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Abstract—Hyperspectral imagery contains a wealth of spectral
and spatial information that can improve target detection and
recognition performance. Conventional feature extraction meth-
ods cannot fully exploit both spectral and spatial information.
Data fusion by simply stacking different feature sources together
does not take into account the differences between feature sources.
In this paper, a local graph-based fusion (LGF) method is pro-
posed to couple dimension reduction and feature fusion of the
spectral information (i.e., the spectra in the HS image) and the
spatial information [extracted by morphological profiles (MPs)].
In the proposed method, the fusion graph is built on the full data
by moving a sliding window from the first pixel to the last one. This
yields a clear improvement over a previous approach with fusion
graph built on randomly selected samples. Experimental results
on real hyperspectral images are very encouraging. Compared to
the methods using only single feature and stacking all the features
together, the proposed LGF method improves the overall classifi-
cation accuracy on one of the data sets for more than 20% and
5%, respectively.

Index Terms—Classification, data fusion, graph-based, hyper-
spectral image, remote sensing.

I. INTRODUCTION

R ECENT advances in sensors technology have led to an
increased availability of hyperspectral data from urban

areas at very high spatial and spectral resolutions. Automated
image analysis techniques for the high-resolution remote sens-
ing data often make use of mathematical morphology [1],
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[2]. Pesaresi and Benediktsson [3] proposed the use of mor-
phological transformations to build an MP. Bellens et al. [4]
further explored this approach by using both disk-shaped and
linear structuring elements to improve the classification of very-
high-resolution panchromatic urban imagery. An extension of
MPs that can handle efficiently hyperspectral images with high
spatial resolution was proposed by Benediktsson et al. [5],
where MPs are built on the first few principal components
(PCs) extracted from the hyperspectral image. The resulting
approach was named extended MP (EMP) and has inspired a
number of further developments in the literature. In [6] and
[7], the MP was built with partial reconstruction [4], showing
an improvement with respect to the EMP in classification of
hyperspectral data. In [8], kernel PCs were used to construct the
EMP, with a significant improvement in terms of classification
accuracy when compared with the conventional EMP built on
PCs. In [9], the attribute profiles (APs) [10] were applied to the
first PCs extracted from a hyperspectral image, generating an
extended AP (EAP). The approach of [11] improved the clas-
sification results by constructing the EAP with the independent
component analysis.

A limitation of the above approaches is that they rely mainly
on geometrical features and do not fully utilize the spectral
information in the HS data. In fact, MPs (or their variants) are
built by only considering few components extracted from the
original HS cube, hence not fully exploiting the spectral infor-
mation. The information contained in the measured reflectance
spectra allows discrimination between different objects based
on their material composition. Thus, combining spatial and
spectral information can contribute to a more comprehensive
interpretation of objects on the ground. For example, spec-
tral signatures cannot differentiate between objects made of
the same material (e.g., roofs and roads made with the same
asphalt), while they can often be easily distinguished by their
geometry. On the other hand, spatial features alone may fail to
discriminate between objects that are quite different in nature
(e.g., grass field, parking, or a swimming pool), if their shape
and size are similar. Many approaches have been developed to
fuse the spectral and spatial information for the classification
of remote sensing data [13]–[19]. Some of these approaches
employ the so-called composite kernel methods [13], [14]
or their generalization [16]. Others define spatial information
through MPs, and concatenate spectral and spatial features in
a stacked architecture for classification [17]–[19]. Recently,
Huang et al. [20] proposed a multifeature model to combine
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multiple spectral and spatial features at both pixel and object
levels by a support vector machine (SVM) ensemble, show-
ing an improvement over vector stacking, feature selection, and
composite kernels.

While such methods (that simply concatenate several kinds
of features together) are appealing due to their simplicity, they
may not perform better (or may even perform worse) than using
a single feature. Dalla Mura et al. [11] showed examples where
the classification accuracies after stacking different morpholog-
ical attributes even dropped compared to the case of considering
a single one. This is because the information contained by
different features is not equally represented or measured. The
value of different components in the feature vector can be sig-
nificantly unbalanced. Furthermore, stacking several kinds of
feature sources may yield redundant information, making it dif-
ficult to select an optimal combination of spectral and spatial
features as it was shown by Fauvel et al. in [19]. In addition,
the increase in the dimensionality of the stacked features, as
well as the limited number of labeled samples may in practice
pose the problem of the “curse of dimensionality,” consequently
increasing the risk to overfit the training data.

To overcome these problems, Debes et al. proposed a graph-
based data fusion (GDF) method [21]1 to couple data fusion and
dimension reduction for classification of multisensor imagery.
The GDF [21] combined multiple feature sources through a
fused graph. The built graph explains the relations between data
points in the two data sources and can be seen as a way to
model the embedding in the manifold in which the data lie [21].
This approach proved to overcome the conventional approach
of stacking different feature sources together in terms of classi-
fication accuracy. However, the GDF can cause some problems
on storage resources and computational load especially when
using large training data sets. This is because finding k nearest
neighbors to build a graph is very intensive in both compu-
tation and memory consumption. Random sampling was used
to speed up the GDF in [21]. However, random sampling can
lead to poor representation of the whole area if large areas are
not sampled, which will lead to unstable performances. This is
even worse if the study area is very large and the number of
samples fixed. Moreover, image degradation cannot be avoided
during the hyperspectral data acquisition, which will lead to
poor performances on finding k nearest neighbors for build-
ing a graph on the whole original data or randomly selected
samples.

