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Abstra
tA new fuzzy-rule based algorithm for the denoising of video sequen
es 
orrupted with additiveGaussian noise is presented. The proposed method 
onstitutes a fuzzy logi
 based improvementof a re
ent detail and motion adaptive multiple 
lass averaging �lter (MCA). The method is �rstexplained in the pixel domain for greys
ale sequen
es and is later extended to the wavelet domainand to 
olour sequen
es. Experimental results show that the noise in digital image sequen
es iseÆ
iently removed by the proposed fuzzy motion and detail adaptive video �lter (FMDAF) andthat the method outperforms other state-of-the-art �lters of 
omparable 
omplexity on di�erentvideo sequen
es.
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I. INTRODUCTIONVery often, image sequen
es are 
orrupted with noise due to bad a
quisition, transmissionor re
ording. Some well-known noise types that may o

ur are e.g. impulse noise, Gaussiannoise, spe
kle noise et
. In this paper we will 
on
entrate on an additive white Gaussiannoise model of zero mean and varian
e �2:In;i = Io;i + �i; i = 1; : : : ; p (1)where In;i and Io;i denote the i-th pixel from the noisy and the original frame respe
tively,�i � N(0; �2) and p is the number of pixels per frame.The goals of redu
ing the noise in the sequen
es are (i) visual improvement and (ii) im-provement of further analysis or 
oding of the sequen
es.The �rst �lters for video denoising were single resolution �lters. These were often somewell-known 2D �lters extended to a spatio-temporal neighbourhood. Some examples are the3D KNN-�lter [1{3℄ and the 3D threshold averaging �lter [3, 4℄, whi
h try to preserve thedetails by averaging only over the k nearest neighbours (KNN) and the neighbours lyingwithin a 
ertain distan
e (usually 2� is 
hosen as threshold) from the given pixel valuerespe
tively. More re
ent extensions of these �lters, that are made more adaptive to a lo
alspatio-temporal neighbourhood are e.g. the motion and detail adaptive KNN-�lter [5℄ andthe multiple 
lass averaging �lter [6, 7℄. Another well-known single resolution method is the3D rational �lter [8℄, where the �ltered output for a pixel is determined as a rational fun
tionof the grey values in a spatio-temporal neighbourhood. Other re
ent single resolution �lters
an e.g. be found in [9, 10℄. Both �lters take into a

ount pixels from neighbouring framesin the averaging, whi
h not ne

essarily are the pixels at the same spatial position, but theestimated 
orresponding obje
t pixels whi
h possibly have been displa
ed due to motionbetween frames.Later, the wavelet transform, whi
h has proven very e�e
tive in still image denoising[11, 12℄, also found its way in the denoising of videos. In [13, 14℄ a 3D wavelet transform isapplied and the resulting 
oeÆ
ients are denoised by adaptive thresholding. However, mostwavelet domain �lters use a less 
omplex separable 2D transform applied on ea
h frameseparately [6, 7, 15{22℄ and 
ombine it with time-re
ursive �ltering, either in the waveletdomain or in the pixel domain. 3



The most fundamental di�eren
e between video and image denoising is that in videoappli
ations also information from previous frames is available. When working with a delayin time even information from future frames 
an be used. The main diÆ
ulty in exploitingthis additional info is possible motion. Some �lters simply take into a

ount pixels at
orresponding positions in the previous (and future) frames only when no motion betweenthe su

essive frames is dete
ted. Su
h motion dete
tion �lters are for example [5{7, 15℄.Other more 
omplex �lters always take into a

ount information from the previous frames,by �ltering along an estimated motion traje
tory and are 
alled motion 
ompensated �lters[9, 10, 16, 19, 21℄. In [9, 10, 16℄ the motion is estimated in the pixel domain, while in [19, 21℄the motion ve
tors are 
omputed in the wavelet domain. Most available motion estimationalgorithms are designed for video 
oding appli
ations [23{25℄. In su
h appli
ations, thea

ura
y of the motion ve
tors is less important than for denoising purposes. Re
ently, in[20℄, an eÆ
ient video �ltering s
heme is proposed, whi
h makes use of motion estimatorsfrom video 
ode
s, but with additional �ltering of the motion ve
tors and with appropriatelyde�ned reliabilities to estimated motion.The �lter in [10℄ only �lters temporally. Usually however, the temporal �ltering, whi
huses information from neighbouring frames, is 
ombined with a spatial �ltering. When thespatial and temporal �ltering steps are performed separately, i.e., the one after the other,we speak of a separable �lter [15, 16, 18{21℄. In [18℄ e.g., the authors 
ombine their imagedenoising method from [12℄ with a sele
tive wavelet shrinkage method whi
h estimates thelevel of noise 
orruption as well as the amount of motion in the image sequen
e. Filters thatintegrate spatial and temporal �ltering in one step, su
h as [5{9, 13, 14, 22, 26℄, are 
allednon-separable.The method proposed in this paper is a fuzzy logi
 based improvement of the multiple
lass averaging �lter (MCA) from [6, 7℄ for the denoising of greys
ale image sequen
es
orrupted with additive white Gaussian noise. Fuzzy set theory and fuzzy logi
 o�er usa powerful tool for representing and pro
essing human knowledge. Binary de
isions arerepla
ed by a gradual transition, whi
h is more appropriate when dealing with 
omplexsystems. Examples that illustrate the power of fuzzy set theory in the domain of imagepro
essing are e.g. [27, 28℄. The main di�eren
es between the proposed method and the�lter from [6, 7℄ are: (i) pixels are not divided into dis
rete 
lasses and dealt with based ontheir 
lass index like in [6, 7℄, but they are treated individually, whi
h leads to an in
reased4



performan
e; (ii) the 
ompli
ated heuristi
 
onstru
tion of exponential fun
tions to tune thepixel weights in the method of [6, 7℄ to the 
lass index and to the dete
ted motion and detailis repla
ed by a fuzzy rule 
ontaining linguisti
 variables, whi
h represent human knowledgeand whi
h are more natural to work with and to understand. The use of fuzzy logi
 alsoprovides a more theoreti
al base; (iii) in the wavelet-based extension of the method, we optfor an additional time-re
ursive averaging instead of a �ltering of the low-frequen
y band ;and (iv) the fuzzy rule used in our method is easy to extend and to in
lude new informationin future work.In this paper we also extend the proposed method to the pro
essing of 
olour imagesequen
es. We present a new ve
tor based extension of the proposed greys
ale method usingthe L�a�b�-transform in 
ombination with a 3D extension of the 
olour restorating se
ondsub�lter from [29℄.Experimental results show that our method outperforms other state-of-the-art �lters ofa 
omparable 
omplexity.The paper is stru
tured as follows: Our algorithm for the denoising of greys
ale imagesequen
es is �rst explained in the pixel domain in Se
tion II and extended to the waveletdomain in Se
tion III. In Se
tion IV we dis
uss the pro
essing of 
olour video. Se
tion Vhandles the 
hoi
e of the parameter values. Finally, experimental results and 
on
lusionsare presented in Se
tion VI and Se
tion VII respe
tively.II. PIXEL-BASED SPATIO-TEMPORAL FILTER FOR GRAYSCALE VIDEOIn this se
tion, we improve the multiple 
lass averaging �lter (MCA) from [6, 7℄ in thepixel domain by in
orporating fuzzy logi
. The ideas behind the �lter are the following:(i) to avoid spatio-temporal blur, one should only take into a

