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AbstratA new fuzzy-rule based algorithm for the denoising of video sequenes orrupted with additiveGaussian noise is presented. The proposed method onstitutes a fuzzy logi based improvementof a reent detail and motion adaptive multiple lass averaging �lter (MCA). The method is �rstexplained in the pixel domain for greysale sequenes and is later extended to the wavelet domainand to olour sequenes. Experimental results show that the noise in digital image sequenes iseÆiently removed by the proposed fuzzy motion and detail adaptive video �lter (FMDAF) andthat the method outperforms other state-of-the-art �lters of omparable omplexity on di�erentvideo sequenes.

�Eletroni address: Tom.Melange�ugent.beyURL: http://www.fuzzy.ugent.be 2



I. INTRODUCTIONVery often, image sequenes are orrupted with noise due to bad aquisition, transmissionor reording. Some well-known noise types that may our are e.g. impulse noise, Gaussiannoise, spekle noise et. In this paper we will onentrate on an additive white Gaussiannoise model of zero mean and variane �2:In;i = Io;i + �i; i = 1; : : : ; p (1)where In;i and Io;i denote the i-th pixel from the noisy and the original frame respetively,�i � N(0; �2) and p is the number of pixels per frame.The goals of reduing the noise in the sequenes are (i) visual improvement and (ii) im-provement of further analysis or oding of the sequenes.The �rst �lters for video denoising were single resolution �lters. These were often somewell-known 2D �lters extended to a spatio-temporal neighbourhood. Some examples are the3D KNN-�lter [1{3℄ and the 3D threshold averaging �lter [3, 4℄, whih try to preserve thedetails by averaging only over the k nearest neighbours (KNN) and the neighbours lyingwithin a ertain distane (usually 2� is hosen as threshold) from the given pixel valuerespetively. More reent extensions of these �lters, that are made more adaptive to a loalspatio-temporal neighbourhood are e.g. the motion and detail adaptive KNN-�lter [5℄ andthe multiple lass averaging �lter [6, 7℄. Another well-known single resolution method is the3D rational �lter [8℄, where the �ltered output for a pixel is determined as a rational funtionof the grey values in a spatio-temporal neighbourhood. Other reent single resolution �ltersan e.g. be found in [9, 10℄. Both �lters take into aount pixels from neighbouring framesin the averaging, whih not neessarily are the pixels at the same spatial position, but theestimated orresponding objet pixels whih possibly have been displaed due to motionbetween frames.Later, the wavelet transform, whih has proven very e�etive in still image denoising[11, 12℄, also found its way in the denoising of videos. In [13, 14℄ a 3D wavelet transform isapplied and the resulting oeÆients are denoised by adaptive thresholding. However, mostwavelet domain �lters use a less omplex separable 2D transform applied on eah frameseparately [6, 7, 15{22℄ and ombine it with time-reursive �ltering, either in the waveletdomain or in the pixel domain. 3



The most fundamental di�erene between video and image denoising is that in videoappliations also information from previous frames is available. When working with a delayin time even information from future frames an be used. The main diÆulty in exploitingthis additional info is possible motion. Some �lters simply take into aount pixels atorresponding positions in the previous (and future) frames only when no motion betweenthe suessive frames is deteted. Suh motion detetion �lters are for example [5{7, 15℄.Other more omplex �lters always take into aount information from the previous frames,by �ltering along an estimated motion trajetory and are alled motion ompensated �lters[9, 10, 16, 19, 21℄. In [9, 10, 16℄ the motion is estimated in the pixel domain, while in [19, 21℄the motion vetors are omputed in the wavelet domain. Most available motion estimationalgorithms are designed for video oding appliations [23{25℄. In suh appliations, theauray of the motion vetors is less important than for denoising purposes. Reently, in[20℄, an eÆient video �ltering sheme is proposed, whih makes use of motion estimatorsfrom video odes, but with additional �ltering of the motion vetors and with appropriatelyde�ned reliabilities to estimated motion.The �lter in [10℄ only �lters temporally. Usually however, the temporal �ltering, whihuses information from neighbouring frames, is ombined with a spatial �ltering. When thespatial and temporal �ltering steps are performed separately, i.e., the one after the other,we speak of a separable �lter [15, 16, 18{21℄. In [18℄ e.g., the authors ombine their imagedenoising method from [12℄ with a seletive wavelet shrinkage method whih estimates thelevel of noise orruption as well as the amount of motion in the image sequene. Filters thatintegrate spatial and temporal �ltering in one step, suh as [5{9, 13, 14, 22, 26℄, are allednon-separable.The method proposed in this paper is a fuzzy logi based improvement of the multiplelass averaging �lter (MCA) from [6, 7℄ for the denoising of greysale image sequenesorrupted with additive white Gaussian noise. Fuzzy set theory and fuzzy logi o�er usa powerful tool for representing and proessing human knowledge. Binary deisions arereplaed by a gradual transition, whih is more appropriate when dealing with omplexsystems. Examples that illustrate the power of fuzzy set theory in the domain of imageproessing are e.g. [27, 28℄. The main di�erenes between the proposed method and the�lter from [6, 7℄ are: (i) pixels are not divided into disrete lasses and dealt with based ontheir lass index like in [6, 7℄, but they are treated individually, whih leads to an inreased4



performane; (ii) the ompliated heuristi onstrution of exponential funtions to tune thepixel weights in the method of [6, 7℄ to the lass index and to the deteted motion and detailis replaed by a fuzzy rule ontaining linguisti variables, whih represent human knowledgeand whih are more natural to work with and to understand. The use of fuzzy logi alsoprovides a more theoretial base; (iii) in the wavelet-based extension of the method, we optfor an additional time-reursive averaging instead of a �ltering of the low-frequeny band ;and (iv) the fuzzy rule used in our method is easy to extend and to inlude new informationin future work.In this paper we also extend the proposed method to the proessing of olour imagesequenes. We present a new vetor based extension of the proposed greysale method usingthe L�a�b�-transform in ombination with a 3D extension of the olour restorating seondsub�lter from [29℄.Experimental results show that our method outperforms other state-of-the-art �lters ofa omparable omplexity.The paper is strutured as follows: Our algorithm for the denoising of greysale imagesequenes is �rst explained in the pixel domain in Setion II and extended to the waveletdomain in Setion III. In Setion IV we disuss the proessing of olour video. Setion Vhandles the hoie of the parameter values. Finally, experimental results and onlusionsare presented in Setion VI and Setion VII respetively.II. PIXEL-BASED SPATIO-TEMPORAL FILTER FOR GRAYSCALE VIDEOIn this setion, we improve the multiple lass averaging �lter (MCA) from [6, 7℄ in thepixel domain by inorporating fuzzy logi. The ideas behind the �lter are the following:(i) to avoid spatio-temporal blur, one should only take into aount neighbouring pixelsfrom the urrent frame in ase of deteted motion; (ii) to preserve the details in the frameontent, the �ltering should be less strong when large spatial ativity (e.g. a large variane)is deteted in the urrent �ltering window. As a onsequene more noise will be left, butlarge spatial ativity orresponds to high spatial frequenies and for these the eye is lesssensitive [30℄. In the ase of homogeneous areas, strong �ltering should be performed toremove as muh noise as possible.The general �ltering framework used in the proposed method is presented in Subse-5