In this paper, we propose a new local graph fusion
(LGF) method to overcome the above-mentioned limitations.
Specifically, the proposed LGF is used to couple dimensionality
reduction and the fusion of spectral (i.e., the original HS image)
and spatial features (i.e., the morphological features computed
from the HS image). The main contributions of this paper can
be summarized as follows.

1) First and foremost, the proposed LGF builds the local
fusion graph on the whole data by employing a slid-
ing window. This way we introduce a different approach
with regard to GDF [21], where the fusion graph was

1The GDF method won the “Best Paper Challenge” award of 2013 IEEE
Data Fusion Contest.

built globally on randomly selected samples. The local
spatial neighborhood information is very important for
remote sensing, especially for high-resolution remote
sensing imagery. Specifically, many methods [23]–[25],
[28] demonstrated notable improvements on the perfor-
mances of dimensionality reduction, classification, and
segmentation, by exploiting the local spatial neighbor-
hood information. In typical remote sensing scenes (espe-
cially for high-resolution remote sensing images), pixels
in a small spatial neighborhood usually share similar
properties (e.g., very similar spectral characteristics). If
we build a fusion graph globally, pixels from different
objects may become the nearest neighbors of each other,
if they share similar spectral characteristics. For exam-
ple, pixels belonging to a roof of a building may get
connected in the graph to pixels of parking lots, because
they have very similar spectral characteristics even though
they might be not spatially adjacent. Within a small spa-
tial window, the proposed LGF better employs the local
spatial neighborhood information to represent objects in
the feature space. This way, our approach enables bet-
ter performances on classification, and better constraints
in terms of local connectivity reduce a risk of erro-
neously selected nearest neighbors even when the spectral
characteristics are affected by noise.

2) In addition, with the proposed local fusion graph,
our approach reduces computational complexity from
O(N2), which holds for the global fusion graph on the
whole data to only O(NS2), where N denotes the total
number of spatial pixels and S � N is the size of the
sliding window.

3) Last but not least, the proposed approach admits a fast
implementation by just spatially downsampling the orig-
inal data, while keeping the performances stable. As
shown in the experiments, for the high-resolution remote
sensing images, spatial downsampling will not affect
much the main spatial structure of the objects (i.e.,
leading to similar classification performances obtained
without subsampling), but can efficiently reduce the com-
putational complexity by a factor equal to the square of
the spatial downsampling ratio.

This paper is organized as follows. Section II provides a brief
review of morphological features. In Section III, we present the
proposed local graph-based fusion (LGF) method. The experi-
mental results on real hyperspectral images are presented and
discussed in Section IV. Finally, the conclusion is drawn in
Section V.

II. MORPHOLOGICAL FEATURES

Typical morphological features used for characterizing the
spatial information of very-high-resolution remote sensing
images are generated by applying morphological openings and
closings by reconstruction [5] on a grayscale image, using
a structural element (SE) of predefined size and shape. An
opening acts on objects that are bright compared with their sur-
rounding, while closings act on dark objects. For example, an
opening deletes (i.e., the pixels in the object take on the value
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Fig. 1. MP built on the first PC of University area. The scale of circular SE varies from 2 to 6, with step size increment of 2.

of their surrounding) bright objects that are smaller than the
SE. By increasing the size of the SE and repeating the previ-
ous operation, a complete MP is built [5], carrying information
about the size and the shape of objects in the image due to its
multiscale nature.

An MP is composed of an opening profile (OP) and a clos-
ing profile (CP). The OP with M scales at pixel x forms an
M -dimensional image, and so does the CP. By stacking the
OP, the CP, and original image, the MP of pixel x is obtained,
leading to a (2M + 1)-dimensional vector. When applying MP
to hyperspectral data, PC analysis (PCA) is widely used as a
preprocessing step to reduce the dimensionality of the high-
dimensional original data, as well as to reduce redundancy
among the bands [5]. Then, one constructs an MP on each PC
independently. An EMP is formed by stacking all the computed
MPs. Suppose p PCs are extracted from the original hyperspec-
tral data, then the EMP of a pixel x is a p(2M + 1)-dimensional
vector. Fig. 1 shows an MP built on the first PC. The usefulness
of using morphological features for classification of remote
sensing data on urban areas has been discussed in numerous
studies [4]–[11], [15]–[19].

III. PROPOSED METHOD

In this section, we propose a local graph-based fusion
(LGF) method.2 Suppose XSpec = {xSpec

i }Ni=1 and XSpat =

{xSpat
i }Ni=1 denote the spectral and spatial features after nor-

malization of their values to the same interval (e.g., [0,1]),
where xSpec

i ∈ R
B , with B the number of bands and xSpat

i ∈
R

D (with D = p(2M + 1) being generated by an EMP built on
p PCs and with M filters), and N is the total number of spatial
pixels in a HS image. Further on, we denote the stacked spectral
and spatial features by XSta = {xSta

i }Ni=1 = [XSpec;XSpat],
where xSta

i = [xSpec
i ;xSpat

i ] ∈ R
B+D.

