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Abstract

A new fuzzy-rule based algorithm for the denoising of video sequences corrupted with additive
Gaussian noise is presented. The proposed method counstitutes a fuzzy logic based improvement
of a recent detail and motion adaptive multiple class averaging filter (MCA). The method is first
explained in the pixel domain for greyscale sequences and is later extended to the wavelet domain
and to colour sequences. Experimental results show that the noise in digital image sequences is
efficiently removed by the proposed fuzzy motion and detail adaptive video filter (FMDAF) and
that the method outperforms other state-of-the-art filters of comparable complexity on different

video sequences.
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I. INTRODUCTION

Very often, image sequences are corrupted with noise due to bad acquisition, transmission
or recording. Some well-known noise types that may occur are e.g. impulse noise, Gaussian
noise, speckle noise etc. In this paper we will concentrate on an additive white Gaussian

noise model of zero mean and variance o?:
Ini=1lo;+e, 1=1,...,p (1)

where I, ; and I,; denote the i-th pixel from the noisy and the original frame respectively,
¢; ~ N(0,0?%) and p is the number of pixels per frame.

The goals of reducing the noise in the sequences are (i) visual improvement and (ii) im-
provement of further analysis or coding of the sequences.

The first filters for video denoising were single resolution filters. These were often some
well-known 2D filters extended to a spatio-temporal neighbourhood. Some examples are the
3D KNN-filter [1-3] and the 3D threshold averaging filter [3, 4], which try to preserve the
details by averaging only over the k nearest neighbours (KNN) and the neighbours lying
within a certain distance (usually 20 is chosen as threshold) from the given pixel value
respectively. More recent extensions of these filters, that are made more adaptive to a local
spatio-temporal neighbourhood are e.g. the motion and detail adaptive KNN-filter [5] and
the multiple class averaging filter [6, 7]. Another well-known single resolution method is the
3D rational filter [8], where the filtered output for a pixel is determined as a rational function
of the grey values in a spatio-temporal neighbourhood. Other recent single resolution filters
can e.g. be found in [9, 10]. Both filters take into account pixels from neighbouring frames
in the averaging, which not neccessarily are the pixels at the same spatial position, but the
estimated corresponding object pixels which possibly have been displaced due to motion
between frames.

Later, the wavelet transform, which has proven very effective in still image denoising
[11, 12], also found its way in the denoising of videos. In [13, 14] a 3D wavelet transform is
applied and the resulting coefficients are denoised by adaptive thresholding. However, most
wavelet domain filters use a less complex separable 2D transform applied on each frame
separately [6, 7, 15-22] and combine it with time-recursive filtering, either in the wavelet

domain or in the pixel domain.



The most fundamental difference between video and image denoising is that in video
applications also information from previous frames is available. When working with a delay
in time even information from future frames can be used. The main difficulty in exploiting
this additional info is possible motion. Some filters simply take into account pixels at
corresponding positions in the previous (and future) frames only when no motion between
the successive frames is detected. Such motion detection filters are for example [5-7, 15].
Other more complex filters always take into account information from the previous frames,
by filtering along an estimated motion trajectory and are called motion compensated filters
[9, 10, 16, 19, 21]. In [9, 10, 16] the motion is estimated in the pixel domain, while in [19, 21]
the motion vectors are computed in the wavelet domain. Most available motion estimation
algorithms are designed for video coding applications [23-25]. In such applications, the
accuracy of the motion vectors is less important than for denoising purposes. Recently, in
[20], an efficient video filtering scheme is proposed, which makes use of motion estimators
from video codecs, but with additional filtering of the motion vectors and with appropriately
defined reliabilities to estimated motion.

The filter in [10] only filters temporally. Usually however, the temporal filtering, which
uses information from neighbouring frames, is combined with a spatial filtering. When the
spatial and temporal filtering steps are performed separately, i.e., the one after the other,
we speak of a separable filter [15, 16, 18-21]. In [18] e.g., the authors combine their image
denoising method from [12] with a selective wavelet shrinkage method which estimates the
level of noise corruption as well as the amount of motion in the image sequence. Filters that
integrate spatial and temporal filtering in one step, such as [5-9, 13, 14, 22, 26|, are called
non-separable.

The method proposed in this paper is a fuzzy logic based improvement of the multiple
class averaging filter (MCA) from [6, 7] for the denoising of greyscale image sequences
corrupted with additive white Gaussian noise. Fuzzy set theory and fuzzy logic offer us
a powerful tool for representing and processing human knowledge. Binary decisions are
replaced by a gradual transition, which is more appropriate when dealing with complex
systems. Examples that illustrate the power of fuzzy set theory in the domain of image
processing are e.g. [27, 28]. The main differences between the proposed method and the
filter from [6, 7] are: (i) pixels are not divided into discrete classes and dealt with based on

their class index like in [6, 7], but they are treated individually, which leads to an increased



performance; (ii) the complicated heuristic construction of exponential functions to tune the
pixel weights in the method of [6, 7] to the class index and to the detected motion and detail
is replaced by a fuzzy rule containing linguistic variables, which represent human knowledge
and which are more natural to work with and to understand. The use of fuzzy logic also
provides a more theoretical base; (iii) in the wavelet-based extension of the method, we opt
for an additional time-recursive averaging instead of a filtering of the low-frequency band ;
and (iv) the fuzzy rule used in our method is easy to extend and to include new information
in future work.

In this paper we also extend the proposed method to the processing of colour image
sequences. We present a new vector based extension of the proposed greyscale method using
the L*a*b*-transform in combination with a 3D extension of the colour restorating second
subfilter from [29].

Experimental results show that our method outperforms other state-of-the-art filters of
a comparable complexity.

The paper is structured as follows: Our algorithm for the denoising of greyscale image
sequences is first explained in the pixel domain in Section II and extended to the wavelet
domain in Section III. In Section IV we discuss the processing of colour video. Section V
handles the choice of the parameter values. Finally, experimental results and conclusions

are presented in Section VI and Section VII respectively.

II. PIXEL-BASED SPATIO-TEMPORAL FILTER FOR GRAYSCALE VIDEO

In this section, we improve the multiple class averaging filter (MCA) from [6, 7] in the
pixel domain by incorporating fuzzy logic. The ideas behind the filter are the following:
(i) to avoid spatio-temporal blur, one should only take into account neighbouring pixels
from the current frame in case of detected motion; (ii) to preserve the details in the frame
content, the filtering should be less strong when large spatial activity (e.g. a large variance)
is detected in the current filtering window. As a consequence more noise will be left, but
large spatial activity corresponds to high spatial frequencies and for these the eye is less
sensitive [30]. In the case of homogeneous areas, strong filtering should be performed to
remove as much noise as possible.