tion IIA. Additionally the ruial weight determination step, whih is the main novelty ofour greysale method ompared to the MCA �lter, is explained in Subsetion IIB. In theproposed method we determine the weights in the �ltering window by the use of fuzzy setsand fuzzy logi instead of a heuristi onstrution with exponential funtions as it is thease in the MCA �lter. Subsetion IIC �nally, disusses some omplexity notes.A. The General Filtering FrameworkIn this Subsetion, the �ltering framework used in both the MCA and the proposed �lteris explained. In the following, a noisy input image pixel and the orresponding �ltered pixelvalue are denoted by respetively In(x; y; t) and If(x; y; t), where (x; y) indiates the spatialloation and t stands for the temporal loation.The �ltering window used in the framework is a 3� 3 � 2 sliding window, onsisting of3 � 3 pixels in the urrent frame and 3 � 3 pixels in the previous frame. As introduedin [6, 7℄ we will use the terms urrent window and previous window for the window pixelsontained in respetively the urrent and the previous frame (Fig. 1). This window is moved
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FIG. 1: The 3� 3� 2 �ltering window onsisting of the previous and the urrent window.through eah frame from top left to bottom right, eah time �ltering the entral pixel byaveraging the noise. The position of this entral pixel in the �ltering window is denoted by(r; t) where r = (x; y) stands for the spatial position and t for the temporal position. Anarbitrary position in the 3 � 3 � 2 window (this may also be the entral pixel position) isdenoted by (r'; t0), with r' = (x+ k; y + l) (�1 � k; l � 1) and t0 = t or t0 = t� 1.The output of the proposed �lter for the entral pixel in the window is �nally determined
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as a weighted average (with adaptive weights) of the pixel values in the 3� 3� 2 window:If(r,t) = Pr'Ptt0=t�1W (r'; t0; r; t)In(r'; t0)Pr'Ptt0=t�1W (r'; t0; r; t) : (2)B. Weight DeterminationIn this subsetion, we fous on the fundamental step in the �ltering framework, namelythe determination of the weights. To make the method motion and detail adaptive, we adoptthe di�erene value �(r'; t0; r; t), the detail value d(r; t) and the motion value m(r; t) from[6, 7℄:(i) The absolute greysale di�erene between the two pixel positions (r; t) and (r'; t0) isdenoted by: �(r'; t0; r; t) = jIn(r'; t0)� In(r; t)j: (3)(ii) The funtion d(r; t) indiating the loal amount of detail is alulated as the standarddeviation in the urrent window:Iav(r; t) = 19Xr' In(r'; t) ; (4)d(r; t) = �19Xr' �In(r'; t)� Iav(r; t)�2� 12 : (5)(iii) The motion indiator m(r; t) �nally, is de�ned as the absolute di�erene between theaverage grey value in the urrent window and the average grey value in the previouswindow: m(r; t) = jIav(r; t)� Iav(r; t� 1)j (6)= j19Xr' In(r'; t)� 19Xr' In(r'; t� 1)j:
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1. MCA FilterIn the MCA �lter [6, 7℄, the pixels are lassi�ed into four disrete index lasses, dependingon the �(r'; t0; r; t) value:
i(r'; t0; r; t) = 8>>>>>>>><>>>>>>>>:

0; �(r'; t0; r; t) � k�n1; k�n < �(r'; t0; r; t) � 2k�n2; 2k�n < �(r'; t0; r; t) � 3k�n3; 3k�n < �(r'; t0; r; t) (7)
where �n represents the standard deviation of the Gaussian noise and k is a parameter.When details are deteted in a region, higher weights are assigned to pixels whih aresimilar to the pixel being �ltered (i.e. pixels from the lower index lasses, whih havesmallest �(r'; t0; r; t) values) to preserve these details. In homogeneous regions however,the di�erene in weight ompared to pixels from the higher index lasses will be smallerand strong �ltering is performed. This is done by determining the weights by a heuristiomposition of exponential funtions that is inversely proportional to the amout of detailand motion and the lass index. In [6℄ the weights for the pixels in the window are de�nedas: W (r'; t0; r; t) = 8><>:exp��i(r';t0;r;t)�(d(r;t))�n ��(m(r; t); t0); i = 0; 1; 20; i = 3 (8)where the funtion �(d) = K1exp(�K2d) +K3exp(�K4d); (9)is used to determine the slope of the exponential funtion in (8) and K1, K2, K3 and K4 areparameters. The funtion �(m(r; t); t0) in (8) is hosen to limit the ontribution (dereasingthe weight) of the pixels from the previous window in ase of motion:�(m(r; t); t0) = 8><>:1; t0 = texp(�m(r; t)); t0 = t� 1 (10)In this equation, the parameter  is used to ontrol the sensitivity of the motion detetor.In [7℄ the funtion �(d) is omitted and the weights are then de�ned as:W (r'; t0; r; t) = 8><>:exp��i(r';t0;r;t)d(r;t)Kd�n ��(m(r; t); t0); i = 0; 1; 20; i = 3 (11)8



where Kd is a parameter.2. Proposed Filter
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FIG. 2: The general �ltering sheme of the proposed �lter.In our fuzzy motion and detail adaptive video �lter, we use the above introdued �lteringframework and the values �(r'; t0; r; t), m(r; t) and d(r; t) (Fig. 2). In ontrast to the MCA�lter we no longer use disrete index lasses to express the similarity of a pixel to the entralwindow pixel. Also our determination of the weights in (2) di�ers from the strategy used in[6, 7℄. The arti�ial onstrution of exponential funtions in the MCA method is replaedby a more natural fuzzy logi framework with linguisti variables.The four index lasses are replaed by one fuzzy set [31℄ \large di�erene" for the values�(r'; t0; r; t). A fuzzy set C in a universe Y is haraterized by a Y ! [0; 1℄ mapping �C,whih assoiates with every element y in Y a degree of membership �C(y) of y in the fuzzyset C. For example, if a di�erene �(r'; t0; r; t) has a membership degree one in the fuzzyset \large di�erene", then this means that this di�erene is large for sure. A membershipdegree equal to zero would express the ertainty that the di�erene is not large. Membershipdegrees between zero and one mean that we an neither say that the di�erene is de�nitelylarge, nor that the di�erene would not be large. The membership degree is however anindiation of whether the di�erene is large rather than small. So, a pixel In(r'; t0) thatwould belong to a low index lass in the MCA �lter now orresponds to a small membershipdegree of the value �(r'; t0; r; t) in the fuzzy set \large di�erene". We will use a linguistivariable \large" not only for the di�erene �(r'; t0; r; t), but also for the motion valuem(r; t),9