The goal of this paper is to find a transformation matrix
W ∈ R

(B+D)×d, which can couple dimensionality reduction
(to d-dimensions) and feature fusion in a way of

zi = WTxi (1)

where xi is a multivariate variable which can be set to xSta
i ,

and {zi}Ni=1 the fusion features in a lower dimensional fea-
ture space with zi ∈ R

d and d ≤ (B +D). The transformation
matrix W should not only fuse different features in a lower
dimensional feature space, but also preserve local neighbor-
hood information, hence adapting to the manifold embedded in
the high-dimensional feature space. A reasonable way to find

2A MATLAB application that implements the proposed LGF method is
available on request.

the transformation matrix W can be defined as follows (details
can be found in [27])

arg min
W∈R(B+D)×d

⎛
⎝ N∑

i,j=1

∥∥WTxi −WTxj

∥∥2 Aij

⎞
⎠ (2)

where the matrix A represents the edges of an undirected graph
G = (X,A). The adjacency relation between the graph nodes
xi and xj is expressed through binary edge weights Aij ∈
{0, 1}. In our case, two data points xi and xj result in adja-
cent (connected) graph nodes if they are “close” to each other in
terms of some distance. Thus, we have Aij = 1 if xi and xj are
“close” and Aij = 0 if xi and xj are “far apart.” In particular,
xj will be “close” to xi if it belongs to its k nearest neighbors
(kNNs). The kNN is determined first by calculating the distance
(here we use the Euclidean distance as it is one of the most
simple and popular distance measures) between data point xi

and all the other data points xj (j = 1, . . . , N , and i �= j), then
sorting the distance and determining nearest neighbors based on
the kth minimum distance. Thus, such graph contains the inter-
relations between data points through the connections between
its nodes. The effectiveness of using such graph to fuse multiple
feature sources for classification has been discussed in the very
recent studies [21], [22].

For calculating the pairwise distance matrix to find kNN,
the complexity on storing the data and computational time
are of O(N2) and O(BN2). In this case, even in conven-
tional remote sensing images, the pairwise distance matrix will
exceed the memory capacity of ordinary personal computer. For
example, an image of N = 512× 512 pixels, the size of the
distance matrix is N ×N = (512× 512)× (512× 512) ele-
ments. Therefore, in GDF [21], a small number of samples (e.g.,
n = 5000) was selected from the whole original data to build
the global graph. However, random sampling may not always
well represent the full data, especially for the data with large
study area, which will lead to unstable performances of the
global fusion graph. Moreover, image degradation cannot be
avoided during the data acquisition, which will lead to poor per-
formances on finding kNN globally from the randomly selected
samples to build global fusion graph.

To overcome the above limitations, we propose an LGF
method. The proposed LGF probes an image with an S × S
sliding window, calculate the kNN of the current pixel consider-
ing the neighboring samples included by the window, and build
the fusion graph within this sliding window. Fig. 2 illustrates
an example considering a 7× 7 sliding window centered at one
pixel xSpe

i . This way, we reduce the computational complexity
of calculating pairwise distance matrix to O(BNS2) (S � N ),
as well as a significant reduction in memory use.
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Fig. 2. Illustration of the 7× 7 sliding window centered at pixel xi.

Here, we leverage the fact that pixels within a spatial neigh-
borhood are likely to share similar properties.3 If we consider
the spectral features (original HS image), we define the “spec-
tral neighbors” within a spatial neighborhood of a pixel with
spectrum xSpec

i as those k pixels that whose values are closest
to it in terms of spectral signatures (i.e., nearest neighbors). Let
N Spec

k (i) denote the set of values of the k nearest neighbors
of xSpec

i within the neighborhood, N Spec
k (i) = {xSpec

im }km=1

and m �= i, |N Spec
k (i)| = k (| · | being the cardinality of the

set). Then, the edges in the graph ESpec
im = 1 for m ∈ N Spec

k (i)

and ESpec
im = 0; otherwise, m ∈ {1, . . . , S2}. Similarly, for the

spatial features (i.e., EMP built on the HS image), the k near-
est neighbors of the data point with values xSpat

i are those of
the neighborhood that are most similar to it in terms of the
spatial characteristics. Analogously, N Spat

k (i) denotes the k

nearest spatial neighbors of xSpat
i , |N Spat

k (i)| = k, and thus
ESpat

im = 1 if m ∈ N Spat
k (i) and ESpat

im = 0 otherwise. We pro-
pose a novel method to construct the fused kNN for the stacked
features XSta within a spatial window as follows:

NFus
k (i) = N Spec

k (i) ∩ N Spat
k (i) (3)

where the operator ‘∩’ denotes the intersection, i.e., the kNN of
the stacked vector xSta

i : NFus(i) = {xSta
im , m ∈ N Spec

k (i) ∧
m ∈ N Spat

k (i)}. The fused edge EFus
i for the stacked data

point xSta
i must satisfy

EFus
i,m = 1, iff m ∈ N Spec

k (i) ∧m ∈ N Spat
k (i). (4)