ount neighbouring pixelsfrom the 
urrent frame in 
ase of dete
ted motion; (ii) to preserve the details in the frame
ontent, the �ltering should be less strong when large spatial a
tivity (e.g. a large varian
e)is dete
ted in the 
urrent �ltering window. As a 
onsequen
e more noise will be left, butlarge spatial a
tivity 
orresponds to high spatial frequen
ies and for these the eye is lesssensitive [30℄. In the 
ase of homogeneous areas, strong �ltering should be performed toremove as mu
h noise as possible.The general �ltering framework used in the proposed method is presented in Subse
-5



tion IIA. Additionally the 
ru
ial weight determination step, whi
h is the main novelty ofour greys
ale method 
ompared to the MCA �lter, is explained in Subse
tion IIB. In theproposed method we determine the weights in the �ltering window by the use of fuzzy setsand fuzzy logi
 instead of a heuristi
 
onstru
tion with exponential fun
tions as it is the
ase in the MCA �lter. Subse
tion IIC �nally, dis
usses some 
omplexity notes.A. The General Filtering FrameworkIn this Subse
tion, the �ltering framework used in both the MCA and the proposed �lteris explained. In the following, a noisy input image pixel and the 
orresponding �ltered pixelvalue are denoted by respe
tively In(x; y; t) and If(x; y; t), where (x; y) indi
ates the spatiallo
ation and t stands for the temporal lo
ation.The �ltering window used in the framework is a 3� 3 � 2 sliding window, 
onsisting of3 � 3 pixels in the 
urrent frame and 3 � 3 pixels in the previous frame. As introdu
edin [6, 7℄ we will use the terms 
urrent window and previous window for the window pixels
ontained in respe
tively the 
urrent and the previous frame (Fig. 1). This window is moved
( ,t)r

t

t-1
previous
window

current
window

FIG. 1: The 3� 3� 2 �ltering window 
onsisting of the previous and the 
urrent window.through ea
h frame from top left to bottom right, ea
h time �ltering the 
entral pixel byaveraging the noise. The position of this 
entral pixel in the �ltering window is denoted by(r; t) where r = (x; y) stands for the spatial position and t for the temporal position. Anarbitrary position in the 3 � 3 � 2 window (this may also be the 
entral pixel position) isdenoted by (r'; t0), with r' = (x+ k; y + l) (�1 � k; l � 1) and t0 = t or t0 = t� 1.The output of the proposed �lter for the 
entral pixel in the window is �nally determined
6



as a weighted average (with adaptive weights) of the pixel values in the 3� 3� 2 window:If(r,t) = Pr'Ptt0=t�1W (r'; t0; r; t)In(r'; t0)Pr'Ptt0=t�1W (r'; t0; r; t) : (2)B. Weight DeterminationIn this subse
tion, we fo
us on the fundamental step in the �ltering framework, namelythe determination of the weights. To make the method motion and detail adaptive, we adoptthe di�eren
e value �(r'; t0; r; t), the detail value d(r; t) and the motion value m(r; t) from[6, 7℄:(i) The absolute greys
ale di�eren
e between the two pixel positions (r; t) and (r'; t0) isdenoted by: �(r'; t0; r; t) = jIn(r'; t0)� In(r; t)j: (3)(ii) The fun
tion d(r; t) indi
ating the lo
al amount of detail is 
al
ulated as the standarddeviation in the 
urrent window:Iav(r; t) = 19Xr' In(r'; t) ; (4)d(r; t) = �19Xr' �In(r'; t)� Iav(r; t)�2� 12 : (5)(iii) The motion indi
ator m(r; t) �nally, is de�ned as the absolute di�eren
e between theaverage grey value in the 
urrent window and the average grey value in the previouswindow: m(r; t) = jIav(r; t)� Iav(r; t� 1)j (6)= j19Xr' In(r'; t)� 19Xr' In(r'; t� 1)j:
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1. MCA FilterIn the MCA �lter [6, 7℄, the pixels are 
lassi�ed into four dis
rete index 
lasses, dependingon the �(r'; t0; r; t) value:
i(r'; t0; r; t) = 8>>>>>>>><>>>>>>>>:

0; �(r'; t0; r; t) � k�n1; k�n < �(r'; t0; r; t) � 2k�n2; 2k�n < �(r'; t0; r; t) � 3k�n3; 3k�n < �(r'; t0; r; t) (7)
where �n represents the standard deviation of the Gaussian noise and k is a parameter.When details are dete
ted in a region, higher weights are assigned to pixels whi
h aresimilar to the pixel being �ltered (i.e. pixels from the lower index 
lasses, whi
h havesmallest �(r'; t0; r; t) values) to preserve these details. In homogeneous regions however,the di�eren
e in weight 
ompared to pixels from the higher index 
lasses will be smallerand strong �ltering is performed. This is done by determining the weights by a heuristi

omposition of exponential fun
tions that is inversely proportional to the amout of detailand motion and the 
lass index. In [6℄ the weights for the pixels in the window are de�nedas: W (r'; t0; r; t) = 8><>:exp��i(r';t0;r;t)�(d(r;t))�n ��(m(r; t); t0); i = 0; 1; 20; i = 3 (8)where the fun
tion �(d) = K1exp(�K2d) +K3exp(�K4d); (9)is used to determine the slope of the exponential fun
tion in (8) and K1, K2, K3 and K4 areparameters. The fun
tion �(m(r; t); t0) in (8) is 
hosen to limit the 
ontribution (de
reasingthe weight) of the pixels from the previous window in 
ase of motion:�(m(r; t); t0) = 8><>:1; t0 = texp(�
m(r; t)); t0 = t� 1 (10)In this equation, the parameter 
 is used to 
ontrol the sensitivity of the motion dete
tor.In [7℄ the fun
tion �(d) is omitted and the weights are then de�ned as:W (r'; t0; r; t) = 8><>:exp��i(r';t0;r;t)d(r;t)Kd�n ��(m(r; t); t0); i = 0; 1; 20; i = 3 (11)8



where Kd is a parameter.2. Proposed Filter
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FIG. 2: The general �ltering s
heme of the proposed �lter.In our fuzzy motion and detail adaptive video �lter, we use the above introdu
ed �lteringframework and the values �(r'; t0; r; t), m(r; t) and d(r; t) (Fig. 2). In 
ontrast to the MCA�lter we no longer use dis
rete index 
lasses to express the similarity of a pixel to the 
entralwindow pixel. Also our determination of the weights in (2) di�ers from the strategy used in[6, 7℄. The arti�
ial 
onstru
tion of exponential fun
tions in the MCA method is repla
edby a more natural fuzzy logi
 framework with linguisti
 variables.The four index 
lasses are repla
ed by one fuzzy set [31℄ \large di�eren
e" for the values�(r'; t0; r; t). A fuzzy set C in a universe Y is 
hara
terized by a Y ! [0; 1℄ mapping �C,whi
h asso
iates with every element y in Y a degree of membership �C(y) of y in the fuzzyset C. For example, if a di�eren
e �(r'; t0; r; t) has a membership degree one in the fuzzyset \large di�eren
e", then this means that this di�eren
e is large for sure. A membershipdegree equal to zero would express the 
ertainty that the di�eren
e is not large. Membershipdegrees between zero and one mean that we 
an neither say that the di�eren
e is de�nitelylarge, nor that the di�eren
e would not be large. The membership degree is however anindi
ation of whether the di�eren
e is large rather than small. So, a pixel In(r'; t0) thatwould belong to a low index 
lass in the MCA �lter now 
orresponds to a small membershipdegree of the value �(r'; t0; r; t) in the fuzzy set \large di�eren
e". We will use a linguisti
variable \large" not only for the di�eren
e �(r'; t0; r; t), but also for the motion valuem(r; t),9