for the detail value d(r; t) and introdue the fuzzy sets \large motion", \large detail" and\large weight". We will furhter also use a linguisti variable \reliable" to indiate whether agiven neighbourhood pixel is reliable to be used in the �ltering of the entral window pixel,and represent it by the fuzzy set \reliable neighbourhood pixel".In the following the notations ��, �d and �m are used to denote the membership funtionsharaterizing respetively the fuzzy sets (i) large di�erene, (ii) large detail and (iii) largemotion. For the sake of simpliity and omputational reasons triangular funtions are used,as shown in Fig. 3. As an be seen in Fig. 3, the membership funtions are ompletely(a)
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ural fuzzy logi framework with linguisti variables. The weight W (r'; t0; r; t) for the pixelat position (r',t') is now de�ned as the degree to whih it is reliable to be used in the�ltering of the entral window pixel, i.e., its membership degree in the fuzzy set \reliableneighbourhood pixel", whih is the ativation degree of the Fuzzy Rule 1 or 2 dependingon whether t0 = t or t0 = t � 1. The general form of a fuzzy rule is \IF A THEN B",where the premise A (also alled the anteedent) and the onsequent B are (olletions of)propositions ontaining linguisti variables.
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FIG. 4: The membership funtion �w for the fuzzy set \large weight".Fuzzy Rule 1 Assigning the membership degree in the fuzzy set \reliable neighbourhoodpixel" of the pixel at spatial position r' in the urrent frame (t0 = t) of the window withentral pixel position (r,t):IF(the detail value d(r; t) is large AND the di�erene �(r'; t0; r; t) isnot large) OR ( the detail value d(r; t) is not large)THEN the pixel at position (r',t') is a reliable neighbourhood pixel for the �ltering of theentral window pixel.Fuzzy Rule 2 Assigning the membership degree in the fuzzy set \reliable neighbourhoodpixel" of the pixel at spatial position r' in the previous frame (t0 = t� 1) of the window withentral pixel position (r,t):IF�(the detail value d(r; t) is large AND the di�erene �(r'; t0; r; t) isnot large) OR (the detail value d(r; t) is not large)�AND the motion value m(r; t) is not largeTHEN the pixel at position (r',t') is a reliable neighbourhood pixel for the �ltering of theentral window pixel. 11



The AND and OR operators used in Fuzzy Rules 1 and 2 orrespond to respetivelyintersetions and unions of two fuzzy sets. The intersetion of two fuzzy sets A and Bin a universe Y is spei�ed by a mapping T that maps the membership degrees of anelement in the fuzzy sets A and B onto a membership degree in the fuzzy set A \ B:�(A\B)(y) = T (�A(y); �B(y)), 8y 2 Y . Analogously, the membership degree of an element inthe union of A and B is obtained from the membership degrees in A and B through the helpof a mapping S: �(A[B)(y) = S(�A(y); �B(y)),8y 2 Y . In fuzzy logi for the mapping T atriangular norm [33℄ is used, while for the mapping S a triangular onorm [33℄ is used. Somewell-known triangular norms together with their dual onorms an be found in Table I.From all possible triangular onorms the strong onorm is the largest and the maximumonorm is the smallest. We have hosen for a triangular norm and its dual onorm whihis situated in between those two extremes, i.e., the algebrai produt and the probabilistisum, respetively. As demonstrated in Subsetion VIC, we see a omparable performanewhen using other norms and onorms.TABLE I: Some well-known triangular norms and triangular onorms.Triangular normsminimum min(x; y)algebrai produt x � yweak 8>><>>:min(x; y) if max(x; y) = 10 otherwise Lukasiewiz max(0; x + y � 1)Triangular onormsmaximum max(x; y)probabilisti sum x + y � x � ystrong 8>><>>:max(x; y) if min(x; y) = 01 otherwise Lukasiewiz min(1; x + y)The fuzzy rules further also ontain NOT operators, orresponding to the omplement12



of a fuzzy set A. In fuzzy logi, the omplement of a fuzzy set is spei�ed by an involutivenegator [33℄. For the results in this paper, we have used the well-known standard negatorN(x) = 1 � x, 8x 2 [0; 1℄. The membership degree of an element in the omplement of afuzzy set A in Y is then given by: �(o(A))(y) = N(�A(y)) = 1� �A(y), 8y 2 Y .Take for example Fuzzy Rule 1. This rule has an ativation degree (orresponding tothe membership degree in the fuzzy set \reliable neighbourhood pixel" and thus the weightW (r'; t0; r; t) in (2) for the pixel in the sliding window at position (r'; t0)) equal to:�1 � (1� �2) + (1� �1)� �1 � (1� �2) � (1� �1); (12)with �1 = �d(d(r; t)) and �2 = ��(�(r'; t0; r; t)).Notie that it is impossible that all weights in (2) are equal to zero. In the aboveexpression either �1 or 1 � �1 is always greater than zero (�1 2 [0; 1℄), and for the entralpixel position r, we always have that �2 = 0 (see expression (3) and Fig. 3 (b)).The proposed fuzzy rules are very natural to work with sine they diretly express theunderlying ideas put in a formal framework: (i) When large spatial ativity is deteted, oneshould �lter less to preserve the details. This means that the neighbouring pixels that areassigned a onsiderable weight in (2), should be similar to the entral pixel in the �lteringwindow (d(r; t) is large AND �(r'; t0; r; t) is not large). In the opposite ase (OR), i.e.,in homogeneous areas (d(r; t) is not large) no extra onditions should be imposed on theneighbouring pixels. All pixels should get a onsiderable weight to perform strong smoothing.(ii) When motion is deteted between the urrent and the previous window, only pixels fromthe urrent frame should be taken into aount in the averaging. This means that pixels fromthe previous frame only should get a onsiderable weight when the motion detetor yields alow value (m(r; t) is not large) (orresponding to the seond (AND) in Fuzzy Rule 2).Apart from being a formal representation of the ideas, the fuzzy rules also produe thedesired result. In the ase of spatio-temporal strutures, the detail and motion value will belarge and only for neighbouring pixels with a small di�erene in greysale value (relative tothe entral pixel in the �ltering window), the Fuzzy Rules 1 and 2 will have a onsiderableativation degree. In this way �ne spatio-temporal details are preserved at the expense ofsome noise redution.In a spatio-temporal uniform area, the detail and motion values will not be large. Soeven for neighbouring pixels with a large di�erene in greysale value (relative to the entral13