The general filtering framework used in the proposed method is presented in Subsec-



tion ITA. Additionally the crucial weight determination step, which is the main novelty of
our greyscale method compared to the MCA filter, is explained in Subsection IIB. In the
proposed method we determine the weights in the filtering window by the use of fuzzy sets
and fuzzy logic instead of a heuristic construction with exponential functions as it is the

case in the MCA filter. Subsection II C finally, discusses some complexity notes.

A. The General Filtering Framework

In this Subsection, the filtering framework used in both the MCA and the proposed filter
is explained. In the following, a noisy input image pixel and the corresponding filtered pixel
value are denoted by respectively I,,(x,y,t) and I¢(x,y,t), where (z,y) indicates the spatial
location and ¢ stands for the temporal location.

The filtering window used in the framework is a 3 x 3 x 2 sliding window, consisting of
3 x 3 pixels in the current frame and 3 x 3 pixels in the previous frame. As introduced
in [6, 7] we will use the terms current window and previous window for the window pixels

contained in respectively the current and the previous frame (Fig. 1). This window is moved
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FIG. 1: The 3 x 3 x 2 filtering window consisting of the previous and the current window.

through each frame from top left to bottom right, each time filtering the central pixel by
averaging the noise. The position of this central pixel in the filtering window is denoted by
(r,t) where r = (z,y) stands for the spatial position and ¢ for the temporal position. An
arbitrary position in the 3 x 3 x 2 window (this may also be the central pixel position) is
denoted by (r’,t'), withr’ = (z + k,y+1) (-1 <k, <1)andt' =tort =t—1.

The output of the proposed filter for the central pixel in the window is finally determined



as a weighted average (with adaptive weights) of the pixel values in the 3 x 3 x 2 window:

I(r,t) = Do D Wt e, ) L (0, ) (2)
T, S LS Wt t)

B. Weight Determination

In this subsection, we focus on the fundamental step in the filtering framework, namely
the determination of the weights. To make the method motion and detail adaptive, we adopt
the difference value A(r’,¢',r,t), the detail value d(r,?) and the motion value m(r,t) from

6, 7]:

(i) The absolute greyscale difference between the two pixel positions (r,t) and (r’ ') is
denoted by:
A(r’, ¢ e, t) = |L,(r,t") — L,(x, t)]. (3)

(ii) The function d(r,t) indicating the local amount of detail is calculated as the standard

deviation in the current window:

Loo(r,1) = % S L0 (4)

d(r,t) = (§ 3" (L2, 1) = L, t))2> ’ (5)

l.’
(iii) The motion indicator m(r,t) finally, is defined as the absolute difference between the
average grey value in the current window and the average grey value in the previous

window:

(e t) = [Loo(r,t) — Lop(r,t —1)] (6)
_ %Zln(r’,t) _ %Zln(r’,t— ).



1. MCA Filter

In the MCA filter [6, 7], the pixels are classified into four discrete index classes, depending
on the A(r’, ¢, r,t) value:
0, A(r’,t' r,t) < ko,
, ko, < A(r’,t'r,t) < 2ko,

it t) =
2, 2ko, <At r,t) < 3ko,

\3, 3ko, < A(r’,t',r,t)
where o, represents the standard deviation of the Gaussian noise and £ is a parameter.
When details are detected in a region, higher weights are assigned to pixels which are
similar to the pixel being filtered (i.e. pixels from the lower index classes, which have
smallest A(r’,t',r,t) values) to preserve these details. In homogeneous regions however,
the difference in weight compared to pixels from the higher index classes will be smaller
and strong filtering is performed. This is done by determining the weights by a heuristic

composition of exponential functions that is inversely proportional to the amout of detail

and motion and the class index. In [6] the weights for the pixels in the window are defined

as:
—i(x’,t,r,t) ’ S
exp(ﬁ)ﬁmr,t,t , 1=20,1,2
W(r,tr,t) = e jen ) S0, 1) (8)
0, 1=3
where the function
n(d) = Kiexp(—Kyd) + Ksexp(—K4d), (9)

is used to determine the slope of the exponential function in (8) and K, Ky, K3 and K, are
parameters. The function S(m(r,t),t') in (8) is chosen to limit the contribution (decreasing

the weight) of the pixels from the previous window in case of motion:

1, =t
Blm(r,1), ) = (10)
exp(—ym(r,1)), ' =1t—1

In this equation, the parameter 7 is used to control the sensitivity of the motion detector.

In [7] the function 7(d) is omitted and the weights are then defined as:

exp(MW(m(r, t),t"), i=0,1,2

Kgon

W, t' r t) = (11)

0, i=3



where K is a parameter.

2.  Proposed Filter
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FIG. 2: The general filtering scheme of the proposed filter.

In our fuzzy motion and detail adaptive video filter, we use the above introduced filtering
framework and the values A(x’,¢',r,t), m(r,t) and d(r,t) (Fig. 2). In contrast to the MCA
filter we no longer use discrete index classes to express the similarity of a pixel to the central
window pixel. Also our determination of the weights in (2) differs from the strategy used in
[6, 7]. The artificial construction of exponential functions in the MCA method is replaced
by a more natural fuzzy logic framework with linguistic variables.

The four index classes are replaced by one fuzzy set [31] “large difference” for the values
A(r’,t',r,t). A fuzzy set C in a universe Y is characterized by a Y — [0, 1] mapping pc,
which associates with every element y in Y a degree of membership uc(y) of y in the fuzzy
set C'. For example, if a difference A(r’,t',r,t) has a membership degree one in the fuzzy
set “large difference”, then this means that this difference is large for sure. A membership
degree equal to zero would express the certainty that the difference is not large. Membership
degrees between zero and one mean that we can neither say that the difference is definitely
large, nor that the difference would not be large. The membership degree is however an
indication of whether the difference is large rather than small. So, a pixel [,(x’t') that
would belong to a low index class in the MCA filter now corresponds to a small membership
degree of the value A(r’,¢',r,t) in the fuzzy set “large difference”. We will use a linguistic

variable “large” not only for the difference A(r’, ¢, r, ), but also for the motion value m(r, t),



for the detail value d(r,t) and introduce the fuzzy sets “large motion”, “large detail” and
“large weight”. We will furhter also use a linguistic variable “reliable” to indicate whether a
given neighbourhood pixel is reliable to be used in the filtering of the central window pixel,
and represent it by the fuzzy set “reliable neighbourhood pixel”.