for the detail value d(r; t) and introdu
e the fuzzy sets \large motion", \large detail" and\large weight". We will furhter also use a linguisti
 variable \reliable" to indi
ate whether agiven neighbourhood pixel is reliable to be used in the �ltering of the 
entral window pixel,and represent it by the fuzzy set \reliable neighbourhood pixel".In the following the notations ��, �d and �m are used to denote the membership fun
tions
hara
terizing respe
tively the fuzzy sets (i) large di�eren
e, (ii) large detail and (iii) largemotion. For the sake of simpli
ity and 
omputational reasons triangular fun
tions are used,as shown in Fig. 3. As 
an be seen in Fig. 3, the membership fun
tions are 
ompletely(a)
LARGE DETAIL

0

1

Membership degree
d

m (d( ,t))r
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thr(b)
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T(
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0

1

Membership degree

m( ,t)r

m
m (m( ,t))r

1
t

2
tFIG. 3: (a) The membership fun
tion �d for the fuzzy set \large detail", (b) The membershipfun
tion �� for the fuzzy set \large di�eren
e" and (
) The membership fun
tion �m for the fuzzyset \large motion".determined by the parameters thr1, T1, T2, t1 and t2.Using the introdu
ed fuzzy sets for the 
ru
ial weight determining step, we repla
e theheuristi
 
ombination of exponential fun
tions in the original MCA method by a more nat-10



ural fuzzy logi
 framework with linguisti
 variables. The weight W (r'; t0; r; t) for the pixelat position (r',t') is now de�ned as the degree to whi
h it is reliable to be used in the�ltering of the 
entral window pixel, i.e., its membership degree in the fuzzy set \reliableneighbourhood pixel", whi
h is the a
tivation degree of the Fuzzy Rule 1 or 2 dependingon whether t0 = t or t0 = t � 1. The general form of a fuzzy rule is \IF A THEN B",where the premise A (also 
alled the ante
edent) and the 
onsequent B are (
olle
tions of)propositions 
ontaining linguisti
 variables.
LARGE WEIGHT

0

1

Membership degree

W( ,t)r1

w
W( ,t)r

FIG. 4: The membership fun
tion �w for the fuzzy set \large weight".Fuzzy Rule 1 Assigning the membership degree in the fuzzy set \reliable neighbourhoodpixel" of the pixel at spatial position r' in the 
urrent frame (t0 = t) of the window with
entral pixel position (r,t):IF(the detail value d(r; t) is large AND the di�eren
e �(r'; t0; r; t) isnot large) OR ( the detail value d(r; t) is not large)THEN the pixel at position (r',t') is a reliable neighbourhood pixel for the �ltering of the
entral window pixel.Fuzzy Rule 2 Assigning the membership degree in the fuzzy set \reliable neighbourhoodpixel" of the pixel at spatial position r' in the previous frame (t0 = t� 1) of the window with
entral pixel position (r,t):IF�(the detail value d(r; t) is large AND the di�eren
e �(r'; t0; r; t) isnot large) OR (the detail value d(r; t) is not large)�AND the motion value m(r; t) is not largeTHEN the pixel at position (r',t') is a reliable neighbourhood pixel for the �ltering of the
entral window pixel. 11



The AND and OR operators used in Fuzzy Rules 1 and 2 
orrespond to respe
tivelyinterse
tions and unions of two fuzzy sets. The interse
tion of two fuzzy sets A and Bin a universe Y is spe
i�ed by a mapping T that maps the membership degrees of anelement in the fuzzy sets A and B onto a membership degree in the fuzzy set A \ B:�(A\B)(y) = T (�A(y); �B(y)), 8y 2 Y . Analogously, the membership degree of an element inthe union of A and B is obtained from the membership degrees in A and B through the helpof a mapping S: �(A[B)(y) = S(�A(y); �B(y)),8y 2 Y . In fuzzy logi
 for the mapping T atriangular norm [33℄ is used, while for the mapping S a triangular 
onorm [33℄ is used. Somewell-known triangular norms together with their dual 
onorms 
an be found in Table I.From all possible triangular 
onorms the strong 
onorm is the largest and the maximum
onorm is the smallest. We have 
hosen for a triangular norm and its dual 
onorm whi
his situated in between those two extremes, i.e., the algebrai
 produ
t and the probabilisti
sum, respe
tively. As demonstrated in Subse
tion VIC, we see a 
omparable performan
ewhen using other norms and 
onorms.TABLE I: Some well-known triangular norms and triangular 
onorms.Triangular normsminimum min(x; y)algebrai
 produ
t x � yweak 8>><>>:min(x; y) if max(x; y) = 10 otherwise Lukasiewi
z max(0; x + y � 1)Triangular 
onormsmaximum max(x; y)probabilisti
 sum x + y � x � ystrong 8>><>>:max(x; y) if min(x; y) = 01 otherwise Lukasiewi
z min(1; x + y)The fuzzy rules further also 
ontain NOT operators, 
orresponding to the 
omplement12



of a fuzzy set A. In fuzzy logi
, the 
omplement of a fuzzy set is spe
i�ed by an involutivenegator [33℄. For the results in this paper, we have used the well-known standard negatorN(x) = 1 � x, 8x 2 [0; 1℄. The membership degree of an element in the 
omplement of afuzzy set A in Y is then given by: �(
o(A))(y) = N(�A(y)) = 1� �A(y), 8y 2 Y .Take for example Fuzzy Rule 1. This rule has an a
tivation degree (
orresponding tothe membership degree in the fuzzy set \reliable neighbourhood pixel" and thus the weightW (r'; t0; r; t) in (2) for the pixel in the sliding window at position (r'; t0)) equal to:�1 � (1� �2) + (1� �1)� �1 � (1� �2) � (1� �1); (12)with �1 = �d(d(r; t)) and �2 = ��(�(r'; t0; r; t)).Noti
e that it is impossible that all weights in (2) are equal to zero. In the aboveexpression either �1 or 1 � �1 is always greater than zero (�1 2 [0; 1℄), and for the 
entralpixel position r, we always have that �2 = 0 (see expression (3) and Fig. 3 (b)).The proposed fuzzy rules are very natural to work with sin
e they dire
tly express theunderlying ideas put in a formal framework: (i) When large spatial a
tivity is dete
ted, oneshould �lter less to preserve the details. This means that the neighbouring pixels that areassigned a 
onsiderable weight in (2), should be similar to the 
entral pixel in the �lteringwindow (d(r; t) is large AND �(r'; t0; r; t) is not large). In the opposite 
ase (OR), i.e.,in homogeneous areas (d(r; t) is not large) no extra 
onditions should be imposed on theneighbouring pixels. All pixels should get a 
onsiderable weight to perform strong smoothing.(ii) When motion is dete
ted between the 
urrent and the previous window, only pixels fromthe 
urrent frame should be taken into a