pixel), the Fuzzy Rules 1 and 2 will have a onsiderable ativation degree. Hene, beauseof the many onsiderable weights in (2), strong �ltering is performed.Finally, we also propose a reursive sheme of the fuzzy motion and detail adaptive video�lter. In this sheme, we always use the �ltered value If(r'; t � 1) for the neighbouringpixels in the already �ltered previous frame. For pixels in the urrent frame, the noisyvalues In(r'; t� 1) are used, exept for the determination of �(r'; t0; r; t), where the �lteredvalue is used when already available (i.e., for pixels that have been �ltered already in aprevious step). In this way, we get a better estimate of whether the pixel at position (r',t')belongs to the same objet as the pixel at position (r; t) or not.C. Some Complexity NotesIt is lear that the omplexity of the proposed �lter is linear in terms of the number ofpixels in a frame. Every pixel is �ltered by averaging a onstant number of neighbourhoodpixels, whih are all assigned a weight using a onstant number of operations. The alulationof the ativation degree of the used fuzzy rules has a low omplexity. The ativation degreeof Fuzzy Rule 1 is given in expression (12). For Fuzzy Rule 2, an extra multipliation with(1� �3) (�3 = �m(m(r; t))) is needed. To alulate the ativation degree of Fuzzy Rule 1,3 multipliations, 2 sums and 3 subtrations are performed. For the ativation degree ofFuzzy Rule 2 an extra subtration and produt are required. For the MCA �lter, thealulation of the weight in expression (8) requires 7 multipliations, one division, and thealulation of 3 exponential funtions and 4 opposites. The alternative in expression (11)an be omputed by 4 multipliations, one division and the alulation of 2 exponentialfuntions and 2 opposites. The use of fuzzy logi in the weight alulation is thus not moreomplex. The proposed individual treatment of the pixels, however, requires the weightalulation for eah individual pixel. In the MCA �lter, weights are only alulated for thedi�erent index lasses, whih results in a little lower omplexity.
14



III. WAVELET-BASED SPATIO-TEMPORAL FILTER WITH ADDITIONALPIXEL-BASED TIME-RECURSIVE AVERAGING FOR GRAYSCALE VIDEOIn this setion our method is extended to the wavelet domain. The proedure is thefollowing: eah proessed frame is �rst deomposed using the 2D wavelet transform [34℄.Next, an adapted version of the proposed method from Setion II is applied on eah ofthe resulting wavelet bands separately. Finally, the inverse wavelet transform is applied,followed by an additional time-reursive averaging in the pixel domain (see Fig. 5).
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FIG. 5: The �ltering sheme for the proposed wavelet domain method.A. Basi NotionsThe wavelet transform of an image results in a representation that is very useful forimage denoising. The transform ompats image details (suh as edges and texture) into asmall number of spatially lustered large oeÆients, while small oeÆients orrespond tohomogeneous regions in the original image.We use the notation ys;d(r; t) for the wavelet oeÆient at resolution sale s, orientationd and spatial position r of the frame with temporal position t. For the results in this paper,we have opted for a wavelet deomposition with three orientation subbands, leading to threedetail images at eah sale, haraterized by horizontal (d = LH), vertial (d = HL) anddiagonal (d = HH) diretions and a low-frequeny band (denoted by LL). Whenever therean be no onfusion, we omit the indies s and d.Due to the linearity of the wavelet transform, additive noise in the pixel domain remainsadditive after the transformation as well, resulting in:y(r; t) = �(r; t) + �(r; t);15



where y(r; t) and �(r; t) are respetively the noisy and the noise-free wavelet oeÆients and�(r; t) is the orresponding noise omponent.B. Fuzzy Motion and Detail Adaptive Averaging in the Wavelet DomainThe proposed method is now extended to the wavelet domain. Large di�erenes in greyvalue in the pixel domain indiate the ourene of an edge. To preserve the edges, pixelswith a large di�erene in grey value, relative to the pixel being �ltered in the urrent step,should not be taken into aount in the averaging. Only pixels from the same objet, i.e.,belonging to the same side of the edge, should be averaged and are expeted to have asimilar grey value. In the wavelet domain, edges result in large oeÆients. So to preservethe edges, only the large oeÆients, orresponding to these edges, should be averaged to�lter out the noise. Small oeÆients should get small weights in this ase, and vie versafor homogeneous areas. This also holds for wavelet oeÆients in the previous window.When there is no motion, the wavelet oeÆients orresponding to the same edge in theprevious frame are expeted to be of a similar size. Hene, similar values should result inlarge weights and large di�erenes in small weights.Beause the region of wavelet oeÆients that are inuened by a given pixel value ex-pands with inreasing sale, an averaging sheme beome less and less eÆient for highersales. Therefore we have used only two sales in the wavelet deomposition, whih is insuf-�ient to remove all the noise. To overome this problem, in [6, 7℄, also the low-frequenyband is �ltered to obtain a better noise removal. In this paper, we hoose instead for anadditional time-reursive �ltering in the pixel domain like in [15℄, but in a more adaptivefuzzy logi based way.1. Filtering of the Wavelet BandsThe �ltering of the wavelet bands is adapted in an analogous way as in [6, 7℄:� We adopt the orresponding de�nition for the detail value d(r; t) from [6, 7℄:d(r; t) = �Xr' y2s;d(r'; t)� 12 : (13)16



� For all detail bands the same motion indiator value is used, whih is omputed on thelow-frequeny band. This motion value is de�ned as the absolute di�erene betweenthe entral oeÆient value in the urrent window and in the previous window of thelow-frequeny band.� The parameters that de�ne the membership funtions ��, �d and �m in Fig. 3 needto be adapted to the spei� detail band.Sine m(r; t), d(r; t) and �(r'; t0; r; t) are all three de�ned, Fuzzy Rules 1 and 2 an still beused to determine the weights in (2). The only di�erene is that we are now working withwavelet oeÆients instead of pixel values.2. Additional Time-Reursive Filter in the Pixel DomainLet IfW and If respetively denote the frame after the �ltering of the wavelet bands andthe inverse wavelet transform and the frame after the additional time-reursive �ltering (seeFig. 5).First, the absolute di�erene between the pixels in the urrent frame after the �ltering ofthe wavelet bands and the pixel at the orresponding position in the previous frame, whihhas already been proessed by the additional time-reursive �lter, is omputed:TD(r; t) = jIfW (r; t)� If(r; t� 1)j: (14)For eah di�erene, its membership degree �TD(TD(r; t)) in the fuzzy set \large temporaldi�erene" is then alulated. The membership funtion �TD of this fuzzy set is depited inFig. 6.
LARGE TEMPORAL
DIFFERENCE