For instance, within the 7× 7 sliding window centered at
pixel xi (when the sliding window is close to the image
boundary, the symmetric padding is utilized to deal with
the margin effect [29], suppose the 6 nearest neighbors
of spectral feature point xSpec

i is N Spec
6 (i) = {xSpec

im : m ∈
[2, 6, 11, 15, 23, 36]}, see Fig. 3. While the 6 nearest neigh-
bors of spatial feature point xSpat

i is N Spat
6 (i) = {xSpat

im : m ∈
[2, 7, 13, 28, 36]}. Therefore, we can get the kNN of fusion
graph NFus

6 (i) = {xFus
im : m ∈ [2, 36]} according to (3). Then,

we set their corresponding edges EFus
im = 1, for m ∈ NFus

6 (i);
EFus

im = 0 if m �∈ NFus
6 (i), 1 ≤ m ≤ 49.

This means that the stacked data point xSta
i is “close” to xSta

im

only if they have similar spectral and spatial characteristics

3This assumption is particularly valid when dealing with images of very-high
spatial resolutions.

Fig. 3. Illustration of local fusion graph building within a 7× 7 sliding window
centered at pixel. The value ‘1’ means connection (i.e., Eim = 1), while the
blank grid means the data point xim not in the kNN of the current pixel xi

(i.e., Eim = 0).

within a spatial window. If any individual feature point xspec
i

(or xSpat
i ) is “far apart” from xSpec

im (or xSpat
im ), then EFus

im = 0.
For example, suppose that the data point xSta

i belongs to a road
and xSta

im belongs to a flat roof. Since, in practice, roads and
roofs are often made with similar materials (e.g., asphalt), the
corresponding data points are likely to have similar spectral
characteristics (ESpec

im = 1), but different spatial information
(e.g., shape and size) (ESpat

im = 0), so these two data points
are not “close” (i.e., EFus

im = 0). Similarly, if xSta
i and xSta

im

are taken from the grass areas and parking lot, respectively,
they will have different spectral characteristics (ESpec

im = 0),
and even if they might be similar spatially (ESpat

im = 1), the
resulting EFus

im = 0 characterizing these two data points as “far
apart.” If the fusion graph was globally constructed by using
the whole hyperspectral image or randomly selected samples
like [21], one may find the kNN of a pixel belonging to a roof
(e.g., shopping mall) xFus

i in pixels belonging to parking lots,
because they have very similar spectral and spatial information
even though they might be not spatially adjacent. By build-
ing a local fusion graph within a spatial window, the proposed
LGF overcomes this limitation, and better models the local spa-
tial neighborhood information. In addition, the proposed LGF
is robust to image degradation (e.g., noise), which cannot be
avoided during the hyperspectral image acquisition (especially
when the spectral bands are in correspondence to windows in
the electromagnetic spectrum in which the absorption of the
atmosphere is high). The spectra of the same land cover type
might exhibit a high variability. This is due to different factors
such as the intrinsic variability of the reflectance, differences in
illumination, and image artifacts. However, typically, the spec-
tra of pixels belonging to the same object are correlated even if
they might differ to those of objects of the same thematic class
but located in other parts of the image for the above-mentioned
reasons. Thus, by looking for the kNN within a spatial neigh-
borhood can enforce to establish among pixels relations that
are meaningful (in terms of representation of the objects). In a
similar fashion, the approaches in [28] and [30] showed better
denoising results and efficient target detection by considering a
local neighborhood.

Then, we can rearrange the edge of each stacked data point
EFus

i into a sparse matrix AFus by using

AFus
ij =

{
EFus

ij , if j ∈ NFus(i), j ∈ [1, . . . , N ]

0, otherwise,
(5)
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The matrix AFus ∈ R
N×N represents the adjacency relation

of all data points (e.g., full edge) built on the stacking features
(i.e., GFus = (XSta,AFus)). When using the same constraint
in [21] for avoiding degeneracy

WT
(
XSta

)
DFus

(
XSta

)T
W = I (6)

where DFus is a diagonal matrix with DFus
ii =

∑n
j=1 A

Fus
ij

and I the identity matrix. We can obtain the transformation
matrix W = (w1,w2, . . . ,wr) which is made up of r eigen-
vectors associated with the least r eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λr of the following generalized eigenvalue problem:(

XSta
)
LFus

(
XSta

)T
w = λ

(
XSta

)
DFus

(
XSta

)T
w

(7)

where LFus = DFus −AFus is the fusion Laplacian matrix.
The size of the sliding window has significant influence on

the preservation of local spatial neighborhood information (e.g.,
texture). On one hand, when the window size is too small, the
neighborhood contains too few samples for properly model-
ing the local spatial information and NFus

k (i) is composed of
almost all data points within the window. On the other hand,
if the window is too large, then the local spatial information
might not be retrieved. In the case limit in which the neigh-
borhood is the whole image, the proposed LGF equals to GDF
(thus, GDF can be considered a special case of LGF). In our
experiments, we set the sliding window with a fixed intermedi-
ate size, and change k nearest neighbors to obtain a satisfying
result. By building a local fusion graph within a sliding window,
we not only reduce memory cost and computational complexity,
but also increase the preservation of local spatial neighborhood
information. The algorithmic procedure of the proposed method
which uses LGF to couple data fusion and dimension reduc-
tion of spectral and spatial features for classification is formally
stated in Algorithm 1.