ount in the averaging. This means that pixels fromthe previous frame only should get a 
onsiderable weight when the motion dete
tor yields alow value (m(r; t) is not large) (
orresponding to the se
ond (AND) in Fuzzy Rule 2).Apart from being a formal representation of the ideas, the fuzzy rules also produ
e thedesired result. In the 
ase of spatio-temporal stru
tures, the detail and motion value will belarge and only for neighbouring pixels with a small di�eren
e in greys
ale value (relative tothe 
entral pixel in the �ltering window), the Fuzzy Rules 1 and 2 will have a 
onsiderablea
tivation degree. In this way �ne spatio-temporal details are preserved at the expense ofsome noise redu
tion.In a spatio-temporal uniform area, the detail and motion values will not be large. Soeven for neighbouring pixels with a large di�eren
e in greys
ale value (relative to the 
entral13



pixel), the Fuzzy Rules 1 and 2 will have a 
onsiderable a
tivation degree. Hen
e, be
auseof the many 
onsiderable weights in (2), strong �ltering is performed.Finally, we also propose a re
ursive s
heme of the fuzzy motion and detail adaptive video�lter. In this s
heme, we always use the �ltered value If(r'; t � 1) for the neighbouringpixels in the already �ltered previous frame. For pixels in the 
urrent frame, the noisyvalues In(r'; t� 1) are used, ex
ept for the determination of �(r'; t0; r; t), where the �lteredvalue is used when already available (i.e., for pixels that have been �ltered already in aprevious step). In this way, we get a better estimate of whether the pixel at position (r',t')belongs to the same obje
t as the pixel at position (r; t) or not.C. Some Complexity NotesIt is 
lear that the 
omplexity of the proposed �lter is linear in terms of the number ofpixels in a frame. Every pixel is �ltered by averaging a 
onstant number of neighbourhoodpixels, whi
h are all assigned a weight using a 
onstant number of operations. The 
al
ulationof the a
tivation degree of the used fuzzy rules has a low 
omplexity. The a
tivation degreeof Fuzzy Rule 1 is given in expression (12). For Fuzzy Rule 2, an extra multipli
ation with(1� �3) (�3 = �m(m(r; t))) is needed. To 
al
ulate the a
tivation degree of Fuzzy Rule 1,3 multipli
ations, 2 sums and 3 subtra
tions are performed. For the a
tivation degree ofFuzzy Rule 2 an extra subtra
tion and produ
t are required. For the MCA �lter, the
al
ulation of the weight in expression (8) requires 7 multipli
ations, one division, and the
al
ulation of 3 exponential fun
tions and 4 opposites. The alternative in expression (11)
an be 
omputed by 4 multipli
ations, one division and the 
al
ulation of 2 exponentialfun
tions and 2 opposites. The use of fuzzy logi
 in the weight 
al
ulation is thus not more
omplex. The proposed individual treatment of the pixels, however, requires the weight
al
ulation for ea
h individual pixel. In the MCA �lter, weights are only 
al
ulated for thedi�erent index 
lasses, whi
h results in a little lower 
omplexity.
14



III. WAVELET-BASED SPATIO-TEMPORAL FILTER WITH ADDITIONALPIXEL-BASED TIME-RECURSIVE AVERAGING FOR GRAYSCALE VIDEOIn this se
tion our method is extended to the wavelet domain. The pro
edure is thefollowing: ea
h pro
essed frame is �rst de
omposed using the 2D wavelet transform [34℄.Next, an adapted version of the proposed method from Se
tion II is applied on ea
h ofthe resulting wavelet bands separately. Finally, the inverse wavelet transform is applied,followed by an additional time-re
ursive averaging in the pixel domain (see Fig. 5).
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FIG. 5: The �ltering s
heme for the proposed wavelet domain method.A. Basi
 NotionsThe wavelet transform of an image results in a representation that is very useful forimage denoising. The transform 
ompa
ts image details (su
h as edges and texture) into asmall number of spatially 
lustered large 
oeÆ
ients, while small 
oeÆ
ients 
orrespond tohomogeneous regions in the original image.We use the notation ys;d(r; t) for the wavelet 
oeÆ
ient at resolution s
ale s, orientationd and spatial position r of the frame with temporal position t. For the results in this paper,we have opted for a wavelet de
omposition with three orientation subbands, leading to threedetail images at ea
h s
ale, 
hara
terized by horizontal (d = LH), verti
al (d = HL) anddiagonal (d = HH) dire
tions and a low-frequen
y band (denoted by LL). Whenever there
an be no 
onfusion, we omit the indi
es s and d.Due to the linearity of the wavelet transform, additive noise in the pixel domain remainsadditive after the transformation as well, resulting in:y(r; t) = �(r; t) + �(r; t);15



where y(r; t) and �(r; t) are respe
tively the noisy and the noise-free wavelet 
oeÆ
ients and�(r; t) is the 
orresponding noise 
omponent.B. Fuzzy Motion and Detail Adaptive Averaging in the Wavelet DomainThe proposed method is now extended to the wavelet domain. Large di�eren
es in greyvalue in the pixel domain indi
ate the o

uren
e of an edge. To preserve the edges, pixelswith a large di�eren
e in grey value, relative to the pixel being �ltered in the 
urrent step,should not be taken into a

ount in the averaging. Only pixels from the same obje
t, i.e.,belonging to the same side of the edge, should be averaged and are expe
ted to have asimilar grey value. In the wavelet domain, edges result in large 
oeÆ
ients. So to preservethe edges, only the large 
oeÆ
ients, 
orresponding to these edges, should be averaged to�lter out the noise. Small 
oeÆ
ients should get small weights in this 
ase, and vi
e versafor homogeneous areas. This also holds for wavelet 
oeÆ
ients in the previous window.When there is no motion, the wavelet 
oeÆ
ients 
orresponding to the same edge in theprevious frame are expe
ted to be of a similar size. Hen
e, similar values should result inlarge weights and large di�eren
es in small weights.Be
ause the region of wavelet 
oeÆ
ients that are in
uen
ed by a given pixel value ex-pands with in
reasing s
ale, an averaging s
heme be
ome less and less eÆ
ient for highers
ales. Therefore we have used only two s
ales in the wavelet de
omposition, whi
h is insuf-�
ient to remove all the noise. To over
ome this problem, in [6, 7℄, also the low-frequen
yband is �ltered to obtain a better noise removal. In this paper, we 
hoose instead for anadditional time-re
ursive �ltering in the pixel domain like in [15℄, but in a more adaptivefuzzy logi
 based way.1. Filtering of the Wavelet BandsThe �ltering of the wavelet bands is adapted in an analogous way as in [6, 7℄:� We adopt the 
orresponding de�nition for the detail value d(r; t) from [6, 7℄:d(r; t) = �Xr' y2s;d(r'; t)� 12 : (13)16