0

1

Membership degree

TD

(TD)

FIG. 6: The membership funtion �TD for the fuzzy set \large temporal di�erene".The �nal output of the additional time-reursive �lter is given byIf(r; t) = 1� �TD(TD(r; t))2 If(r; t� 1) + 1 + �TD(TD(r; t))2 IfW (r; t); (15)17



where the ontribution of If (r; t� 1) is limited to a maximum of 12 to prevent noise propa-gation in time.IV. PIXEL-BASED SPATIO-TEMPORAL FILTER FOR COLOUR VIDEOIn this Setion we propose a new sheme to handle olour image sequenes. As in mostimage proessing appliations, we assume that the olour frames are represented in theRGB olour spae. The di�erent olours in this RGB spae are obtained by adding thethree olours red, green and blue together in di�erent proportions. As a onsequene, aninput frame of a olour video an be represented by a 2D matrix of 3D vetors, ontainingthe amount of red (I(x; y; t; 1)), green (I(x; y; t; 2)) and blue (I(x; y; t; 3)) for a given pixelI(x; y; t) in the 2D matrix.A �rst straightforward way to proess olour video with the proposed method is to proesseah of the olour bands (R, G and B) separately. In this way however, the orrelationbetween the olour hannels is negleted and unwanted olour artefats are often introdued.The sheme that is usually applied, onsists of denoising the luminane omponent ofthe Y UV -transform. In this olour sequene denoising sheme, the olour frames are �rstonverted from the RGB olour spae into the Y UV olour spae, by a linear transformation.The Y-omponent in this spae ontains the information about the luminane of the image,while the information about the olour (hue and saturation) is enoded in the U - andV -omponent. The Y -omponent is alled the luminane omponent and the U - and V -omponent together are alled the hrominane omponents. Sine the human eye is far lesssensitive to spatial details in hrominane than in luminane [35℄, it is aeptable to only�lter the luminane omponent. In this way, only one band is �ltered instead of three. Toahieve better results, a simple additional �ltering of the hrominane bands (e.g. spatialaveraging) an be applied. Afterwards, the inverse Y UV -RGB transform is applied.In this setion we introdue a new alternative where the L�a�b�- olour spae is used.We �rst present a vetor based extension of the proposed greysale method (Setion II)in Subsetion IVA (�rst sub�lter) and then ombine it with a 3D extension of the olorrestoration seond sub�lter from [29℄ in Subsetion IVB (seond sub�lter) (see Fig 7).We assume that all three olour bands in the RGB olour spae are ontaminated withwhite Gaussian noise with zero mean and the same standard deviation.18
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TFIG. 7: The �ltering sheme of the proposed olour �lter.A. First Sub�lterSine the algorithm proposed in Setion II makes use of the absolute di�erene betweengrey values, for olour video it makes sense to work in a olour spae in whih the measureddistane between olours roughly orresponds to the di�erene in olour as it is observedby the human eye. This is the ase in the linear L�a�b� olour model. In the proposedolour extension, eah proessed frame is �rst transformed into the L�a�b� olour spae.Subsequently, the transformed frame is �ltered with the adapted algorithm as explainedbelow. Finally, the �ltered frame is retransformed to the RGB olour spae. For thetransformation between the RGB and L�a�b� olour spaes, the XY Z olour spae is usedas an intermediate step. For more information on olour spaes and their use in imageproessing, we refer to [36℄.In the following the L�a�b�-transform of the RGB-vetor at pixel position In(r; t) isdenoted by In;L�a�b�(r; t), while the L�-, a�- and b�-omponent of this vetor are denoted byIn;L�(r; t), In;a�(r; t) and In;b�(r; t) respetively.1. Adaptation of m(r; t), d(r; t) and �(r'; t0; r; t)The motion value m(r; t) for this vetor based method is determined as the Eulidiandistane between the L�a�b�-transforms of the vetors at the entral pixel position of theurrent and the previous window:m(r; t) = kIn;L�a�b�(r; t)� If1;L�a�b�(r; t� 1)k2= ��In;L�(r; t)� If1;L�(r; t� 1)�2+�In;a�(r; t)� If1;a�(r; t� 1)�2+�In;b�(r; t)� If1;b�(r; t� 1)�2� 12 ; (16)
19



where If1 denotes the output of this �rst sub�lter.For the adaptation of the detail value d(r; t), we �rst alulate the arithmeti mean inthe urrent window of eah of the omponents in the L�a�b�-olour spae:L(r; t) = 19Xr' In;L�(r'; t); (17)a(r; t) = 19Xr' In;a�(r'; t); (18)b(r; t) = 19Xr' In;b�(r'; t): (19)The detail value itself is then de�ned as:d(r; t) = �19Xr' In;L�a�b�(r'; t)� (L(r; t); a(r; t); b(r; t))22 � 12 : (20)Finally, the adapted �(r'; t0; r; t)-value is given by�(r'; t0; r; t) = kIn;L�a�b�(r'; t0)� In;L�a�b�(r; t)k2= ��In;L�(r'; t0)� In;L�(r; t)�2+�In;a�(r'; t0)� In;a�(r; t)�2+�In;b�(r'; t0)� In;b�(r; t)�2� 12 ; (21)for pixels in the urrent frame (t0 = t), and by�(r'; t0; r; t) = kIf1;L�a�b�(r'; t0)� In;L�a�b�(r; t)k2 (22)for pixels in the previous frame (t0 = t� 1).2. Determination of the WeightsWith the use of the above introdued adaptations of m(r; t), d(r; t) and �(r'; t0; r; t), theweights W (r'; t0; r; t) in the weighted sum (2) an still be determined by the Fuzzy Rules 1and 2. We only need to adapt the parameters thr1, T1, T2, t1 and t2 of the membershipfuntions �d, �m and �� to this new olour spae.B. Seond Sub�lterWhen we onsider the olour pixels as vetors, they are a�eted by the noise in threedi�erent dimensions, instead of in one when only onsidering one olour band. As a onse-quene, less similar neighbours an be found to average out the noise in the 3D ase than in20