When dealing with high-resolution hyperspectral data, we
can fast implement the proposed LGF by spatially downsam-
pling the original HS image and EMP to the same ratio. The
main spatial structure of the objects in a high-resolution remote
sensing image will be preserved after spatially downsampling
within a certain value of downsampling ratio. This way, the pro-
posed LGF will keep stable on the classification performances
while reducing the computational complexity. The computa-
tional complexity can be reduced by a factor equal to the square
of the spatial downsampling ratio. For example, if we down-
sample original HS image by a factor of R (e.g., R = 4) along
both spatial directions, the total number of spatial pixels can
be reduced to N/R2; thus, the computational complexity is
reduced to O(BNS2/R2).

IV. EXPERIMENTAL RESULTS

A. Hyperspectral Image Data Sets

Experiments were run on two data sets, namely the ‘Indian
Pine’ and ‘University Area’. The first data set was captured by
airborne visible/infrared imaging spectrometer (AVIRIS) over
northwestern Indiana in June 1992, with 220 spectral bands

Algorithm 1. Proposed LGF of spectral and spatial informa-
tion for classification

1: Build the Extended Morphological Profile (EMP) on the first
p PCs (usually with cumulative variance near to 99%) of
the original hyperspectral data sets. Actually, the EMP are
defined th We used a symmetric padding to avoid the mar-
gin effect, when the sliding window closed to the margin
of image same way as [5]. An MP consist of the original
image (one of the PC features) and M openings with SE of
increasing size (all applied on the original image) and M
closings with the same SE. Then, an EMP is obtained with
d = p× (2M + 1) dimension;

2: Find k nearest neighbors for each pixel within a S × S slid-
ing window. For example, a spectral data point xSpec

i with its
kNN index can be denoted by N Spec

k (i) = {xSpec
im , 1 ≤ m ≤

S2}. Whereas a spatial data point xSpat
i with its kNN index

included by the sliding window can be denoted by N Spat
k (i);

3: Construct the local fusion graph for stacked features by using
equations (3), (4) and (5);

4: Compute the eigenvectors for the generalized eigen-
value problem in (7). The projection matrix W =
(w1,w2, . . . ,wr) is made up by the r eigenvectors associat
We used a symmetric padding to avoid the margin effect,
when the sliding window closed to the margin of imageed
with the least r eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λr;

5: Obtain the fused features by projecting the high dimensional
staked features (xSta

i ∈ R
B+D) into a lower dimensional

subspace (zi ∈ R
d) with equation (1);

6: Use the fused features Z in the lower dimensional subspace
as an input to do classification.

in the wavelength range 0.4−2.5µm and low spatial resolu-
tion of 20 m by pixel. The calibrated data are available online
(along with detailed ground-truth information).4 The second
data set was acquired over an urban areas in the city of Pavia,
Italy. The data were collected by the reflective optics system
imaging spectrometer (ROSIS) sensor, with 115 spectral bands
in the wavelength range 0.43−0.86µm and very fine spatial
resolution of 1.3 m by pixel.

Indian pines: The whole scene (145× 145 pixels) con-
tains 16 classes, ranging in size 20–2468 pixels. We keep all
220 bands (including some noisy bands) to see the effect of
noise on the classification. In our experiments, classes with
less than 30 labeled pixels were removed, resulting thus in 14
classes with available labeled samples in Table II. Note that the
color in the cell denotes different classes in the classification
maps (Fig. 4).

University area: The image composed of 610× 340 pixels
was collected over the University of Pavia, Italy, and contains
103 spectral channels after removal of noisy bands. This data
set includes nine land cover/use classes, see Table III. Note
that the color in the cell denotes different classes in the clas-
sification maps (Fig. 5). Available training and testing sets are

4[Online]. Available: http://cobweb.ecn.purdue.edu/~biehl/
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given in Table III (# number of training samples /# number
of test samples).

B. Experimental Setup

Prior to applying the MPs to hyperspectral images, PCA was
first applied to the original hyperspectral data set, and the first
few PCs (the first 4 PCs for Indian pine and the first 3 for
University area) were selected (representing 99% of the cumu-
lative variance) to construct the EMP. A circular SE ranging
from 1 to 10 with step size increment of 1 was used. Ten open-
ings and closings were computed for each PC, resulting in an
EMP of dimension 84 for Indian pine and 63 for University
area.