In the following the notations pa, ptqg and g, are used to denote the membership functions
characterizing respectively the fuzzy sets (i) large difference, (ii) large detail and (iii) large
motion. For the sake of simplicity and computational reasons triangular functions are used,

as shown in Fig. 3. As can be seen in Fig. 3, the membership functions are completely

(a)

Membership degree p ,(d(r.t))

: LARGE DETAIL

»

thr, d(r.t)

(b)

/LARGE DIFFERENCE

ol T, T, AP

(c)

Membership degree 1, (m(r.t))

‘LARGE MOTION

o t, t, m(r.t) -
FIG. 3: (a) The membership function ug for the fuzzy set “large detail”, (b) The membership
function pa for the fuzzy set “large difference” and (c¢) The membership function p,, for the fuzzy

set “large motion”.

determined by the parameters thry, 1, 15, t; and ts.
Using the introduced fuzzy sets for the crucial weight determining step, we replace the

heuristic combination of exponential functions in the original MCA method by a more nat-
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ural fuzzy logic framework with linguistic variables. The weight W (x’, ¢/, r, t) for the pixel
at position (r’;t’) is now defined as the degree to which it is reliable to be used in the
filtering of the central window pixel, i.e., its membership degree in the fuzzy set “reliable
neighbourhood pixel”, which is the activation degree of the Fuzzy Rule 1 or 2 depending
on whether ¢ = t or t' = t — 1. The general form of a fuzzy rule is “IFF A THEN B”,
where the premise A (also called the antecedent) and the consequent B are (collections of)
propositions containing linguistic variables.
Membership degree 1 w(r.t)

A
T -

* LARGE WEIGHT

»
»

0 1 W(r,t)

FIG. 4: The membership function p,, for the fuzzy set “large weight”.

Fuzzy Rule 1 Assigning the membership degree in the fuzzy set “reliable neighbourhood
pizel” of the pizel at spatial position v’ in the current frame (t' = t) of the window with
central pizel position (r,t):

IF (the detail value d(r,t) is large AND the difference A(r’t', v, t) is
not large) OR ( the detail value d(r,t) is not large)
THEN the pizel at position (r’,t’) is a reliable neighbourhood pizel for the filtering of the

central window pizel.

Fuzzy Rule 2 Assigning the membership degree in the fuzzy set “reliable neighbourhood
pizel” of the pizel at spatial position r’ in the previous frame (t' =t —1) of the window with
central pizel position (r,t):

IF ((the detail value d(r,t) is large AND the difference A(r’,t', v t) is
not large) OR (the detail value d(r,t) is not large))
AND the motion value m(r,t) is not large
THEN the pizel at position (7’,t’) is a reliable neighbourhood pizel for the filtering of the

central window pizel.
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The AND and OR operators used in Fuzzy Rules 1 and 2 correspond to respectively
intersections and unions of two fuzzy sets. The intersection of two fuzzy sets A and B
in a universe Y is specified by a mapping 7' that maps the membership degrees of an
element in the fuzzy sets A and B onto a membership degree in the fuzzy set A N B:
tansy(y) = T(pa(y), ps(y)), Yy € Y. Analogously, the membership degree of an element in
the union of A and B is obtained from the membership degrees in A and B through the help
of a mapping S: paus) (y) = S(pa(y), ns(y)),Yy € Y. In fuzzy logic for the mapping 1" a
triangular norm [33] is used, while for the mapping S a triangular conorm [33] is used. Some
well-known triangular norms together with their dual conorms can be found in Table I.
From all possible triangular conorms the strong conorm is the largest and the maximum
conorm is the smallest. We have chosen for a triangular norm and its dual conorm which
is situated in between those two extremes, i.e., the algebraic product and the probabilistic
sum, respectively. As demonstrated in Subsection VIC, we see a comparable performance

when using other norms and conorms.

TABLE I: Some well-known triangular norms and triangular conorms.

Triangular norms

minimum min(z,y)
algebraic product z-y

min(z,y) if max(z,y) =1

weak

0 otherwise
Lukasiewicz max(0,z +y — 1)

Triangular conorms

maximum max(z,y)
probabilistic sum T+y—xz-y

max(z,y) if min(z,y) =0
strong

1 otherwise
Lukasiewicz min(1,z + y)

The fuzzy rules further also contain NOT operators, corresponding to the complement

12



of a fuzzy set A. In fuzzy logic, the complement of a fuzzy set is specified by an involutive
negator [33]. For the results in this paper, we have used the well-known standard negator
N(z) =1 —x, Vo € [0,1]. The membership degree of an element in the complement of a
fuzzy set A in Y is then given by: fico(a))(y) = N(pa(y)) =1 — paly), Vy € Y.

Take for example Fuzzy Rule 1. This rule has an activation degree (corresponding to
the membership degree in the fuzzy set “reliable neighbourhood pixel” and thus the weight
W(x’ ¢ r,t) in (2) for the pixel in the sliding window at position (r’,t')) equal to:

ar-(Il—a)+(1—a) —ar- (1 —a) - (1 —ay), (12)

with ag = pg(d(r,t)) and ay = pa(A(r’, ¢, r, t)).

Notice that it is impossible that all weights in (2) are equal to zero. In the above
expression either oy or 1 — o is always greater than zero (aq € [0,1]), and for the central
pixel position r, we always have that as = 0 (see expression (3) and Fig. 3 (b)).

The proposed fuzzy rules are very natural to work with since they directly express the
underlying ideas put in a formal framework: (i) When large spatial activity is detected, one
should filter less to preserve the details. This means that the neighbouring pixels that are
assigned a considerable weight in (2), should be similar to the central pixel in the filtering
window (d(r,t) is large AND A(r’,¢,r,t) is not large). In the opposite case (OR), i.e.,
in homogeneous areas (d(r,t) is not large) no extra conditions should be imposed on the
neighbouring pixels. All pixels should get a considerable weight to perform strong smoothing.
(ii) When motion is detected between the current and the previous window, only pixels from
the current frame should be taken into account in the averaging. This means that pixels from
the previous frame only should get a considerable weight when the motion detector yields a
low value (m(r,t) is not large) (corresponding to the second (AND) in Fuzzy Rule 2).