� For all detail bands the same motion indi
ator value is used, whi
h is 
omputed on thelow-frequen
y band. This motion value is de�ned as the absolute di�eren
e betweenthe 
entral 
oeÆ
ient value in the 
urrent window and in the previous window of thelow-frequen
y band.� The parameters that de�ne the membership fun
tions ��, �d and �m in Fig. 3 needto be adapted to the spe
i�
 detail band.Sin
e m(r; t), d(r; t) and �(r'; t0; r; t) are all three de�ned, Fuzzy Rules 1 and 2 
an still beused to determine the weights in (2). The only di�eren
e is that we are now working withwavelet 
oeÆ
ients instead of pixel values.2. Additional Time-Re
ursive Filter in the Pixel DomainLet IfW and If respe
tively denote the frame after the �ltering of the wavelet bands andthe inverse wavelet transform and the frame after the additional time-re
ursive �ltering (seeFig. 5).First, the absolute di�eren
e between the pixels in the 
urrent frame after the �ltering ofthe wavelet bands and the pixel at the 
orresponding position in the previous frame, whi
hhas already been pro
essed by the additional time-re
ursive �lter, is 
omputed:TD(r; t) = jIfW (r; t)� If(r; t� 1)j: (14)For ea
h di�eren
e, its membership degree �TD(TD(r; t)) in the fuzzy set \large temporaldi�eren
e" is then 
al
ulated. The membership fun
tion �TD of this fuzzy set is depi
ted inFig. 6.
LARGE TEMPORAL
DIFFERENCE

0

1

Membership degree

TD

(TD)

FIG. 6: The membership fun
tion �TD for the fuzzy set \large temporal di�eren
e".The �nal output of the additional time-re
ursive �lter is given byIf(r; t) = 1� �TD(TD(r; t))2 If(r; t� 1) + 1 + �TD(TD(r; t))2 IfW (r; t); (15)17



where the 
ontribution of If (r; t� 1) is limited to a maximum of 12 to prevent noise propa-gation in time.IV. PIXEL-BASED SPATIO-TEMPORAL FILTER FOR COLOUR VIDEOIn this Se
tion we propose a new s
heme to handle 
olour image sequen
es. As in mostimage pro
essing appli
ations, we assume that the 
olour frames are represented in theRGB 
olour spa
e. The di�erent 
olours in this RGB spa
e are obtained by adding thethree 
olours red, green and blue together in di�erent proportions. As a 
onsequen
e, aninput frame of a 
olour video 
an be represented by a 2D matrix of 3D ve
tors, 
ontainingthe amount of red (I(x; y; t; 1)), green (I(x; y; t; 2)) and blue (I(x; y; t; 3)) for a given pixelI(x; y; t) in the 2D matrix.A �rst straightforward way to pro
ess 
olour video with the proposed method is to pro
essea
h of the 
olour bands (R, G and B) separately. In this way however, the 
orrelationbetween the 
olour 
hannels is negle
ted and unwanted 
olour artefa
ts are often introdu
ed.The s
heme that is usually applied, 
onsists of denoising the luminan
e 
omponent ofthe Y UV -transform. In this 
olour sequen
e denoising s
heme, the 
olour frames are �rst
onverted from the RGB 
olour spa
e into the Y UV 
olour spa
e, by a linear transformation.The Y-
omponent in this spa
e 
ontains the information about the luminan
e of the image,while the information about the 
olour (hue and saturation) is en
oded in the U - andV -
omponent. The Y -
omponent is 
alled the luminan
e 
omponent and the U - and V -
omponent together are 
alled the 
hrominan
e 
omponents. Sin
e the human eye is far lesssensitive to spatial details in 
hrominan
e than in luminan
e [35℄, it is a

eptable to only�lter the luminan
e 
omponent. In this way, only one band is �ltered instead of three. Toa
hieve better results, a simple additional �ltering of the 
hrominan
e bands (e.g. spatialaveraging) 
an be applied. Afterwards, the inverse Y UV -RGB transform is applied.In this se
tion we introdu
e a new alternative where the L�a�b�- 
olour spa
e is used.We �rst present a ve
tor based extension of the proposed greys
ale method (Se
tion II)in Subse
tion IVA (�rst sub�lter) and then 
ombine it with a 3D extension of the 
olorrestoration se
ond sub�lter from [29℄ in Subse
tion IVB (se
ond sub�lter) (see Fig 7).We assume that all three 
olour bands in the RGB 
olour spa
e are 
ontaminated withwhite Gaussian noise with zero mean and the same standard deviation.18
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TFIG. 7: The �ltering s
heme of the proposed 
olour �lter.A. First Sub�lterSin
e the algorithm proposed in Se
tion II makes use of the absolute di�eren
e betweengrey values, for 
olour video it makes sense to work in a 
olour spa
e in whi
h the measureddistan
e between 
olours roughly 
orresponds to the di�eren
e in 
olour as it is observedby the human eye. This is the 
ase in the linear L�a�b� 
olour model. In the proposed
olour extension, ea
h pro
essed frame is �rst transformed into the L�a�b� 
olour spa
e.Subsequently, the transformed frame is �ltered with the adapted algorithm as explainedbelow. Finally, the �ltered frame is retransformed to the RGB 
olour spa
e. For thetransformation between the RGB and L�a�b� 
olour spa
es, the XY Z 
olour spa
e is usedas an intermediate step. For more information on 
olour spa
es and their use in imagepro
essing, we refer to [36℄.In the following the L�a�b�-transform of the RGB-ve
tor at pixel position In(r; t) isdenoted by In;L�a�b�(r; t), while the L�-, a�- and b�-
omponent of this ve
tor are denoted byIn;L�(r; t), In;a�(r; t) and In;b�(r; t) respe
tively.1. Adaptation of m(r; t), d(r; t) and �(r'; t0; r; t)The motion value m(r; t) for this ve
tor based method is determined as the Eu
lidiandistan
e between the L�a�b�-transforms of the ve
tors at the 
entral pixel position of the
urrent and the previous window:m(r; t) = kIn;L�a�b�(r; t)� If1;L�a�b�(r; t� 1)k2= ��In;L�(r; t)� If1;L�(r; t� 1)�2+�In;a�(r; t)� If1;a�(r; t� 1)�2+�In;b�(r; t)� If1;b�(r; t� 1)�2� 12 ; (16)
19



where If1 denotes the output of this �rst sub�lter.For the adaptation of the detail value d(r; t), we �rst 
al
ulate the arithmeti
 mean inthe 
urrent window of ea
h of the 
omponents in the L�a�b�-
olour spa
e:L(r; t) = 19Xr' In;L�(r'; t); (17)a(r; t) = 19Xr' In;a�(r'; t); (18)b(r; t) = 19Xr' In;b�(r'; t): (19)The detail value itself is then de�ned as:d(r; t) = �19Xr' 

In;L�a�b�(r'; t)� (L(r; t); a(r; t); b(r; t))