the 1D ase, and sometimes even not enough. To overome this problem, the �rst sub�lteris ombined with a 3D extension of the olour restorating seond sub�lter from [29℄. Theentral pixel in the window is estimated by ombining loal di�erenes in a spatio-temporalneighbourhood, omputed for the red, green and blue omponent eah separately.1. Loal Di�erenes and Corretion TermsSimilar to the �rst sub�lter, a 3� 3� 2 sliding window (Fig. 1) is used. In eah step theentral pixel in this window, at position (r; t) in the image sequene, is �ltered. For eahpixel in the sliding window, loal di�erenes (gradients) in the three olour bands (eahseparately) are alulated. The di�erenes in the red, green and blue neighbourhoods arerespetively denoted by LD1, LD2 and LD3. For pixels in the window belonging to theurrent frame, the output of the �rst sub�lter, denoted by If1 , is used:LDi(r'; t) = If1(r'; t; i) � If1(r; t; i); (23)with i = 1; 2; 3. For pixels in the window belonging to the previous frame, the alreadypresent output of the seond sub�lter, denoted by If , is used:LDi(r'; t� 1) = If (r'; t� 1; i) � If1(r; t; i); (24)again with i = 1; 2; 3.Next, for eah position in the window one orretion term is determined using the alu-lated loal di�erenes. This orretion term is de�ned as the arithmeti average of the loaldi�erene in the red, green and blue omponent at the given position:�(r'; t0) = 13�LDR(r'; t0) + LDG(r'; t0) + LDB(r'; t0)�: (25)2. Output of the seond sub�lterFinally the output of the seond sub�lter for the entral pixel in the urrent window isdetermined as follows:If (r; t; i) = Pr' �If1(r'; t; i)� �(r'; t)�18 + (26)Pr' �If (r'; t� 1; i)� �(r'; t� 1)�18 ;21



where �(r'; t0) is the orretion term for the neighbouring pixel at position (r'; t0) and i =1; 2; 3 (for respetively the red, green and blue olour band).V. PARAMETER SELECTIONAs mentioned earlier, the membership funtions in Fig. 3 and 6 are ompletely determinedby their respetive parameters. These parameter values have been experimentally optimizedusing the \Salesman", \Trevor", \Tennis" and \Flower Garden" sequenes, whih all havetheir own harateristis. The \Salesman" sequene represents a standard sequene withmoderate detail (shelfs, books,: : :) and moderate motion (person). The \Trevor" sequeneontains very fast motion (moving arms). In the \Tennis" sequene we deal with a zoomingamera and a detailed bakground (wall). The \Flower garden" sequene �nally, ombinesvery detailed regions (ower �eld) with homogeneous regions (sky).The parameters have been optimized in the following way. The proposed method was ap-plied on eah of the above sequenes, for the di�erent noise levels �n = 5; 10; 15; 20; 25 withparameters varying over the range of possible values. After plotting the optimal parametervalues (in terms of PSNR) for the di�erent sequenes and noise levels, a linear relationshipwas found between these optimal parameter values and the noise level. Therefore the para-meters have been determined by the best �t through the observations. As an illustration,the optimal values for the parameter T2 of the proposed pixel domain method together withthe best �tting line through these points are depited in Fig. 8. The parameters are thuslinearly dependent of the noise level. For the results in this paper, we assume a knownstandard deviation of the noise. In most pratial ases however, the standard deviation�n is not known and should be estimated. A ommon used noise estimation method is thewavelet domain median absolute deviation (MAD) estimator of Donoho and Johnstone [32℄.The optimized parameter values that determine the membership funtions used in thepixel domain method are given in Table II.Table III presents the optimized thr1, T1 and T2 values for the di�erent waveletbands inthe wavelet domain method. For the membership funtion �m, the parameters are deter-mined as t1 = 3:22�n + 1:5667 and t2 = 36:7667�n + 16:5. The optimized parameters forthe additional time-reursive �ltering are given by repetively par1 = 0:555�n � 0:725 andpar2 = 1:36�n + 5:1. 22
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FIG. 8: Optimal value for the parameter T2 of the proposed pixel domain method.TABLE II: Optimized parameter values for the pixel domain method.parameter optimal valuethr1 1:36�n + 1:2T1 0:79�n + 0:25T2 5:24�n � 15:35t1 0:465�n � 0:625t2 1:795�n + 3:275For the vetor based olour extension of the method, �nally, the parameters an be foundin Table IV.VI. EXPERIMENTAL RESULTSIn this setion we will show some experimental results. For the experiments, our waveletdomain algorithm has been implemented with a non-deimated wavelet transform (whih isknown to give better denoising results than the deimated one) using the Haar-wavelet. Asmentioned before (Subsetion III B) we have used only two levels in the wavelet deomposi-tion. 23



TABLE III: Optimized thr1, T1 and T2 values for the di�erent detail bands.Band thr1 T1 T2LH1 5:5733�n � 14:2667 0:8867�n � 1:9667 2:94�n + 2:9HL1 5:5733�n � 14:2667 0:8867�n � 1:9667 2:94�n + 2:9HH1 46:6267�n � 243:0667 0:8867�n � 1:9667 2:94�n + 2:9LH2 2:7533�n � 1:3 2:7067�n � 8:2667 2:8867�n + 0:8333HL2 2:7533�n � 1:3 2:7067�n � 8:2667 2:8867�n + 0:8333HH2 8:8267�n � 26:9333 2:7067�n � 8:2667 2:8867�n + 0:8333TABLE IV: Optimized parameter values for the membership funtions of the vetor based olourextension. parameter valuethr1 1:5�n � 2:5T1 0:1667�n + 0:8333T2 0:6667�n + 11:6667t1 0t2 1:7�n + 2:5In our experiments, we have proessed 6 di�erent greysale sequenes (\Salesman", \Ten-nis", \Deadline", \Trevor", \Flower garden" and \Miss Ameria") and 3 di�erent olour se-quenes (\Salesman", \Chair" and \Tennis") with added Gaussian noise (�n = 5; 10; 15; 20).As a measure of objetive dissimilarity between a �ltered frame and the original one, thePSNR is used. This PSNR value is de�ned as:MSE(I0; If) = CX=1 mXi=1 nXj=1(Io(i; j; )� If (i; j; ))2n �m � C ;PSNR(I0; If ) = 10 � log10 S2MSE(I0; If) ;where Io and If respetively denote the original and the �ltered frame, eah ontaining mrows and n olumns of pixels and C hannels (C = 1 for greysale images and C = 3 for24