Apart from being a formal representation of the ideas, the fuzzy rules also produce the
desired result. In the case of spatio-temporal structures, the detail and motion value will be
large and only for neighbouring pixels with a small difference in greyscale value (relative to
the central pixel in the filtering window), the Fuzzy Rules 1 and 2 will have a considerable
activation degree. In this way fine spatio-temporal details are preserved at the expense of
some noise reduction.

In a spatio-temporal uniform area, the detail and motion values will not be large. So

even for neighbouring pixels with a large difference in greyscale value (relative to the central

13



pixel), the Fuzzy Rules 1 and 2 will have a considerable activation degree. Hence, because
of the many considerable weights in (2), strong filtering is performed.

Finally, we also propose a recursive scheme of the fuzzy motion and detail adaptive video
filter. In this scheme, we always use the filtered value I;(r’,t — 1) for the neighbouring
pixels in the already filtered previous frame. For pixels in the current frame, the noisy
values I,,(r’,t — 1) are used, except for the determination of A(r’,#,r,¢), where the filtered
value is used when already available (i.e., for pixels that have been filtered already in a
previous step). In this way, we get a better estimate of whether the pixel at position (r’,t")

belongs to the same object as the pixel at position (r,t) or not.

C. Some Complexity Notes

It is clear that the complexity of the proposed filter is linear in terms of the number of
pixels in a frame. Every pixel is filtered by averaging a constant number of neighbourhood
pixels, which are all assigned a weight using a constant number of operations. The calculation
of the activation degree of the used fuzzy rules has a low complexity. The activation degree
of Fuzzy Rule 1 is given in expression (12). For Fuzzy Rule 2, an extra multiplication with
(1 —a3) (a3 = pm(m(r,t))) is needed. To calculate the activation degree of Fuzzy Rule 1,
3 multiplications, 2 sums and 3 subtractions are performed. For the activation degree of
Fuzzy Rule 2 an extra subtraction and product are required. For the MCA filter, the
calculation of the weight in expression (8) requires 7 multiplications, one division, and the
calculation of 3 exponential functions and 4 opposites. The alternative in expression (11)
can be computed by 4 multiplications, one division and the calculation of 2 exponential
functions and 2 opposites. The use of fuzzy logic in the weight calculation is thus not more
complex. The proposed individual treatment of the pixels, however, requires the weight
calculation for each individual pixel. In the MCA filter, weights are only calculated for the

different index classes, which results in a little lower complexity.
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III. WAVELET-BASED SPATIO-TEMPORAL FILTER WITH ADDITIONAL
PIXEL-BASED TIME-RECURSIVE AVERAGING FOR GRAYSCALE VIDEO

In this section our method is extended to the wavelet domain. The procedure is the
following: each processed frame is first decomposed using the 2D wavelet transform [34].
Next, an adapted version of the proposed method from Section II is applied on each of
the resulting wavelet bands separately. Finally, the inverse wavelet transform is applied,

followed by an additional time-recursive averaging in the pixel domain (see Fig. 5).

LH

=
HL filtering of
the -
Input L | wavelet wavelet M Inverse Ly f time- Iy kOutput
fsequence | transform HH bands wavelet | recursive [——|sequence
rame |l | transform filtering . [frame
A
- |
L » | T

: one frame delay

FIG. 5: The filtering scheme for the proposed wavelet domain method.

A. Basic Notions

The wavelet transform of an image results in a representation that is very useful for
image denoising. The transform compacts image details (such as edges and texture) into a
small number of spatially clustered large coefficients, while small coefficients correspond to
homogeneous regions in the original image.

We use the notation y; 4(r,t) for the wavelet coefficient at resolution scale s, orientation
d and spatial position r of the frame with temporal position ¢. For the results in this paper,
we have opted for a wavelet decomposition with three orientation subbands, leading to three
detail images at each scale, characterized by horizontal (d = LH), vertical (d = HL) and
diagonal (d = HH) directions and a low-frequency band (denoted by LL). Whenever there
can be no confusion, we omit the indices s and d.

Due to the linearity of the wavelet transform, additive noise in the pixel domain remains

additive after the transformation as well, resulting in:

y(r,t) = B(r, 1) + €(r, 1),

15



where y(r,t) and 3(r,t) are respectively the noisy and the noise-free wavelet coefficients and

¢(r,t) is the corresponding noise component.

B. Fuzzy Motion and Detail Adaptive Averaging in the Wavelet Domain

The proposed method is now extended to the wavelet domain. Large differences in grey
value in the pixel domain indicate the occurence of an edge. To preserve the edges, pixels
with a large difference in grey value, relative to the pixel being filtered in the current step,
should not be taken into account in the averaging. Only pixels from the same object, i.e.,
belonging to the same side of the edge, should be averaged and are expected to have a
similar grey value. In the wavelet domain, edges result in large coefficients. So to preserve
the edges, only the large coefficients, corresponding to these edges, should be averaged to
filter out the noise. Small coefficients should get small weights in this case, and vice versa
for homogeneous areas. This also holds for wavelet coefficients in the previous window.
When there is no motion, the wavelet coefficients corresponding to the same edge in the
previous frame are expected to be of a similar size. Hence, similar values should result in
large weights and large differences in small weights.

Because the region of wavelet coefficients that are influenced by a given pixel value ex-
pands with increasing scale, an averaging scheme become less and less efficient for higher
scales. Therefore we have used only two scales in the wavelet decomposition, which is insuf-
ficient to remove all the noise. To overcome this problem, in [6, 7], also the low-frequency
band is filtered to obtain a better noise removal. In this paper, we choose instead for an
additional time-recursive filtering in the pixel domain like in [15], but in a more adaptive

fuzzy logic based way.

1. Filtering of the Wavelet Bands

The filtering of the wavelet bands is adapted in an analogous way as in [6, 7]:

e We adopt the corresponding definition for the detail value d(r,t) from [6, 7]:

ite.0) = (S uitr0) (13
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e For all detail bands the same motion indicator value is used, which is computed on the
low-frequency band. This motion value is defined as the absolute difference between
the central coefficient value in the current window and in the previous window of the

low-frequency band.

e The parameters that define the membership functions pa, pg and p,, in Fig. 3 need

to be adapted to the specific detail band.