22 � 12 : (20)Finally, the adapted �(r'; t0; r; t)-value is given by�(r'; t0; r; t) = kIn;L�a�b�(r'; t0)� In;L�a�b�(r; t)k2= ��In;L�(r'; t0)� In;L�(r; t)�2+�In;a�(r'; t0)� In;a�(r; t)�2+�In;b�(r'; t0)� In;b�(r; t)�2� 12 ; (21)for pixels in the 
urrent frame (t0 = t), and by�(r'; t0; r; t) = kIf1;L�a�b�(r'; t0)� In;L�a�b�(r; t)k2 (22)for pixels in the previous frame (t0 = t� 1).2. Determination of the WeightsWith the use of the above introdu
ed adaptations of m(r; t), d(r; t) and �(r'; t0; r; t), theweights W (r'; t0; r; t) in the weighted sum (2) 
an still be determined by the Fuzzy Rules 1and 2. We only need to adapt the parameters thr1, T1, T2, t1 and t2 of the membershipfun
tions �d, �m and �� to this new 
olour spa
e.B. Se
ond Sub�lterWhen we 
onsider the 
olour pixels as ve
tors, they are a�e
ted by the noise in threedi�erent dimensions, instead of in one when only 
onsidering one 
olour band. As a 
onse-quen
e, less similar neighbours 
an be found to average out the noise in the 3D 
ase than in20



the 1D 
ase, and sometimes even not enough. To over
ome this problem, the �rst sub�lteris 
ombined with a 3D extension of the 
olour restorating se
ond sub�lter from [29℄. The
entral pixel in the window is estimated by 
ombining lo
al di�eren
es in a spatio-temporalneighbourhood, 
omputed for the red, green and blue 
omponent ea
h separately.1. Lo
al Di�eren
es and Corre
tion TermsSimilar to the �rst sub�lter, a 3� 3� 2 sliding window (Fig. 1) is used. In ea
h step the
entral pixel in this window, at position (r; t) in the image sequen
e, is �ltered. For ea
hpixel in the sliding window, lo
al di�eren
es (gradients) in the three 
olour bands (ea
hseparately) are 
al
ulated. The di�eren
es in the red, green and blue neighbourhoods arerespe
tively denoted by LD1, LD2 and LD3. For pixels in the window belonging to the
urrent frame, the output of the �rst sub�lter, denoted by If1 , is used:LDi(r'; t) = If1(r'; t; i) � If1(r; t; i); (23)with i = 1; 2; 3. For pixels in the window belonging to the previous frame, the alreadypresent output of the se
ond sub�lter, denoted by If , is used:LDi(r'; t� 1) = If (r'; t� 1; i) � If1(r; t; i); (24)again with i = 1; 2; 3.Next, for ea
h position in the window one 
orre
tion term is determined using the 
al
u-lated lo
al di�eren
es. This 
orre
tion term is de�ned as the arithmeti
 average of the lo
aldi�eren
e in the red, green and blue 
omponent at the given position:�(r'; t0) = 13�LDR(r'; t0) + LDG(r'; t0) + LDB(r'; t0)�: (25)2. Output of the se
ond sub�lterFinally the output of the se
ond sub�lter for the 
entral pixel in the 
urrent window isdetermined as follows:If (r; t; i) = Pr' �If1(r'; t; i)� �(r'; t)�18 + (26)Pr' �If (r'; t� 1; i)� �(r'; t� 1)�18 ;21



where �(r'; t0) is the 
orre
tion term for the neighbouring pixel at position (r'; t0) and i =1; 2; 3 (for respe
tively the red, green and blue 
olour band).V. PARAMETER SELECTIONAs mentioned earlier, the membership fun
tions in Fig. 3 and 6 are 
ompletely determinedby their respe
tive parameters. These parameter values have been experimentally optimizedusing the \Salesman", \Trevor", \Tennis" and \Flower Garden" sequen
es, whi
h all havetheir own 
hara
teristi
s. The \Salesman" sequen
e represents a standard sequen
e withmoderate detail (shelfs, books,: : :) and moderate motion (person). The \Trevor" sequen
e
ontains very fast motion (moving arms). In the \Tennis" sequen
e we deal with a zooming
amera and a detailed ba
kground (wall). The \Flower garden" sequen
e �nally, 
ombinesvery detailed regions (
ower �eld) with homogeneous regions (sky).The parameters have been optimized in the following way. The proposed method was ap-plied on ea
h of the above sequen
es, for the di�erent noise levels �n = 5; 10; 15; 20; 25 withparameters varying over the range of possible values. After plotting the optimal parametervalues (in terms of PSNR) for the di�erent sequen
es and noise levels, a linear relationshipwas found between these optimal parameter values and the noise level. Therefore the para-meters have been determined by the best �t through the observations. As an illustration,the optimal values for the parameter T2 of the proposed pixel domain method together withthe best �tting line through these points are depi
ted in Fig. 8. The parameters are thuslinearly dependent of the noise level. For the results in this paper, we assume a knownstandard deviation of the noise. In most pra
ti
al 
ases however, the standard deviation�n is not known and should be estimated. A 
ommon used noise estimation method is thewavelet domain median absolute deviation (MAD) estimator of Donoho and Johnstone [32℄.The optimized parameter values that determine the membership fun
tions used in thepixel domain method are given in Table II.Table III presents the optimized thr1, T1 and T2 values for the di�erent waveletbands inthe wavelet domain method. For the membership fun
tion �m, the parameters are deter-mined as t1 = 3:22�n + 1:5667 and t2 = 36:7667�n + 16:5. The optimized parameters forthe additional time-re
ursive �ltering are given by repe
tively par1 = 0:555�n � 0:725 andpar2 = 1:36�n + 5:1. 22
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FIG. 8: Optimal value for the parameter T2 of the proposed pixel domain method.TABLE II: Optimized parameter values for the pixel domain method.parameter optimal valuethr1 1:36�n + 1:2T1 0:79�n + 0:25T2 5:24�n � 15:35t1 0:465�n � 0:625t2 1:795�n + 3:275For the ve
tor based 
olour extension of the method, �nally, the parameters 
an be foundin Table IV.VI. EXPERIMENTAL RESULTSIn this se
tion we will show some experimental results. For the experiments, our waveletdomain algorithm has been implemented with a non-de
imated wavelet transform (whi
h isknown to give better denoising results than the de
imated one) using the Haar-wavelet. Asmentioned before (Subse
tion III B) we have used only two levels in the wavelet de
omposi-tion. 23



TABLE III: Optimized thr1, T1 and T2 values for the di�erent detail bands.Band thr1 T1 T2LH1 5:5733�n � 14:2667 0:8867�n � 1:9667 2:94�n + 2:9HL1 5:5733�n � 14:2667 0:8867�n � 1:9667 2:94�n + 2:9HH1 46:6267�n � 243:0667 0:8867�n � 1:9667 2:94�n + 2:9LH2 2:7533�n � 1:3 2:7067�n � 8:2667 2:8867�n + 0:8333HL2 2:7533�n � 1:3 2:7067�n � 8:2667 2:8867�n + 0:8333HH2 8:8267�n � 26:9333 2:7067�n � 8:2667 2:8867�n + 0:8333TABLE IV: Optimized parameter values for the membership fun
tions of the ve
tor based 
olourextension. parameter valuethr1 1:5�n � 2:5T1 0:1667�n + 0:8333T2 0:6667�n + 11:6667t1 0t2 1:7�n + 2:5In our experiments, we have pro
essed 6 di�erent greys
ale sequen
es (\Salesman", \Ten-nis", \Deadline", \Trevor", \Flower garden" and \Miss Ameri
a") and 3 di�erent 
olour se-quen
es (\Salesman", \Chair" and \Tennis") with added Gaussian noise (�n = 5; 10; 15; 20).As a measure of obje
tive dissimilarity between a �ltered frame and the original one, thePSNR is used. This PSNR value is de�ned as:MSE(I0; If) = CX
=1 mXi=1 nXj=1(Io(i; j; 
)� If (i; j; 
))2n �m � C ;PSNR(I0; If ) = 10 � log10 S2MSE(I0; If) ;where Io and If respe
tively denote the original and the �ltered frame, ea
h 
ontaining mrows and n 
olumns of pixels and C 
hannels (C = 1 for greys
ale images and C = 3 for24




