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Abstract—Integrating video coding and denoising is a novel
processing paradigm, bringing mutual benefits to both video
processing tools. In this paper, we propose a novel video denoising
approach of which the main idea is reusing motion estimation
resources from the video coding module for video denoising. In
most cases, the motion fields produced by real-time video codecs
cannot be directly employed in video denoising, since they, as
opposed to noise filters, tolerate errors in the motion field. In order
to solve this problem, we propose a novel motion-field filtering
step that refines the accuracy of the motion estimates to a degree
that is required for denoising. Additionally, a novel temporal
filter is proposed that is robust against errors in the estimated
motion field. Numerical results demonstrate that the proposed
denoising scheme is of low-complexity and compares favorably to
the state-of-the-art video denoising methods.

Index Terms—Image enhancement, motion estimation, noise,
video coding, video signal processing, wavelet transform.

I. INTRODUCTION

I N MANY applications such as video surveillance or
tele-medicine, it would be beneficial to integrate video

denoising and video coding as closely related parts of the same
video processing chain. Indeed, noise in the video sequences
increases image entropy, thereby reducing the effective video
compression performance. This problem is largely solved by
introducing a noise reduction step prior to encoding.

Wavelet-based video encoders [1]–[3] have proven their ad-
vantages, ensuring support for quality, resolution and temporal
scalability, while yielding a compression performance on par
with that of the state-of-the-art non-scalable H.264-codec. Some
of the recent, best performing wavelet-domain video denoisers
include [4]–[7]. With the exception of our initial work [8], to our
knowledge, there are no other processing paradigms reported in
the literature that integrate video denoising and video coding.
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Fig. 1. Motion compensated temporal filtering followed by adaptive spatial
wavelet filtering.

A natural step towards integrating video denoising and coding
modules is reusing resources, such as motion estimation, of the
video codec for the denoiser. Often, the motion fields produced
by real-time video codecs do not capture the actual object trajec-
tories, and as such, cannot be applied directly for motion-com-
pensated denoising. In this paper, we extend our initial work [7]
and develop an efficient approach that integrates a motion esti-
mator from a video codec into a video denoiser. In particular, we
observe that inaccuracies of multiresolution motion estimators
such as [9] consist mainly of false motion vectors in background
image areas without actual motion. We introduce a motion field
filtering step that refines the accuracy of the motion field making
it usable for denoising. The essence is that the output of the same
motion estimator is used as an input for the coding scheme, and
with the proposed filtering step, as an input to the denoiser.

Here we assume that the video sequences are contaminated
with the additive white Gaussian noise, with zero mean and
known variance . The results demonstrate that the proposed
approach competes with the best and most recent multiresolu-
tion video denoisers, such as [5], [6] and [10]. The proposed
denoising approach is based on spatio-temporal filtering [7],
which combines wavelet-domain spatial filtering which is pre-
ceded by pixel-domain temporal filtering. We propose a novel
motion compensated temporal filter, as opposed to the simple
pixel-based motion detection technique employed in [7], which
brings a significant improvement in the denoising quality. Here
we proposed the scheme shown in Fig. 1, where temporal fil-
tering precedes spatial, as opposed to [7]. In this case remaining
noise after the temporal filter is spatially non-stationary, which
requires adaptivity of the spatial filter to the local noise statis-
tics. Different solutions for this problem are possible, including
the use of the wavelet threshold which depend on a local noise
variance. Here we extend the fuzzy-logic filter [11], which is at-
tractive for hardware implementation, by making it adaptive to
a localy estimated noise variance.

This paper is organized as follows. The proposed approach
is presented in Section II, where we introduce first the proposed
motion field refinement technique (see Section II-A) and a novel
motion-compensated temporal filter (see Section II-B). There-
after we describe the proposed spatial filter (see Section II-C),
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which is an extension of [11] for spatially non-stationary noise.
Implementation and complexity issues of the method and ex-
perimental results are presented and discussed in Section III.
Finally, Section IV draws some conclusions of this work.