Since m(r,t), d(r,t) and A(r’,t',r,t) are all three defined, Fuzzy Rules 1 and 2 can still be
used to determine the weights in (2). The only difference is that we are now working with

wavelet coefficients instead of pixel values.

2. Additional Time-Recursive Filter in the Pixel Domain

Let Iy, and Iy respectively denote the frame after the filtering of the wavelet bands and
the inverse wavelet transform and the frame after the additional time-recursive filtering (see
Fig. 5).

First, the absolute difference between the pixels in the current frame after the filtering of
the wavelet bands and the pixel at the corresponding position in the previous frame, which

has already been processed by the additional time-recursive filter, is computed:
TD(r,t) = |Iy, (r,t) — Ip(r,t — 1)|. (14)

For each difference, its membership degree p;p(T'D(r,t)) in the fuzzy set “large temporal
difference” is then calculated. The membership function prp of this fuzzy set is depicted in
Fig. 6.

Membership degree Py (TD)

. LARGE TEMPORAL
. DIFFERENCE

of par, par, D

il

FIG. 6: The membership function upp for the fuzzy set “large temporal difference”.

The final output of the additional time-recursive filter is given by

_ 1— NTD(TD(ra t)) I+ prp (TD(I‘, t))

I¢(r,t

If(r,t—l)—i-

Ifw(rvt)v (15)
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where the contribution of I¢(r,t — 1) is limited to a maximum of % to prevent noise propa-

gation in time.

IV. PIXEL-BASED SPATIO-TEMPORAL FILTER FOR COLOUR VIDEO

In this Section we propose a new scheme to handle colour image sequences. As in most
image processing applications, we assume that the colour frames are represented in the
RGB colour space. The different colours in this RGB space are obtained by adding the
three colours red, green and blue together in different proportions. As a consequence, an
input frame of a colour video can be represented by a 2D matrix of 3D vectors, containing
the amount of red (I(x,y,t,1)), green (I(x,y,t,2)) and blue (I(x,y,t,3)) for a given pixel
I(z,y,t) in the 2D matrix.

A first straightforward way to process colour video with the proposed method is to process
each of the colour bands (R, G and B) separately. In this way however, the correlation
between the colour channels is neglected and unwanted colour artefacts are often introduced.

The scheme that is usually applied, consists of denoising the luminance component of
the YUV -transform. In this colour sequence denoising scheme, the colour frames are first
converted from the RGB colour space into the YUV colour space, by a linear transformation.
The Y-component in this space contains the information about the luminance of the image,
while the information about the colour (hue and saturation) is encoded in the U- and
V-component. The Y-component is called the luminance component and the U- and V-
component together are called the chrominance components. Since the human eye is far less
sensitive to spatial details in chrominance than in luminance [35], it is acceptable to only
filter the luminance component. In this way, only one band is filtered instead of three. To
achieve better results, a simple additional filtering of the chrominance bands (e.g. spatial
averaging) can be applied. Afterwards, the inverse YUV -RGB transform is applied.

In this section we introduce a new alternative where the L*a*b*- colour space is used.
We first present a vector based extension of the proposed greyscale method (Section II)
in Subsection IV A (first subfilter) and then combine it with a 3D extension of the color
restoration second subfilter from [29] in Subsection IV B (second subfilter) (see Fig 7).

We assume that all three colour bands in the RG B colour space are contaminated with

white Gaussian noise with zero mean and the same standard deviation.
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FIG. 7: The filtering scheme of the proposed colour filter.

A. First Subfilter

Since the algorithm proposed in Section II makes use of the absolute difference between
grey values, for colour video it makes sense to work in a colour space in which the measured
distance between colours roughly corresponds to the difference in colour as it is observed
by the human eye. This is the case in the linear L*a*b* colour model. In the proposed
colour extension, each processed frame is first transformed into the L*a*b* colour space.
Subsequently, the transformed frame is filtered with the adapted algorithm as explained
below. Finally, the filtered frame is retransformed to the RGB colour space. For the
transformation between the RGB and L*a*b* colour spaces, the XY Z colour space is used
as an intermediate step. For more information on colour spaces and their use in image
processing, we refer to [36].

In the following the L*a*b*-transform of the RGB-vector at pixel position I,(r,t) is
denoted by I,, 1+gp-(r,t), while the L*-, a*- and b*-component of this vector are denoted by

Ly 1+ (r,t), Ing(r,t) and I, p«(r, t) respectively.

1. Adaptation of m(r,t), d(r,t) and A(r’t',r,t)

The motion value m(r,t) for this vector based method is determined as the Euclidian
distance between the L*a*b*-transforms of the vectors at the central pixel position of the

current and the previous window:

m(r,t) = |Lnpeabr (0,8) = Iy peanpe (1,8 = 1)
= (Lo (e,) = I e, = 1))
(L (v,8) = Iy e (r,1 — 1))
>
(g (6,1) = T (r,t = 1)),

(16)
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where Iy, denotes the output of this first subfilter.
For the adaptation of the detail value d(r,t), we first calculate the arithmetic mean in

the current window of each of the components in the L*a*b*-colour space:

Tir,t) = %Zln,L*(r’,t), (17)
ar,t) = ézfn,a*(r’,t), (18)
Br,t) = éZIn,b*(r’,t). (19)

The detail value itself is then defined as:
1 — _ — 2\ 3
d(r,t) = (§ Z HIn,L*a*b*(r,;t) — (L(r,t),a(r,t),b(r,t))H2 ) ‘) (20)
Finally, the adapted A(r’, ¢, r,t)-value is given by

A(I‘,, tla r, t) = ||In,L*a*b* (r,a t,) - In,L*a*b* (I', t) ||2
= (Lo (,8) = Ly (1))

21
(L (0, ) = L o (r,1)) 1)
3
+(In,b* (I", t,) - In,b* (I', t))2) ,
for pixels in the current frame (¢’ = t), and by
Al e, 1) = [Up Leare (0, 1) = Inpeaee (T, 1)) (22)

for pixels in the previous frame (¢ =¢ — 1).

2. Determination of the Weights

With the use of the above introduced adaptations of m(r,t), d(r,t) and A(r’, ¢, r,t), the
weights W (r’, ', r,t) in the weighted sum (2) can still be determined by the Fuzzy Rules 1
and 2. We only need to adapt the parameters thry, 1y, 15, t; and t5 of the membership

functions jug, ft, and pa to this new colour space.