We used an SVM [31] classifier, as it performs well even
with a limited number of training samples, limiting the Huges
phenomenon. The SVM classifier with radial basis function
(RBF) kernels in MATLAB SVM toolbox, LIBSVM [32], is
applied in our experiments. SVM with RBF kernels has two
parameters: 1) the penalty factor C and 2) the RBF kernel
widths γ. We apply a grid-search on C and γ using five-
fold cross-validation to find the best C within the given set
{10−1, 100, 101, 102, 103} and the best γ within the given set
{10−3, 10−2, 10−1, 100, 101}. We compare our proposed LGF
with the schemes of 1) using original HS image (RawHSI );
2) using EMP computed on the first three PCs of the original
HS image (EMPHSI ); 3) stacking all feature sources together,
i.e., XSta (STA); 4) stacking all the features extracted by PCA
from each individual feature source (PCA); 5) stacking all the
features extracted by NWFE [33] from each individual fea-
ture source (NWFE), similar as [19]; and 6) the GDF [21]
with its extension to fuse two feature sources. The classifi-
cation results are quantitatively evaluated by measuring the
overall accuracy (OA), the average accuracy (AA), and the
kappa coefficient (κ). The experiments were carried out on
64-b, 3.40 GHz Intel i7-4930K (1 core) CPU computer with
64 GB memory. The consumed time reported in our experi-
ments includes both feature fusion and parameters optimization
for SVM classification.

C. Results on Indian Pines Data Set

In this experiment, the whole data of Indian pines was used
to construct the fusion graph in both GDF [21] and the proposed
LGF. We set the size of sliding window to 15× 15, and kNN
to 30. Twenty samples per class were randomly selected from
the labeled data set to train SVM classifiers; all results were
evaluated against the remaining labeled samples in the ground
truth. After repeating the selection of training samples and clas-
sification process five times, we report the mean classification
results and their standard deviation in Table I. In order to com-
pare the accuracy for each class and final classification maps,
we show the best results (in term of OA) of each method in
Table II and Fig. 4. From the tables and figure, we have the
following findings.

1) The results confirm that it is better sometimes to use sin-
gle feature source than simply stacking many of them for

TABLE I
AVERAGE CLASSIFICATION ACCURACIES ON Indian Pines USING SVM

The number in brackets is the number of features from the spectral feature and
spatial feature, respectively.

classification. Compared to the situation with single spa-
tial features (EMPHSI ), the OA of simply stacking orig-
inal spectral and spatial features (STA) decreases more
than 10 percentage points, while increasing the dimen-
sionality. Our proposed LGF produced the best results,
with OA improvements of 10.66–37.68 percentage points
over only using the single spectral/spatial feature source,
with improvements of 5.46–21.29 percentage points over
stacking both the spectral and the spatial features by
STA, PCA, and NWFE, and with 9.46 percentage points
improvement over the GDF [21].

2) From the class-specific accuracies, the EMPHSI

approach performed much better for most classes than
the RawHSI approach, especially for some classes (e.g.,
‘Corn-min’ and ‘Soybean-clean,’ and ‘Bldgs-Grass-
Trees-Drives’), with more than 40 percentage points
improvement in accuracy. By simply stacking original
feature sources or stacking features extracted by PCA
representing more than 99% of the cumulative variance,
the accuracies on classes ‘Corn’ and ‘Soybean-mintill’
drop almost by 20 percentage points compared to the
EMPHSI approach. By stacking spectral and spatial
features extracted by NWFE representing more than
90% of the cumulative variance, better accuracies were
produced in classes ‘Corn-notil’ and ‘Soybean-clean’
(with OA improvements of 13.39–37.66 and 10.42–50.63
percentage points over RawHSI and EMPHSI ), but the
performance dropped significantly on classes ‘Corn’
compared to EMPHSI . By building fusion graph on the
whole data, the GDF approach performed much better
than both RawHSI and EMPHSI on classes ‘grass-
pasture’ and ‘grass-tress’ (with OA improvements of
8.86–13.69 and 8.97–18.95 percentage points), but much
worse on class ‘Corn’ and ‘Soybean-clean’ compared to
only using single spatial feature source. Our proposed
LGF demonstrated better performance on almost all the
classes than the methods that use using single features
(RawHSI and EMPHSI ), stacked features (i.e., STA,
PCA, and NWFE), and the GDF, and produced much
better results on classes ‘Corn-notil’ and ‘Corn-min.’
For class ‘Corn-notil,’ the proposed LGF approach had
more than 25, 10, and 25 percentage points improve-
ment compared to the approaches using single features,
stacked features, and GDF, respectively. For the class
‘Corn,’ both the approaches of stacked features and
GDF performed better than only using spectral feature,
but worse than only using the spatial feature, while our
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TABLE II
RESULT FOR Indian Pines WITH BEST CLASSIFICATION ACCURACY OVER 5 RUNS

Twenty training samples per class with SVM classifier were used.

Fig. 4. Classification maps for Indian pines. (a) RGB composition with 14 classes labeled and highlighted in the image, and thematic map using (b) original HS
image, (c) EMP, (d) stacked features by original HS image and EMP, (e) PCA, (f) NWFE, (g) GDF [21], and (h) proposed LGF.

approach produced best result, even 3 percentage points
higher than only using the spatial feature.

3) From the classification maps, we can see visually that
combining spatial information will produce smoother
results. In particular, the proposed method leads to
smoother classification maps than the other methods, with
more stable performances (lower standard deviation in
Table I). The processing time of the proposed method is
faster than GDF, but slower than other schemes. This is
because of limited training samples. With larger number

of training samples, the consumed time of extracting
features by NWFE and using the features with higher
dimension for classification will increase.

