is still larger than

the number of nonredundant data. The images after 12 iterations are shown in Fig. 11. By comparing
Fig. 11 with Fig. 9 we notice some small changes: the shape and permittivity values of the central
glandular tissues in Fig. 11 are a bit closer to the exact phantom; the lump of glandular tissue near
the nipple now is appearing faintly in the real part; the absolute value of the imaginary part of the
2.0 cm diameter tumor in Fig. 11(a) is a bit lower (≈ 5.5) than before; the 1.6 cm diameter tumor in
Fig. 11(b) is less undersized and the presence of the 1.4 cm diameter tumor in Fig. 11(c) is a bit more
pronounced than before; the smallest tumor in Fig. 11(d) is still not visible. Since we used different
data generation models in Sections 4.3 and 4.4 it is possible that these changes are not entirely due to
the larger amount of data. More simulations, e.g., with smaller cell sizes, more closely spaced receiving
antennas, are needed to further investigate the reconstruction of small tumors.

5. CONCLUSIONS

In this paper we employed the Huber function in the regularization term in the nonlinear cost function
for 3D quantitative microwave breast imaging. An iterative Gauss-Newton optimization scheme with
constrained line-searches was applied. We showed complex permittivity reconstructions from synthetic
bi-polarized scattered field data at 2 GHz for two types of breast phantoms with one (and two) tumor(s),
that we adapted from the UWCEM online repository. The number of nonredundant field data was
significantly lower than the number of reconstruction voxels and a SNR of 20 dB was adopted. The
Huber regularization was more effective in preserving the edges of the different tissues when compared
to a quadratic smoothing regularization. Tumors with diameters 2 cm and 1.6 cm were clearly visible
and correctly located in the reconstructed images, but the real parts of their permittivity values were
approximately between 20% and 60% too low and the imaginary parts showed differences between 10%
and 35% with respect to the actual values. A smaller 1.2 cm diameter tumor was not visible in the
reconstruction, also not when the number of nonredundant data was increased from 23% to 78% of the
number of voxels. A further improvement of these reconstructions could possibly result from optimizing
a number of computational parameters and from using more closely spaced receiving antennas.
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