II. PROPOSED APPROACH

A. Motion Field Refinement Step

Motion estimation algorithms used in real-time video codecs
like [9], which is the base of motion estimator used in this paper,
very often produce motion vector fields which contain falsely
estimated motion vectors in the background, due to use of the
reduced number of pixels for MAD calculation like in [12] and
performing a search on a reduced number of locations. Other
motion estimation algorithm, such as half-pixel motion field es-
timator defined in MPEG-4 standard used in our work, do not
capture the realistic motion fields, because it does not use the
neighboring motion vectors to impose a structure on a motion
field.

In the following we propose a motion field filtering technique
that eliminates spurious motion vectors from the spatial areas in
the video frames where no actual motion exists. The basic idea
in this algorithm is to compare the MAD between the corre-
sponding blocks with the average MAD, and based on that we
decide if motion is present or not. Althought implicit motion
filtering is performed in MRST motion estimation algorithm of
[9] by comparing MAD values of the candidate motion vectors
(including zero motion) from the spatial and temporal neighbor-
hood, wrongly estimated motion vectors still apppear in back-
ground. The proposed motion filtering method is particularly
effective in surpressing spurious background motion vectors.
First we calculate the MAD between the pixels in the cor-
responding blocks in the current and the previous frames

(1)

where is the frame number, are the spatial coordinates of
a block, the coordinates of a pixel inside the block, and
is the block size. We define a threshold for motion detection in
the th frame as follows:

(2)

where is a scalar and , are numbers of blocks along
horizontal and vertical axes. We found experimentally that the
value yields the best results for most of the sequences.
The parameters were optimized on the test sequences different
than the ones used in the denoising performance comparison of
the different tested algorithms. We note that the performance of
the algorithm is much less sensitive to the values of compared
with the approach where a fixed predefined threshold for motion
detection is used.

In this filtering step, we decide whether motion exists in each
block simply by comparing the absolute block difference with
the previously calculated threshold. If the , both

motion vector components are set to zero. Otherwise, the motion
vector keeps its original value.

B. Motion Compensated Temporal Filter

This section presents a novel motion-compensated recursive
temporal denoising filter. Denoising based on motion compen-
sated filtering along the estimated motion trajectory is a very
powerful approach, provided that the motion is correctly esti-
mated. On the contrary, this approach can yield very disturbing
artifacts at positions where the motion estimates are incorrect.
To alleviate this problem, temporal filtering should take into ac-
count the reliability of the estimated motion vectors and adapt
the amount of smoothing accordingly [4].

The main idea behind the proposed filter is to control
switching between weaker and stronger temporal smoothing
based on a motion detection variable . At positions where
no motion was detected , we apply a standard recur-
sive temporal filter. At moving positions we filter
as well, but this time along the estimated motion trajectory,
and using different filter coefficients. In this way we take into
account the possibility that the estimated motion is not perfect
and we allow a different degree of temporal smoothing for
moving and for non-moving areas. Moreover, we take into
account an estimate of the reliability of the estimated motion
through prediction errors, as follows.

Define the normalized prediction error , for the block
in the th frame as

(3)

where are the motion vector components. The absolute
difference in this expression is divided by its
maximum possible value, which is 255 for 8-bit grayscale video
data to ensure . In our model, the smaller the pre-
diction error , the more reliable the filtering at the corre-
sponding position along the estimated motion trajectory is. Our
main idea behind expressing filtering unreliability through
is to avoid wrong averaging of the different pixel values along
the estimated motion trajectory, and hence to avoid motion blur
and ghosting artifacts.

The proposed motion compensated filter is

(4)

where and are the fixed parameters of the recursive filters
in static and moving areas, respectively, and and
are data driven factors for these parameters. The factor
(taking values between 1 and 2) increases the influence of the
current frame pixel value in the case when the normalized
prediction error is large (i.e., when differs much
from ). The influence of on the filtering result is in
this case simultaneously suppressed through (which is
then close to zero). Otherwise, when the prediction error is
small, the factor is close to 1, enforcing smoothing along
the estimated motion trajectory. We optimized the parameters
and experimentally in the mean squares error sense over a

Authorized licensed use limited to: University of Gent. Downloaded on August 26, 2009 at 04:16 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 3, MARCH 2009 419

number of different sequences and different noise levels. These
parameters are optimized on training set of a video sequences
different than the ones used for evaluation of denoising perfor-
mance of the algorithm. Training set is chosen in a such a way to
contain most often types of motion that can be present in video
sequences (global motion, zoom, movement of the foreground
object with the fixed background). The resulting optimized pa-
rameter values are and .