olour images in the RGB 
olour spa
e). S denotes the maximum possible greys
ale valueof a pixel (here S = 255).For the 
olour sequen
es, we have also used a se
ond measure, namely the normalized
olour di�eren
e (NCD). The NCD is de�ned as:NCD(Io; If) = Pmi=1Pnj=1 k�ELABkPmi=1Pnj=1 kE�LABk ;where Io and If again stand for the original and the �ltered frame respe
tively, ea
h 
on-taining m rows and n 
olumns of pixels,k�ELABk = �(Io;L� � If;L�)2 + (Io;a� � If;a�)2 + (Io;b� � If;b�)2� 12and kE�LABk = �(Io;L�)2 + (Io;a�)2 + (Io;b�)2� 12 ;where Io;L�,If;L�,Io;a� ,If;a� ,Io;b� and If;b� respe
tively denote the L�-
omponent, the a�-
omponent and the b�-
omponent of the L�a�b�-transform of the original and the �lteredframe.In Subse
tion VIA we 
ompare our method with other state-of-the-art methods both inthe pixel domain and the wavelet domain. Additionally, in Subse
tion VIB, we also test theuse of our method for 
olour sequen
es. Subse
tion VIC, �nally, tests the use of di�erentfuzzy aggregators.A. Comparison to Other State-Of-The-Art MethodsIn this subse
tion, we 
ompare our method to other state-of-the-art methods. We �rst
ompare our pixel domain method to other pixel domain methods and then do the 
ompar-ison for the wavelet domain method.1. Pixel DomainThe non-re
ursive (FMDAF) and re
ursive (RFMDAF) s
heme of our fuzzy motion anddetail adaptive �lter in the pixel domain have been 
ompared to the following well-known�lters that also operate in the pixel domain (all with parameter values as suggested in therespe
tive papers): 25



� the rational �lter (Rational) [8℄,� the 3D-KNN �lter (KNN) [3℄ as an extension of the 2D-KNN �lter [1, 2℄,� the threshold averaging �lter (THR) [3, 4℄,� the motion and detail adaptive KNN �lter (MDA-KNN) [3, 5℄,� the re
ursive s
heme of the multiple 
lass averaging �lter (RMCA) [7℄ (whi
h performsbetter than the non-re
ursive one as shown in [7℄).Fig. 9 and Fig. 10 give the PSNR results for six test sequen
es pro
essed with the abovementioned methods and for the noise levels �n = 10 and �n = 15 respe
tively. It 
anbe seen that in terms of PSNR the FMDAF and RFMDAF �lters outperform the otherpixel domain methods. The MDA-KNN �lter gives 
omparable results on the \Salesman"and \Deadline" sequen
es. Further, we also note that 
omparable results are found on the\Flower garden" sequen
e for the RMCA and the THR �lters. For a visual 
omparison,the original \Trevor" sequen
e, the sequen
e with added Gaussian noise (�n = 10), and thenoisy sequen
e pro
essed by the di�erent �lters 
an be found on http://www.fuzzy.ugent.be/tmelange/results/greys
ale/pixel. From the tests we also found that our methodadapts better to motion than the RMCA method. In Fig.11 a part of the 18th frame of the\Trevor" sequen
e with added Gaussian noise (�n = 10) pro
essed by the FMDAF methodand the RMCA method is given. One 
learly sees that our method has given a lower weightto those pixels from the previous frame situated in the fast moving arm.Finally, we observed that the re
ursive s
heme (RFMDAF) of the proposed �lter removesslightly more noise than the non-re
ursive s
heme (FMDAF), but this at the expense of littleloss of spatial texture. Fig. 12 shows the 18th frame of the \Tennis" sequen
e with addedGaussian noise (�n = 20), pro
essed by the FMDAF and by the RFMDAF. The textureon the wall is best preserved by the FMDAF method. But on the other hand, by looking
arefully at the table, one sees that more noise is removed by the RFMDAF than by theFMDAF.
26
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FIG. 9: Performan
e 
omparison for the pixel domain methods applied to di�erent sequen
es withadded Gaussian noise, �n = 10.2. Wavelet DomainThe re
ursive (WRFMDAF) s
heme of our wavelet domain method (whi
h outperformsthe non-re
ursive one) has been 
ompared to the following methods (all with parameter27
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FIG. 10: Performan
e 
omparison for the pixel domain methods applied to di�erent sequen
es withadded Gaussian noise, �n = 15.values as suggested in the respe
tive papers):� the re
ursive s
heme of the wavelet domain multiple 
lass averaging �lter (WRMCA)[7℄ (non-de
imated transform with the quadrati
 spline wavelet),28



(a) (b)
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100(
)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100 (d)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100FIG. 11: Part of the 18th frame of the \Trevor" sequen
e (a) original; (b) with added Gaussiannoise (�n = 10); (
) pro
essed by the FMDAF method and (d) pro
essed by the RMCA.� the 3D wavelet transform �lter (3DWF) [14℄ with the signal adaptive threshold from[11℄ (3-D dual-tree 
omplex wavelet transform),29
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e (a) original; (b) with added Gaussian noise (�n = 20);(
) pro
essed by the FMDAF method and (d) pro
essed by the RFMDAF method.� the sequential wavelet domain and temporal �lter (SEQWT) [15℄ (non-de
imatedtransform with the symmlet-8 wavelet),30



� the adaptive spatio-temporal �lter (ASTF) [16℄ (64-tap Johnston �lter [37℄),� the video �lter based on inter-frame statisti
al modelling of the wavelet 
oeÆ
ients(FISMW) [17℄ (de
imated transform with the orthogonal symmlet-8 wavelet),� the sparse 3D transform-domain 
ollaborative �lter for video (VBM3D) [26℄ (the de
-imated biorthogonal wavelet bior1.5 for the 2D-transform of the blo
ks and the de
-imated Haar-wavelet for the third dimension in the �rst step and the d
t-transform(2D) and the de
imated Haar-wavelet (third dimension) in the se
ond step).Fig. 13 and 14 gives the PSNR results for the pro
essed \Salesman", \Trevor", \Dead-line", \Tennis", \Miss Ameri
a" and \Flower Garden" sequen
es. It 
an be seen thatour method works best for a still 
amera �lming possibly moving obje
ts (\Salesman",\Trevor", \Deadline", \Miss Ameri
a"). On su
h sequen
es our proposed wavelet basedre
ursive WRFMDAF method 
learly outperforms the ASTF method. We also see a betterperforman
e for the WRFMDAF than for the RMCA �lter and similar results to those ofthe SEQWT �lter. Taking into a