The hyperspectral remote sensing data contain a wealth
of spectral and spatial information. Only using single spec-
tral/spatial feature is not enough for a reliable classification.
The approaches of PCA and NWFE are similar to the STA

approach in terms of a stacked architecture, all these three
approaches first applied feature extraction on original HS data
and EMP, then concatenated the extracted feature vectors from
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TABLE III
CLASSIFICATION ACCURACY FOR University Area WITH SVM CLASSIFIER

We built the local fusion graph of the proposed LGF on both the downsampled original HS image and EMP of factor 5.

both the original HS data and the EMP into one stacked vector.
The differences are that each individual feature has different
characteristics, e.g., the features extracted by PCA represent
most of the cumulative variance in the data, while the features
extracted by NWFE respect the class discriminant. In this case,
the supervised NWFE performs better than unsupervised PCA.
The class ‘Corn’ is not classified well by fusing features in
a stacked architecture. The approaches of PCA, NWFE, and
STA produced lower accuracies than only using single spatial
feature, indicating that the spatial information contained in the
original EMP was not well exploited in such a stacked archi-
tecture. The performances of GDF is not better than NWFE
even with fusion graph built on all data point of the original
feature sources. This is not surprising because the original HS
image contains noise [see Fig. 4(b)], thus may affect the kNN
searching in fusion graph building. By building local fusion
graph with a spatial window, the proposed LGF method better
preserves local spatial information, and more robust to image
noise.

D. Results on University Area Data Set

In order to make fair comparisons, for the approaches of
PCA and NWFE in all our experiments, we use the best
combination of the extracted spectral and the extracted spatial
features for the classification. We search the best combination
of the spectral and the spatial dimensions using the cross-
validation according to the OA, with both the spectral dimen-
sion and the spatial dimension ranging from 2 to 40 (with step
size increment of 2). The best combination is obtained when
OA reaches the maximum; Fig. 6(a) and (b) shows the results.
5000 samples were randomly selected to build the global fusion
graph in GDF, similar as we did in [21]. Fig. 6(c) shows the
performance with different number of nearest neighbors and
dimensions (of fused features). For the proposed LGF, we first
downsampled both original HS image and EMP of factor 5 on
both spatial directions to speed up the processing time, and
set the size of sliding window to 15× 15. Table IV reports

the accuracies and consumed time as the downsampled size
changes. The classification results using the best combination
are shown in Table III and Fig. 5.

From the tables and figure, we can make the following
remarks.

1) The results confirm that the integration of spectral and
spatial features can improve the classification perfor-
mance on HS images. Compared to the situation with
single spectral or spatial feature, the OA of stacking spec-
tral and spatial features has 8.68–13.54 and 8.54–13.4
percentage points improvements for PCA and NWFE,
respectively. The improvements of simply stacking orig-
inal spectral and spatial features (STA) over only using
the single spectral/spatial features is not significant, while
increasing both the dimensionality and computational
time. Our proposed LGF produced better results, with
OA improvements of 13.68–18.54 percentage points over
only using the single spectral/spatial feature, with OA
improvements of 5–13.25 percentage points over stacking
both the spectral and the spatial features by PCA, NWFE,
and STA, and with 4.13 percentage points improvement
over GDF. As far as we know, these accuracies are higher
than all the previously reported in the literature for this
data set with SVM classifier and without postprocessing
[15], [16].

2) From the class-specific accuracies, the EMPHSI

approach performed much better for most classes
than the RawHSI approach, especially for the classes
‘asphalt’ and ‘meadows,’ with more than 10 percentage
points improvement in accuracy. However, the EMPHSI

approach produced much worse accuracy in class ‘soil,’
dropping by 20 percentage points compared to the
RawHSI approach. By stacking spectral and spatial
features extracted by PCA/NWFE, better accuracies were
produced in class ‘meadows’ (with improvements of
19–28.37 and 17.92–27.29 percentage points, respec-
tively, over RawHSI and EMPHSI ), but the performance
dropped significantly on classes ‘soil’ compared to
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Fig. 5. Classification maps produced by the described schemes. (a) Test samples and thematic maps using (b) original HS data, (c) EMP of HS data, (d) PCA,
(e) NWFE, (f) stacked features XSta, (g) GDF [21], and (h) proposed LGF.

Fig. 6. Surface of the classification accuracies as a function of (a) number of extracted spectral features and spatial features by PCA; (b) number of extracted
spectral features and spatial features by NWFE; (c) number of extracted features and K nearest neighbors in GDF [21]; and (d) number of extracted features and
K nearest neighbors in the proposed LGF.

RawHSI . By building the fusion graph on randomly
selected samples, the GDF approach consumes less
time and performed much better than both RawHSI and
EMPHSI on classes ‘meadows’ and ‘soil’ (with OA
improvements of 16.98–26.35 and 3.37–23.95 percentage
points), but worse on class ‘gravel’ compared to only
using the spatial features. Our proposed LGF demon-
strated better performance on almost all the classes than
the methods that use using single features (RawHSI

and EMPHSI ), stacked features (i.e., PCA, NWFE, and
STA), and the GDF, and produced much better results
on classes ‘gravel’ and ‘soil.’ For class ‘gravel,’ the pro-
posed LGF approach had improvements of 16.49–24.97,
16.39–20.68, and 20.73 percentage points compared to
the approaches using single features, stacked features,
and GDF, respectively.