C. Spatial Filter

Similar to [7], we combine the temporal filter with a wavelet
domain spatial filter. Aiming at low complexity and a hardware-
friendly solution, we start from the fuzzy filter of [11], which is
a fuzzy-logic version of the spatially adaptive ProbShrink from
[13]. This filter applies to each wavelet coefficient a shrinkage
factor, which is a function of two measurements: the coefficient
magnitude and a local spatial activity indicator (LSAI) ,
i.e., .

It was shown experimentally in [11] that this FuzzyShrink
method yields the same PSNR performance as ProbShrink. We
propose the modification of the FuzzyShrink method to make
it adaptive to spatially non-stationary noise by estimating lo-
cally, since the noise after temporal filtering has non-uniform
variance. We use 16 16 overlapping windows and shift these
in steps of 8 pixels along each direction. For each window we
use Donoho’s wavelet domain median estimator [14], i.e., the
noise variance is estimated as the median absolute deviation of
the wavelet coefficients from the highest frequency subband, di-
vided by 0.6745.

The proposed temporal-spatial denoising scheme, depicted in
Fig. 1 performs motion-compensated filtering followed by the
spatial filtering.

III. RESULTS

In this Section we first analyze the performance of the pro-
posed motion field refinement algorithm and the performance
of the proposed denoising schemes in comparison with related
recently reported ones.

A. Motion Field Refinement Algorithm

To evaluate the effect of the proposed motion field refinement
step, we compare the mean squared error (MSE) in the motion
compensated frame, obtained using the estimated motion field
with and without the motion field refinement step.

The mean square error of the motion field is defined as

(5)

where and are the components of the motion vector and
is the image size.

We observe that the MSE of the motion compensation de-
creases for the most of the test sequences, which proves the ef-
fectivenes of the motion field filtering step.

Also we evaluate the effect of the proposed motion field re-
finement step, by comparing the average PSNR of the denoised
sequence, obtained using the estimated motion field with and
without the motion field refinement step. The average PSNR of

TABLE I
AVERAGE PSNRS OF DENOISED SEQUENCES WITH AND

WITHOUT MOTION FIELD FILTERING STEP

Fig. 2. Motion field of the 15th frame of the “Chair” sequence, before and after
filtering.

the denoised sequences obtained with and without the proposed
motion estimation refinement technique for several sequences
are given in Table I.

Filtered motion field also appears to correspond better to the
real motion visually, as shown in Fig. 2, where the motion fields
prior and after motion-field refinement are depicted for a frame
from the “Chair” sequence. One observes that, as expected, the
algorithm sets the motion vectors to zero in the smooth areas
where no actual motion exists.

B. Denoising Results

In this section, we present the results of the proposed methods
using non-decimated wavelet transform, implemented with the
algorithm à trous [15], with 3 orientations per scale, and with
2 decomposition levels. The wavelet function used here is the
Daubechies least asymmetrical wavelet (symmlet) with eight
vanishing moments.

We used four standard test sequences: “Miss America”,
“Salesman”, “Tennis” and “Flower Garden”, with additive
white Gaussian noise of standard deviation , 15, and
20. The resolutions of the test sequences are 352 240 for
the “Salesman” and “Tennis” sequence and 352 288 for the
others. The PSNR values obtained with the proposed methods
are compared against those obtained with the SEQWT method
of [7], and with a recent wavelet domain spatio-temporal (WST)
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Fig. 3. Quantitative performance comparison between the proposed method, method with MPEG-4 motion estimation and two reference methods SEQWT [7]
and WST [6] for the test sequences corrupted with � � ��: (a) “Flower Garden”; (b) “Salesman”; (c) “Tennis”; and (d) “Miss America”.

method from [6] and with a recent iterative scheme of [10].
The comparison to [10] will be shown later in this Section,
only in terms of PSNR values averaged per test sequence, since
per-frame PSNR results were not available for this reference
method. The results in Fig. 3 are similar or sometimes better
than the corresponding PSNR plots in [5].