ount that the degradations that result from using a de
i-mated transform instead of a non-de
imated one 
an rea
h up to 1 dB [15, 38℄, we might also
on
lude a similar performan
e for the FISMW �lter. Still, more sophisti
ated �lters likethe VBM3D �lter, 
onsisting of two steps in whi
h blo
ks are grouped by spatio-temporalpredi
tive blo
k-mat
hing and ea
h 3D group is �ltered by a 3D transform domain shrink-age, and the 
omplex 3D wavelet transform method 3DWF show better results in terms ofPSNR than our proposed �lter. For the \Flower garden" sequen
e, the re
eived results areworse, be
ause the performan
e of the additional time-re
ursive �ltering in pixels where nomotion is dete
ted, will be redu
ed for a moving 
amera.For a visual 
omparison, the original \Deadline" sequen
e, the sequen
e with addedGaussian noise (�n = 10), and the noisy sequen
e pro
essed by the di�erent �lters 
anbe found on http://www.fuzzy.ugent.be/tmelange/results/greys
ale/wavelet. Wesee that a little less noise is removed by the RWFMDAF and WRMCA �lters than bythe SEQWT and FISMW �lters, but on the other hand details are well preserved and lessartefa
ts around the edges are introdu
ed by the RWFMDAF �lter.It 
an be 
on
luded that, for sequen
es obtained by a still 
amera, our method has abetter performan
e in terms of PSNR than the other multiresolution �lters of a similar
omplexity, but it is outperformed by some more sophisti
ated methods.31
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e 
omparison for the wavelet domain methods applied to di�erent sequen
eswith added Gaussian noise (�n = 10): (a) \Salesman", (b) \Trevor", (
) \Deadline", (d) \Tennis",(e) \Miss Ameri
a" and (f)\Flower Garden".
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B. Pro
essing of Colour Sequen
esIn this subse
tion, we test the use of our proposed method for 
olour sequen
es withequal noise levels on ea
h 
olour band. We have 
ompared our new ve
tor based extension(FMDAF-L�a�b�) from Se
tion IV to the �ltering s
heme where the Y -
omponent is �lteredby the WRFMDAF method and where an additional spatial averaging is applied on the
hrominan
e 
omponents U and V with an 3� 3 �ltering window (WRFMDAF-YUV). Theresults of this 
omparison are given in Tables V and VI. From Table V we see that theWRFMDAF-YUV method yields the best results in terms of PSNR. However, in terms ofthe NCD, whi
h 
orresponds with human observation, it 
an be seen from Table VI thatthe best results are then obtained by the ve
tor based FMDAF-L�a�b� method.For a visual 
omparison, the original \Salesman" sequen
e, the sequen
e with addedGaussian noise (�n = 10) and the noisy sequen
e pro
essed by respe
tively theWRFMDAF-YUV and FMDAF-L�a�b� method 
an be found on http://www.fuzzy.ugent.be/tmelange/results/
olour. We see that a little more noise is removed by the waveletdomain WRFMDAF-YUV method, but also that more 
olour artefa
ts are introdu
ed thanby the FMDAF-L�a�b� method. This 
an for example be seen by looking 
arefully to theside of the phone.We further also note that the FMDAF-L�a�b� method performs a little less good for thelowest noise level (�n = 5) in 
omparison to the performan
e for the other noise levels.The reason is that be
ause of the two sub�lters used in this method, there is a little toomu
h averaging for this low noise level, resulting in a little more detail loss. For the othernoise levels however, we see a more favorable 
ompromise between noise removal and detailpreservation.C. The Use of Other Fuzzy AggregatorsIn this subse
tion, we 
ompare the performan
e of the proposed method, implementedwith di�erent triangular norms and 
onorms. In Table VII the results in terms of PSNRare given for di�erent sequen
es pro
essed with the RWFMDAF �lter implemented with thesuggested produ
t norm and probabilisti
 sum 
onorm and other popular triangular normsand 
onorms. It 
an be seen that the performan
e of all aggregators are very 
omparable.34



TABLE V: Comparison of the proposed 
olour extensions in terms of PSNR.Sequen
e noise PSNRavlevel Input FMDAF-L�a�b� WRFMDAF-YUV\Salesman" �n = 5 34.16 35.20 37.37�n = 10 28.22 33.00 33.64�n = 15 24.82 30.73 31.20�n = 20 22.46 29.00 29.35�n = 25 20.66 27.71 27.88\Chair" �n = 5 34.17 37.35 39.92�n = 10 28.19 35.30 35.67�n = 15 24.71 32.77 32.99�n = 20 22.26 30.58 30.89�n = 25 20.39 29.28 29.16\Tennis" �n = 5 34.24 30.40 33.40�n = 10 28.26 29.20 29.83�n = 15 24.78 27.83 27.92�n = 20 22.31 26.60 26.68�n = 25 20.41 25.32 25.59Only the weak norm and strong 
onorm seem to perform less good on some of the sequen
es.Therefore, we have 
hosen for the simple intermediate algebrai
 produ
t and probabilisti
sum.VII. CONCLUSIONIn this paper we have presented a new fuzzy motion and detail adaptive video �lterintended for the redu
tion of additive white Gaussian noise in digital image sequen
es. Theproposed algorithm has �rst been de�ned on greys
ale images and in the pixel domain. Ina next step we have adapted the algorithm to the wavelet domain. Finally, we have alsoextended the method to handle 
olour image sequen
es.35



TABLE VI: Comparison of the proposed 
olour extensions in terms of NCD.Sequen
e noise NCDavlevel Input FMDAF-L�a�b� WRFMDAF-YUV\Salesman" �n = 5 0.1041 0.0524 0.0531�n = 10 0.2077 0.0657 0.0829�n = 15 0.3050 0.0813 0.1121�n = 20 0.3929 0.0959 0.1397�n = 25 0.4724 0.1097 0.1652\Chair" �n = 5 0.0300 0.0152 0.0122�n = 10 0.0599 0.0183 0.0215�n = 15 0.0899 0.0221 0.0309�n = 20 0.1198 0.0263 0.0404�n = 25 0.1497 0.0301 0.0498\Tennis" �n = 5 0.0434 0.0446 0.0339�n = 10 0.0857 0.0490 0.0475�n = 15 0.1270 0.0545 0.0601�n = 20 0.1677 0.0605 0.0724�n = 25 0.2079 0.0672 0.0848Experimental results show that our pixel domain greys
ale method and the wavelet do-main extension outperform respe
tively other state-of-the-art pixel domain �lters and otherstate-of-the-art wavelet domain �lters of a 
omparable 
omplexity in terms of PSNR. For thepro
essing of 
olour images we 
on
lude that the proposed FMDAF-L�a�b� 
olour extensionis a good alternative for the �ltering s
heme in the Y UV 
olour spa
e.As future work we will in
lude 
olour information into the fuzzy rules dire
tly insteadof working with 
olour ve
tors and we will try to �nd a framework for the denoising ofvideo sequen
es 
orrupted with other types of noise su
h as impulse noise and �-stable noise.A
knowledgement. This resear
h was �nan
ially supported by the FWO proje
t36



TABLE VII: Comparison of the di�erent aggregators.Sequen
e PSNRav(�n = 10) algebrai
 produ
t/ minimum/ weak/  Lukasiewi
zprobabilisti
 sum maximum strong\Salesman" 34.37 34.36 34.10 34.36\Trevor" 36.41 36.42 35.55 36.29\Deadline" 33.95 33.91 33.74 33.98\Tennis" 31.44 31.37 31.47 31.55\Miss Ameri
a" 37.48 37.48 36.76 37.42\Flower Garden" 28.27 28.13 28.50 28.44G:0667:06 of Ghent University. A. Pizuri
a is a postdo
toral resear
h fellow of FWO,Flanders. The authors would like to thank Prof. Selesni
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hni
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essed video sequen
es for the 3DWF algorithm,whi
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omparison. They would also like to give a spe
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