B. Second Subfilter

When we consider the colour pixels as vectors, they are affected by the noise in three
different dimensions, instead of in one when only considering one colour band. As a conse-

quence, less similar neighbours can be found to average out the noise in the 3D case than in
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the 1D case, and sometimes even not enough. To overcome this problem, the first subfilter
is combined with a 3D extension of the colour restorating second subfilter from [29]. The
central pixel in the window is estimated by combining local differences in a spatio-temporal

neighbourhood, computed for the red, green and blue component each separately.

1. Local Differences and Correction Terms

Similar to the first subfilter, a 3 x 3 x 2 sliding window (Fig. 1) is used. In each step the
central pixel in this window, at position (r,t) in the image sequence, is filtered. For each
pixel in the sliding window, local differences (gradients) in the three colour bands (each
separately) are calculated. The differences in the red, green and blue neighbourhoods are
respectively denoted by LD;, LD, and LDj. For pixels in the window belonging to the
current frame, the output of the first subfilter, denoted by Iy, is used:

LD;(r’,t) = Iy (r’,t, i) — Iy (r,t,1), (23)

with ¢« = 1,2,3. For pixels in the window belonging to the previous frame, the already

present output of the second subfilter, denoted by Iy, is used:
LD;(r’,t —1) = I;(r’,t —1,9) — Ip(r,t,9), (24)

again with ¢ =1, 2, 3.
Next, for each position in the window one correction term is determined using the calcu-
lated local differences. This correction term is defined as the arithmetic average of the local

difference in the red, green and blue component at the given position:

1
e(r,t) = §<L[hdrlﬂ)-+ LDe(r’, 1) + L[hﬂrﬁtﬁ). (25)

2. Output of the second subfilter

Finally the output of the second subfilter for the central pixel in the current window is
determined as follows:
e (I (0, 1,8) = e(,1))
18
S (10t = 1,0) = et = 1))
18 ’

Ip(r,t,i) = + (26)
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where €(r’,t') is the correction term for the neighbouring pixel at position (r’,t') and i =

1,2, 3 (for respectively the red, green and blue colour band).

V. PARAMETER SELECTION

As mentioned earlier, the membership functions in Fig. 3 and 6 are completely determined
by their respective parameters. These parameter values have been experimentally optimized
using the “Salesman”, “Trevor”, “Tennis” and “Flower Garden” sequences, which all have
their own characteristics. The “Salesman” sequence represents a standard sequence with
moderate detail (shelfs, books,...) and moderate motion (person). The “Trevor” sequence
contains very fast motion (moving arms). In the “Tennis” sequence we deal with a zooming
camera and a detailed background (wall). The “Flower garden” sequence finally, combines
very detailed regions (flower field) with homogeneous regions (sky).

The parameters have been optimized in the following way. The proposed method was ap-
plied on each of the above sequences, for the different noise levels o,, = 5, 10, 15, 20, 25 with
parameters varying over the range of possible values. After plotting the optimal parameter
values (in terms of PSNR) for the different sequences and noise levels, a linear relationship
was found between these optimal parameter values and the noise level. Therefore the para-
meters have been determined by the best fit through the observations. As an illustration,
the optimal values for the parameter 75 of the proposed pixel domain method together with
the best fitting line through these points are depicted in Fig. 8. The parameters are thus
linearly dependent of the noise level. For the results in this paper, we assume a known
standard deviation of the noise. In most practical cases however, the standard deviation
o, is not known and should be estimated. A common used noise estimation method is the
wavelet domain median absolute deviation (MAD) estimator of Donoho and Johnstone [32].

The optimized parameter values that determine the membership functions used in the
pixel domain method are given in Table II.

Table III presents the optimized thry, T} and T, values for the different waveletbands in
the wavelet domain method. For the membership function p,,, the parameters are deter-
mined as t; = 3.220, + 1.5667 and t, = 36.76670, + 16.5. The optimized parameters for
the additional time-recursive filtering are given by repectively par; = 0.5550, — 0.725 and

pare = 1.360, + 5.1.
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FIG. 8: Optimal value for the parameter 15 of the proposed pixel domain method.

TABLE II: Optimized parameter values for the pixel domain method.

parameter| optimal value

thry 1.360, + 1.2
Ty 0.790, +0.25
T 5.240, — 15.35
t1 0.4650, — 0.625

to 1.7950, + 3.275

For the vector based colour extension of the method, finally, the parameters can be found

in Table IV.

VI. EXPERIMENTAL RESULTS

In this section we will show some experimental results. For the experiments, our wavelet
domain algorithm has been implemented with a non-decimated wavelet transform (which is
known to give better denoising results than the decimated one) using the Haar-wavelet. As
mentioned before (Subsection III B) we have used only two levels in the wavelet decomposi-

tion.
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TABLE I1I: Optimized thry, T1 and T, values for the different detail bands.

Band thry T T

LH, | 5.57330, — 14.2667 |0.88670, — 1.9667| 2.940, + 2.9
HLy | 557330, — 14.2667 |0.88670, —1.9667| 2.940, + 2.9
HH, 46.62670,, — 243.0667|0.88670, — 1.9667| 2.940, + 2.9
LHy 2.75330, — 1.3 270670, — 8.2667|2.88670, + 0.8333
HL, 275330, — 1.3 270670, — 8.2667|2.88670,, + 0.8333
HHy | 8.82670, —26.9333 |2.70670,, — 8.2667|2.88670,, + 0.8333

TABLE IV: Optimized parameter values for the membership functions of the vector based colour

extension.

parameter value

th’l“l 1-5077, —2.5
Ty 0.16670, + 0.8333
T 0.66670, + 11.6667

t1 0

to 1.70, + 2.5

In our experiments, we have processed 6 different greyscale sequences (“Salesman”, “Ten-
nis”, “Deadline”, “Trevor”, “Flower garden” and “Miss America”) and 3 different colour se-
quences (“Salesman”, “Chair” and “Tennis”) with added Gaussian noise (o, = 5, 10, 15, 20).
As a measure of objective dissimilarity between a filtered frame and the original one, the

PSNR is used. This PSNR value is defined as:

m n

SN Uolige) = 14 gy c))?

c=1 i=1 j=1

MSE(Iy, I;) =

n-m-C
52
—10-logyy ——"0
B0 A ISE(y, 1))

where I, and Iy respectively denote the original and the filtered frame, each containing m

PSNR(Iy, I)

rows and n columns of pixels and C' channels (C' = 1 for greyscale images and C' = 3 for
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colour images in the RGB colour space). S denotes the maximum possible greyscale value
of a pixel (here S = 255).
For the colour sequences, we have also used a second measure, namely the normalized

colour difference (NCD). The NCD is defined as:

> i1 21 |AELas||
NCD(IO,[f) = Zm Zn T o ,
i=1 2j=1 I&¥LAB

where I, and Iy again stand for the original and the filtered frame respectively, each con-

taining m rows and n columns of pixels,

NI

||AELAB|| = ((Io,L* - If,L*)2 + (Io,a* - If,a*)2 + (Io,b* - If,b*)Z)

and
1

||E1§AB|| = ((Io,L*)2 + (Io,a*)2 + (Io,b*)Q) 2

where I, 1«15 1-1padfa,1op and Iyp- respectively denote the L*-component, the a*-
component and the b*-component of the L*a*b*-transform of the original and the filtered
frame.