olour images in the RGB olour spae). S denotes the maximum possible greysale valueof a pixel (here S = 255).For the olour sequenes, we have also used a seond measure, namely the normalizedolour di�erene (NCD). The NCD is de�ned as:NCD(Io; If) = Pmi=1Pnj=1 k�ELABkPmi=1Pnj=1 kE�LABk ;where Io and If again stand for the original and the �ltered frame respetively, eah on-taining m rows and n olumns of pixels,k�ELABk = �(Io;L� � If;L�)2 + (Io;a� � If;a�)2 + (Io;b� � If;b�)2� 12and kE�LABk = �(Io;L�)2 + (Io;a�)2 + (Io;b�)2� 12 ;where Io;L�,If;L�,Io;a� ,If;a� ,Io;b� and If;b� respetively denote the L�-omponent, the a�-omponent and the b�-omponent of the L�a�b�-transform of the original and the �lteredframe.In Subsetion VIA we ompare our method with other state-of-the-art methods both inthe pixel domain and the wavelet domain. Additionally, in Subsetion VIB, we also test theuse of our method for olour sequenes. Subsetion VIC, �nally, tests the use of di�erentfuzzy aggregators.A. Comparison to Other State-Of-The-Art MethodsIn this subsetion, we ompare our method to other state-of-the-art methods. We �rstompare our pixel domain method to other pixel domain methods and then do the ompar-ison for the wavelet domain method.1. Pixel DomainThe non-reursive (FMDAF) and reursive (RFMDAF) sheme of our fuzzy motion anddetail adaptive �lter in the pixel domain have been ompared to the following well-known�lters that also operate in the pixel domain (all with parameter values as suggested in therespetive papers): 25



� the rational �lter (Rational) [8℄,� the 3D-KNN �lter (KNN) [3℄ as an extension of the 2D-KNN �lter [1, 2℄,� the threshold averaging �lter (THR) [3, 4℄,� the motion and detail adaptive KNN �lter (MDA-KNN) [3, 5℄,� the reursive sheme of the multiple lass averaging �lter (RMCA) [7℄ (whih performsbetter than the non-reursive one as shown in [7℄).Fig. 9 and Fig. 10 give the PSNR results for six test sequenes proessed with the abovementioned methods and for the noise levels �n = 10 and �n = 15 respetively. It anbe seen that in terms of PSNR the FMDAF and RFMDAF �lters outperform the otherpixel domain methods. The MDA-KNN �lter gives omparable results on the \Salesman"and \Deadline" sequenes. Further, we also note that omparable results are found on the\Flower garden" sequene for the RMCA and the THR �lters. For a visual omparison,the original \Trevor" sequene, the sequene with added Gaussian noise (�n = 10), and thenoisy sequene proessed by the di�erent �lters an be found on http://www.fuzzy.ugent.be/tmelange/results/greysale/pixel. From the tests we also found that our methodadapts better to motion than the RMCA method. In Fig.11 a part of the 18th frame of the\Trevor" sequene with added Gaussian noise (�n = 10) proessed by the FMDAF methodand the RMCA method is given. One learly sees that our method has given a lower weightto those pixels from the previous frame situated in the fast moving arm.Finally, we observed that the reursive sheme (RFMDAF) of the proposed �lter removesslightly more noise than the non-reursive sheme (FMDAF), but this at the expense of littleloss of spatial texture. Fig. 12 shows the 18th frame of the \Tennis" sequene with addedGaussian noise (�n = 20), proessed by the FMDAF and by the RFMDAF. The textureon the wall is best preserved by the FMDAF method. But on the other hand, by lookingarefully at the table, one sees that more noise is removed by the RFMDAF than by theFMDAF.
26



(a) \Salesman" (b) \Trevor"
0 10 20 30 40 50

30

30.5

31

31.5

32

32.5

33

frame index

P
S

N
R

(d
B

)

0 5 10 15 20
32

32.5

33

33.5

34

34.5

35

35.5

36

frame index

P
S

N
R

(d
B

)

() \Deadline" (d) \Tennis"
0 5 10 15 20 25 30 35 40 45

26

27

28

29

30

31

32

33

frame index

P
S

N
R

(d
B

)

0 50 100 150
24

25

26

27

28

29

30

31

32

frame index
P

S
N

R
(d

B
)

(e) \Miss Ameria" (f) \Flower garden"
0 50 100 150

33

33.5

34

34.5

35

35.5

36

36.5

37

frame index

P
S

N
R

(d
B

)

0 50 100 150

22

23

24

25

26

27

28

29

30

frame index

P
S

N
R

(d
B

)

FIG. 9: Performane omparison for the pixel domain methods applied to di�erent sequenes withadded Gaussian noise, �n = 10.2. Wavelet DomainThe reursive (WRFMDAF) sheme of our wavelet domain method (whih outperformsthe non-reursive one) has been ompared to the following methods (all with parameter27
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FIG. 10: Performane omparison for the pixel domain methods applied to di�erent sequenes withadded Gaussian noise, �n = 15.values as suggested in the respetive papers):� the reursive sheme of the wavelet domain multiple lass averaging �lter (WRMCA)[7℄ (non-deimated transform with the quadrati spline wavelet),28
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FIG. 12: 18th frame of the \Tennis" sequene (a) original; (b) with added Gaussian noise (�n = 20);() proessed by the FMDAF method and (d) proessed by the RFMDAF method.� the sequential wavelet domain and temporal �lter (SEQWT) [15℄ (non-deimatedtransform with the symmlet-8 wavelet),30