The plotted PSNR values shown in Fig. 3 contain: (a)
SEQWT-method [7]; (b) the WST-method [6]; (c) proposed
temporal-spatial scheme; and (d) proposed scheme with half
pixel interpolation where spatial filtering precedes temporal.
The method of [6] offers very good results in both visual and
numerical (PSNR) sense.

The proposed temporal-spatial scheme depicted in Fig. 1 per-
forms best for all test sequences, with PSNR improvements
ranging from 0.5–1.4 dB as compared to the SEQWT algorithm.
The improvement over the WST method of [6] is around 1 dB
for all sequences except “Miss America” where both algorithms
show similar performance. The main reason for such results is
that the algorithm of [6] slightly tends to degrade the textures in
the image, while preserving well static image edges. Since the
“Miss America” sequence contains less textures than the other
test sequences, the performance differences between the pro-
posed algorithm and that of [6] are reduced.

The results show that the proposed methods also outperform
the reference methods in terms of visual quality, especially in the
sequences which contain more dynamics. Examples of denoised
video frames are shown in Figs. 4 and 5. Moreover the low fre-
quency noise components that are hardly perceived in a single
frame shown, but appear in the processed video sequence are

Fig. 4. Illustration of the proposed method with: (a) the 5th noise-free frame
of the “Flower Garden” sequence; (b) the same frame corrupted with additive
Gaussian noise with � � ��; (c) the frame after filtering with WST filter; and
(d) the frame after filtering with the best proposed approach.

much better suppressed by the new method. Fig. 4 shows that
the new method preserves textures much better than the WST
method of [6], which is particularly visible on the stem of the
tree and the details of the roofs. A similar conclusion is valid
for the “Salesman” sequence shown enlarged in Fig. 5. The new
method introduces less motion blur, which can be observed on
the hand of the salesman and less spatial blur in the static areas,
which is visible on the books on the shelf.
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Fig. 5. Part of the 31th frame of the “Salesman” sequence with: (a) the original;
(b) the noisy sequence with � � ��; (c) the WST algorithm [1]; and (d) the
proposed method.

We also compare our algorithm with the recent denoising
iterative scheme of [10] where only average PSNRs per test
sequence were reported. For the “Flower Garden” sequence,
with input PSNR of 28 dB, the average PSNR of our denoising
method is 30.8 dB, which is approximately 0.5 dB less than re-
ported in [10]. For the “Salesman” sequence, with input PSNR
of 28 dB our method has PSNR of 34.61 dB while the reported
value in [10] is 35.13 dB. For the same sequence with a larger
amount of noise, with input PSNR of 24 dB, the performance
loss of our method compared to that reported in [25] is less than
0.1 dB. It is important to notice that the method in [10] is much
more complex. For example, the reported processing time of this
reference method is approximately 1 min and 40 s per frame for
the frame size 384 288 on a powerful 8 3 GHz processor.
The processing time of our method, for the frame resolution
of 352 288, and on a much slower processor (one core on a
working frequency of 2.4 MHz) is 11 ms per frame. Moreover,
the methods [10] requires up to 7 frames to be stored, while our
method uses only current and previous frame.

IV. CONCLUSION

The main idea presented in this paper is reusing of motion
estimation resources from video codecs for video denoising, re-
sulting in a low-complexity method, which is easily integrable

into existing video codecs. The core of the method are two com-
ponents: a novel motion field filtering step and a novel recursive
temporal filter with appropriately defined reliability of the esti-
mated motion field. The results show that this low-complexity
scheme compares favorably with recent related video denoising
methods and that it is competitive even with much more com-
plex recent approaches.
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