In Subsection VI A we compare our method with other state-of-the-art methods both in
the pixel domain and the wavelet domain. Additionally, in Subsection VIB, we also test the
use of our method for colour sequences. Subsection VIC, finally, tests the use of different

fuzzy aggregators.

A. Comparison to Other State-Of-The-Art Methods

In this subsection, we compare our method to other state-of-the-art methods. We first
compare our pixel domain method to other pixel domain methods and then do the compar-

ison for the wavelet domain method.

1.  Pizel Domain

The non-recursive (FMDAF) and recursive (REFMDAF) scheme of our fuzzy motion and
detail adaptive filter in the pixel domain have been compared to the following well-known
filters that also operate in the pixel domain (all with parameter values as suggested in the

respective papers):
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e the rational filter (Rational) [8],

e the 3D-KNN filter (KNN) [3] as an extension of the 2D-KNN filter [1, 2],

e the threshold averaging filter (THR) [3, 4],

e the motion and detail adaptive KNN filter (MDA-KNN) [3, 5],

e the recursive scheme of the multiple class averaging filter (RMCA) [7] (which performs

better than the non-recursive one as shown in [7]).

Fig. 9 and Fig. 10 give the PSNR results for six test sequences processed with the above
mentioned methods and for the noise levels 0, = 10 and o, = 15 respectively. It can
be seen that in terms of PSNR the FMDAF and RFMDAF filters outperform the other
pixel domain methods. The MDA-KNN filter gives comparable results on the “Salesman”
and “Deadline” sequences. Further, we also note that comparable results are found on the
“Flower garden” sequence for the RMCA and the THR filters. For a visual comparison,
the original “Trevor” sequence, the sequence with added Gaussian noise (o, = 10), and the
noisy sequence processed by the different filters can be found on http://www.fuzzy.ugent.
be/tmelange/results/greyscale/pixel. From the tests we also found that our method
adapts better to motion than the RMCA method. In Fig.11 a part of the 18th frame of the
“Trevor” sequence with added Gaussian noise (o, = 10) processed by the FMDAF method
and the RMCA method is given. One clearly sees that our method has given a lower weight
to those pixels from the previous frame situated in the fast moving arm.

Finally, we observed that the recursive scheme (REMDAF) of the proposed filter removes
slightly more noise than the non-recursive scheme (FMDAF), but this at the expense of little
loss of spatial texture. Fig. 12 shows the 18th frame of the “Tennis” sequence with added
Gaussian noise (o, = 20), processed by the FMDAF and by the REMDAF. The texture
on the wall is best preserved by the FMDAF method. But on the other hand, by looking
carefully at the table, one sees that more noise is removed by the REFMDAF than by the
FMDAF.
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FIG. 9: Performance comparison for the pixel domain methods applied to different sequences with

added Gaussian noise, o, = 10.
2. Wawvelet Domain

The recursive (WRFMDAF) scheme of our wavelet domain method (which outperforms

the non-recursive one) has been compared to the following methods (all with parameter
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FIG. 10: Performance comparison for the pixel domain methods applied to different sequences with

added Gaussian noise, o, = 15.

values as suggested in the respective papers):

e the recursive scheme of the wavelet domain multiple class averaging filter (WRMCA)

7] (non-decimated transform with the quadratic spline wavelet),
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FIG. 11: Part of the 18th frame of the “Trevor” sequence (a) original; (b) with added Gaussian
noise (o, = 10); (c) processed by the FMDAF method and (d) processed by the RMCA.

e the 3D wavelet transform filter (3DWF) [14] with the signal adaptive threshold from

[11] (3-D dual-tree complex wavelet transform),
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FIG. 12: 18th frame of the “Tennis” sequence (a) original; (b) with added Gaussian noise (o, = 20);
(c) processed by the FMDAF method and (d) processed by the RFMDAF method.

e the sequential wavelet domain and temporal filter (SEQWT) [15] (non-decimated

transform with the symmlet-8 wavelet),
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e the adaptive spatio-temporal filter (ASTF) [16] (64-tap Johnston filter [37]),

e the video filter based on inter-frame statistical modelling of the wavelet coefficients

(FISMW) [17] (decimated transform with the orthogonal symmlet-8 wavelet),

e the sparse 3D transform-domain collaborative filter for video (VBM3D) [26] (the dec-
imated biorthogonal wavelet biorl.5 for the 2D-transform of the blocks and the dec-
imated Haar-wavelet for the third dimension in the first step and the dct-transform

(2D) and the decimated Haar-wavelet (third dimension) in the second step).

Fig. 13 and 14 gives the PSNR results for the processed “Salesman”, “Trevor”, “Dead-
line”, “Tennis”, “Miss America” and “Flower Garden” sequences. It can be seen that
our method works best for a still camera filming possibly moving objects (“Salesman”,
“Trevor”, “Deadline”, “Miss America”). On such sequences our proposed wavelet based
recursive WRFMDAF method clearly outperforms the ASTFEF method. We also see a better
performance for the WRFMDAF than for the RMCA filter and similar results to those of
the SEQWT filter. Taking into account that the degradations that result from using a deci-
mated transform instead of a non-decimated one can reach up to 1 dB [15, 38|, we might also
conclude a similar performance for the FISMW filter. Still, more sophisticated filters like
the VBM3D filter, consisting of two steps in which blocks are grouped by spatio-temporal
predictive block-matching and each 3D group is filtered by a 3D transform domain shrink-
age, and the complex 3D wavelet transform method 3DWF show better results in terms of
PSNR than our proposed filter. For the “Flower garden” sequence, the received results are
worse, because the performance of the additional time-recursive filtering in pixels where no
motion is detected, will be reduced for a moving camera.