� the adaptive spatio-temporal �lter (ASTF) [16℄ (64-tap Johnston �lter [37℄),� the video �lter based on inter-frame statistial modelling of the wavelet oeÆients(FISMW) [17℄ (deimated transform with the orthogonal symmlet-8 wavelet),� the sparse 3D transform-domain ollaborative �lter for video (VBM3D) [26℄ (the de-imated biorthogonal wavelet bior1.5 for the 2D-transform of the bloks and the de-imated Haar-wavelet for the third dimension in the �rst step and the dt-transform(2D) and the deimated Haar-wavelet (third dimension) in the seond step).Fig. 13 and 14 gives the PSNR results for the proessed \Salesman", \Trevor", \Dead-line", \Tennis", \Miss Ameria" and \Flower Garden" sequenes. It an be seen thatour method works best for a still amera �lming possibly moving objets (\Salesman",\Trevor", \Deadline", \Miss Ameria"). On suh sequenes our proposed wavelet basedreursive WRFMDAF method learly outperforms the ASTF method. We also see a betterperformane for the WRFMDAF than for the RMCA �lter and similar results to those ofthe SEQWT �lter. Taking into aount that the degradations that result from using a dei-mated transform instead of a non-deimated one an reah up to 1 dB [15, 38℄, we might alsoonlude a similar performane for the FISMW �lter. Still, more sophistiated �lters likethe VBM3D �lter, onsisting of two steps in whih bloks are grouped by spatio-temporalpreditive blok-mathing and eah 3D group is �ltered by a 3D transform domain shrink-age, and the omplex 3D wavelet transform method 3DWF show better results in terms ofPSNR than our proposed �lter. For the \Flower garden" sequene, the reeived results areworse, beause the performane of the additional time-reursive �ltering in pixels where nomotion is deteted, will be redued for a moving amera.For a visual omparison, the original \Deadline" sequene, the sequene with addedGaussian noise (�n = 10), and the noisy sequene proessed by the di�erent �lters anbe found on http://www.fuzzy.ugent.be/tmelange/results/greysale/wavelet. Wesee that a little less noise is removed by the RWFMDAF and WRMCA �lters than bythe SEQWT and FISMW �lters, but on the other hand details are well preserved and lessartefats around the edges are introdued by the RWFMDAF �lter.It an be onluded that, for sequenes obtained by a still amera, our method has abetter performane in terms of PSNR than the other multiresolution �lters of a similaromplexity, but it is outperformed by some more sophistiated methods.31
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B. Proessing of Colour SequenesIn this subsetion, we test the use of our proposed method for olour sequenes withequal noise levels on eah olour band. We have ompared our new vetor based extension(FMDAF-L�a�b�) from Setion IV to the �ltering sheme where the Y -omponent is �lteredby the WRFMDAF method and where an additional spatial averaging is applied on thehrominane omponents U and V with an 3� 3 �ltering window (WRFMDAF-YUV). Theresults of this omparison are given in Tables V and VI. From Table V we see that theWRFMDAF-YUV method yields the best results in terms of PSNR. However, in terms ofthe NCD, whih orresponds with human observation, it an be seen from Table VI thatthe best results are then obtained by the vetor based FMDAF-L�a�b� method.For a visual omparison, the original \Salesman" sequene, the sequene with addedGaussian noise (�n = 10) and the noisy sequene proessed by respetively theWRFMDAF-YUV and FMDAF-L�a�b� method an be found on http://www.fuzzy.ugent.be/tmelange/results/olour. We see that a little more noise is removed by the waveletdomain WRFMDAF-YUV method, but also that more olour artefats are introdued thanby the FMDAF-L�a�b� method. This an for example be seen by looking arefully to theside of the phone.We further also note that the FMDAF-L�a�b� method performs a little less good for thelowest noise level (�n = 5) in omparison to the performane for the other noise levels.The reason is that beause of the two sub�lters used in this method, there is a little toomuh averaging for this low noise level, resulting in a little more detail loss. For the othernoise levels however, we see a more favorable ompromise between noise removal and detailpreservation.C. The Use of Other Fuzzy AggregatorsIn this subsetion, we ompare the performane of the proposed method, implementedwith di�erent triangular norms and onorms. In Table VII the results in terms of PSNRare given for di�erent sequenes proessed with the RWFMDAF �lter implemented with thesuggested produt norm and probabilisti sum onorm and other popular triangular normsand onorms. It an be seen that the performane of all aggregators are very omparable.34



TABLE V: Comparison of the proposed olour extensions in terms of PSNR.Sequene noise PSNRavlevel Input FMDAF-L�a�b� WRFMDAF-YUV\Salesman" �n = 5 34.16 35.20 37.37�n = 10 28.22 33.00 33.64�n = 15 24.82 30.73 31.20�n = 20 22.46 29.00 29.35�n = 25 20.66 27.71 27.88\Chair" �n = 5 34.17 37.35 39.92�n = 10 28.19 35.30 35.67�n = 15 24.71 32.77 32.99�n = 20 22.26 30.58 30.89�n = 25 20.39 29.28 29.16\Tennis" �n = 5 34.24 30.40 33.40�n = 10 28.26 29.20 29.83�n = 15 24.78 27.83 27.92�n = 20 22.31 26.60 26.68�n = 25 20.41 25.32 25.59Only the weak norm and strong onorm seem to perform less good on some of the sequenes.Therefore, we have hosen for the simple intermediate algebrai produt and probabilistisum.VII. CONCLUSIONIn this paper we have presented a new fuzzy motion and detail adaptive video �lterintended for the redution of additive white Gaussian noise in digital image sequenes. Theproposed algorithm has �rst been de�ned on greysale images and in the pixel domain. Ina next step we have adapted the algorithm to the wavelet domain. Finally, we have alsoextended the method to handle olour image sequenes.35



TABLE VI: Comparison of the proposed olour extensions in terms of NCD.Sequene noise NCDavlevel Input FMDAF-L�a�b� WRFMDAF-YUV\Salesman" �n = 5 0.1041 0.0524 0.0531�n = 10 0.2077 0.0657 0.0829�n = 15 0.3050 0.0813 0.1121�n = 20 0.3929 0.0959 0.1397�n = 25 0.4724 0.1097 0.1652\Chair" �n = 5 0.0300 0.0152 0.0122�n = 10 0.0599 0.0183 0.0215�n = 15 0.0899 0.0221 0.0309�n = 20 0.1198 0.0263 0.0404�n = 25 0.1497 0.0301 0.0498\Tennis" �n = 5 0.0434 0.0446 0.0339�n = 10 0.0857 0.0490 0.0475�n = 15 0.1270 0.0545 0.0601�n = 20 0.1677 0.0605 0.0724�n = 25 0.2079 0.0672 0.0848Experimental results show that our pixel domain greysale method and the wavelet do-main extension outperform respetively other state-of-the-art pixel domain �lters and otherstate-of-the-art wavelet domain �lters of a omparable omplexity in terms of PSNR. For theproessing of olour images we onlude that the proposed FMDAF-L�a�b� olour extensionis a good alternative for the �ltering sheme in the Y UV olour spae.As future work we will inlude olour information into the fuzzy rules diretly insteadof working with olour vetors and we will try to �nd a framework for the denoising ofvideo sequenes orrupted with other types of noise suh as impulse noise and �-stable noise.Aknowledgement. This researh was �nanially supported by the FWO projet36



TABLE VII: Comparison of the di�erent aggregators.Sequene PSNRav(�n = 10) algebrai produt/ minimum/ weak/  Lukasiewizprobabilisti sum maximum strong\Salesman" 34.37 34.36 34.10 34.36\Trevor" 36.41 36.42 35.55 36.29\Deadline" 33.95 33.91 33.74 33.98\Tennis" 31.44 31.37 31.47 31.55\Miss Ameria" 37.48 37.48 36.76 37.42\Flower Garden" 28.27 28.13 28.50 28.44G:0667:06 of Ghent University. A. Pizuria is a postdotoral researh fellow of FWO,Flanders. The authors would like to thank Prof. Selesnik from the Polytehni University,New York, for providing them with the proessed video sequenes for the 3DWF algorithm,whih have been used for the omparison. They would also like to give a speial thanksto Dr. A.M. Tourapis for providing them with the proessed sequenes by the ASTFalgorithm. Finally, a speial thanks goes to S.M. Mahbubur Rahman from ConordiaUniversity, Montr�eal, for providing the ode of the FISMW �lter, whih has been used forthe omparison.
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