3) Using only single spectral/spatial feature is not enough
to get very accurate result, see Fig. 6(a) and (b). In order
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Fig. 7. Surface of the classification accuracies as a function of the size of
sliding window and the number of K nearest neighbors in the proposed LGF.

to get the best OA, PCA needs 2 spectral features and
40 spatial features, and NWFE needs 8 spectral features
and 32 spatial features. In GDF and our proposed LGF,
the selection of dimension becomes much easier, see the
surface plots of the classification accuracies as a func-
tion of dimension and the number of nearest neighbors
in Fig. 6(c) and (d). The dimension of extracted features
varies from 2 to 40 (with step size increment of 2) and the
number of nearest neighbors k varies from 10 to 50 (with
step size of 2). This latter analysis leads us to state that
the proposed is not sensitive to the parameter k, as the
dimension increases to 36. The size of the sliding win-
dow has significant influence on the preservation of local
spatial neighborhood information. When the window size
is too small, the neighborhood contains too few samples
for properly modeling the local spatial information. Fig. 7
shows that small size of sliding window with bigger k
leads to poor performances of classification. If the win-
dow is too large, then the local spatial information might
not be retrieved, resulting decreased classification accura-
cies, see Fig. 7. With sliding window sizes varying from
13 to 21 and nearest neighbors from 20 to 40, we can get
satisfying results for University area.

When stacking different features extracted by methods like
PCA and NWFE, it is not easy to select the optimal combination
of the spectral and the spatial dimensions, as was also discussed
by Fauvel et al. in [19]. These optimal combinations of spectral
and spatial dimensions are different for different data sets. Even
for the same data set, when the training sample size changes, the
combination of spectral and spatial dimensions will change.

Many approaches selected the optimal combination of spec-
tral and the spatial dimensions according to the cumulative
variance [19]. However, these approaches do not always work
well. For example, in PCA, the number of PCs which repre-
sent more than 99% of the cumulative variance depends on the
statistical distribution of the data. The extracted PCs which rep-
resent 99% of the cumulative variance may not contain enough
information of the data, resulting in a worse performance. When

TABLE IV
University Area: THE ACCURACIES AND CONSUMED TIME AS THE

DOWNSAMPLED SIZE OF ORIGINAL FEATURE SOURCES INCREASES

2× 2 means we downsample both the original HS image and EMP of a factor
2 on both spatial directions.

the data contain non-Gaussian noise, the number of PCs needed
to reach 99% of the cumulative variance is higher, which
may contain redundant information. Although some algorithms
(e.g., cross-validation) can be used to find the best combination
of dimensions, it increases the processing time. In our exper-
iments, the elapsed time of searching the best combination is
7.99 and 7.63 h for PCA and NWFE, respectively.

The performances of the proposed LGF are less sensitive to
the values of the free parameters. We keep the parameters (the
number of nearest neighbors and the number of extracted fea-
tures) the same for feature sources with different downsampling
ratios, see Table IV. We get very similar classification results
for University area, with processing time dropping from 1551.5
to 8.5 s. Downsampling might cause a reduction in the intr-
aclass heterogeneity (i.e., objects belonging to the same class
will be more spectrally similar). If the training samples are
taken far from the objects’ edges, they will likely correspond
to areas of a unique thematic class (i.e., they do not correspond
to mixed pixels) leading to a simpler classification problem.

V. CONCLUSION

In this paper, we present a novel method for LGF of spec-
tral and spatial information. The morphological features, which
are used to characterize the spatial information, are first gener-
ated on the first few PCs of HS image. Then, we build a local
fusion graph within a sliding window where only the feature
points that have similar both spectral and spatial characteristics
are connected. Finally, we solve the problem of data fusion by
projecting all the features onto a linear subspace, in which local
neighborhood data points (i.e., with similar spectral and spatial
characteristics) in the high-dimensional feature space are kept
on local neighborhood in the low-dimensional subspace as well.
The proposed LGF technique effectively employs the local spa-
tial information of different feature sources within a spatial
window. This allows to obtain better performances in classi-
fication in particular with respect to the GDF approach which
is global. In addition, with respect to this latter, we reduce both
memory cost and computational complexity for graph building
and increase robustness to image noise thanks to considering a
small sliding window.

The experiments confirmed expected improvements of such
an approach over both stacking different feature sources
together and building full fusion graph. The feature stacking
approaches experience serious problems in selecting the best
combination of the spectral dimension and the spatial dimen-
sion, and can be affected by the redundancy in the stacked
data. On the other hand, feature extraction on all the features
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together does not take into account the properties of different
feature sources, while building a full fusion graph does not take
into account of the local spatial information and may require
more computer resources. The proposed LGF overcomes these
problems and makes full advantage of both feature sources
through the local fusion graph. Classification results on two real
HS data show the efficiency of the proposed LGF. Recently,
some approaches show great improvements in the classification
of remote sensing images by using APs [35] and by com-
bining postprocessing [34], which will be exploited in our
future work.
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