For a visual comparison, the original “Deadline” sequence, the sequence with added
Gaussian noise (o, = 10), and the noisy sequence processed by the different filters can
be found on http://www.fuzzy.ugent.be/tmelange/results/greyscale/wavelet. We
see that a little less noise is removed by the RWFMDAF and WRMCA filters than by
the SEQWT and FISMW filters, but on the other hand details are well preserved and less
artefacts around the edges are introduced by the RWFMDAF filter.

It can be concluded that, for sequences obtained by a still camera, our method has a
better performance in terms of PSNR than the other multiresolution filters of a similar

complexity, but it is outperformed by some more sophisticated methods.
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FIG. 13: Performance comparison for the wavelet
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(e) “Miss America” and (f) “Flower Garden”.
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B. Processing of Colour Sequences

In this subsection, we test the use of our proposed method for colour sequences with
equal noise levels on each colour band. We have compared our new vector based extension
(FMDAF-L*a*b*) from Section IV to the filtering scheme where the Y-component is filtered
by the WRFMDAF method and where an additional spatial averaging is applied on the
chrominance components U and V' with an 3 x 3 filtering window (WRFMDAF-YUV). The
results of this comparison are given in Tables V and VI. From Table V we see that the
WRFMDAF-YUV method yields the best results in terms of PSNR. However, in terms of
the NCD, which corresponds with human observation, it can be seen from Table VI that
the best results are then obtained by the vector based FMDAF-L*a*b* method.

For a visual comparison, the original “Salesman” sequence, the sequence with added
Gaussian noise (0, = 10) and the noisy sequence processed by respectively the
WRFMDAF-YUV and FMDAF-L*a*b* method can be found on http://www.fuzzy.ugent.
be/tmelange/results/colour. We see that a little more noise is removed by the wavelet
domain WRFMDAF-YUV method, but also that more colour artefacts are introduced than
by the FMDAF-L*a*b* method. This can for example be seen by looking carefully to the
side of the phone.

We further also note that the FMDAF-L*a*b* method performs a little less good for the
lowest noise level (o, = 5) in comparison to the performance for the other noise levels.
The reason is that because of the two subfilters used in this method, there is a little too
much averaging for this low noise level, resulting in a little more detail loss. For the other
noise levels however, we see a more favorable compromise between noise removal and detail

preservation.

C. The Use of Other Fuzzy Aggregators

In this subsection, we compare the performance of the proposed method, implemented
with different triangular norms and conorms. In Table VII the results in terms of PSNR
are given for different sequences processed with the RWFMDAF filter implemented with the
suggested product norm and probabilistic sum conorm and other popular triangular norms

and conorms. It can be seen that the performance of all aggregators are very comparable.
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TABLE V: Comparison of the proposed colour extensions in terms of PSNR.

Sequence | noise PSNR,,
level | Input |FMDAF-L*a*b* WRFMDAF-YUV
“Salesman”| o, = 5 | 34.16 35.20 37.37
op = 10| 28.22 33.00 33.64
on = 15| 24.82 30.73 31.20
on = 20| 22.46 29.00 29.35
on = 25| 20.66 27.71 27.88
“Chair” | o, =51 34.17 37.35 39.92
on = 10| 28.19 35.30 35.67
op = 15| 24.71 32.77 32.99
on = 20| 22.26 30.58 30.89
on = 25| 20.39 29.28 29.16
“Tennis” | o, = 34.24 30.40 33.40
op = 10| 28.26 29.20 29.83
on = 15| 24.78 27.83 27.92
op = 20| 22.31 26.60 26.68
op = 25| 20.41 25.32 25.59

Only the weak norm and strong conorm seem to perform less good on some of the sequences.
Therefore, we have chosen for the simple intermediate algebraic product and probabilistic

suImn.

VII. CONCLUSION

In this paper we have presented a new fuzzy motion and detail adaptive video filter
intended for the reduction of additive white Gaussian noise in digital image sequences. The
proposed algorithm has first been defined on greyscale images and in the pixel domain. In
a next step we have adapted the algorithm to the wavelet domain. Finally, we have also

extended the method to handle colour image sequences.
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TABLE VI: Comparison of the proposed colour extensions in terms of NCD.

Sequence | noise NCDy,
level | Input |FMDAF-L*a*b* WRFMDAF-YUV
“Salesman”| o, =5 | 0.1041 0.0524 0.0531
on = 10| 0.2077 0.0657 0.0829
on = 15| 0.3050 0.0813 0.1121
on = 20| 0.3929 0.0959 0.1397
on = 25| 0.4724 0.1097 0.1652
“Chair” | o, =51 0.0300 0.0152 0.0122
on = 10| 0.0599 0.0183 0.0215
on = 15| 0.0899 0.0221 0.0309
onp = 20| 0.1198 0.0263 0.0404
on = 25| 0.1497 0.0301 0.0498
“Tennis” | o, = 0.0434 0.0446 0.0339
on = 10| 0.0857 0.0490 0.0475
on, = 15| 0.1270 0.0545 0.0601
on = 20| 0.1677 0.0605 0.0724
on = 25| 0.2079 0.0672 0.0848

Experimental results show that our pixel domain greyscale method and the wavelet do-
main extension outperform respectively other state-of-the-art pixel domain filters and other
state-of-the-art wavelet domain filters of a comparable complexity in terms of PSNR. For the
processing of colour images we conclude that the proposed FMDAF-L*a*b* colour extension
is a good alternative for the filtering scheme in the YUV colour space.

As future work we will include colour information into the fuzzy rules directly instead
of working with colour vectors and we will try to find a framework for the denoising of

video sequences corrupted with other types of noise such as impulse noise and «-stable noise.
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TABLE VII: Comparison of the different aggregators.

Sequence PSNR,,
(o, = 10) algebraic product/|minimum/|weak/ |Lukasiewicz
probabilistic sum | maximum |strong
“Salesman” 34.37 34.36 34.10 34.36
“Trevor” 36.41 36.42 | 35.55 36.29
“Deadline” 33.95 33.91 33.74 33.98
“Tennis” 31.44 31.37 | 31.47 31.55
“Miss America” 37.48 37.48 |36.76 37.42
“Flower Garden” 28.27 28.13 |28.50 28.44
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