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Abstract—In this paper, we analyse the performance of coupled
dictionary learning for video super-resolution. We make an
extension of 2D coupled dictionary learning to a 3D scheme,
where 3D atoms model temporal evolution of spatially collo-
cated patches and require no explicit motion estimation. Our
analysis shows the influence of different design parameters,
such as the effect of a periodic dictionary re-training within
a mixed resolution framework, dictionary size and the sparsity
of reconstruction, as well as the choice between uni-directional
and bi-directional reconstruction strategies. We believe that these
results will be helpful in understanding better the potentials and
current limitations of coupled dictionary learning in video super-
resolution.

I. INTRODUCTION

Recent studies have demonstrated the potential of coupled
dictionary learning for single image Super resolution (SR)
[1]–[3]. The main idea behind these approaches is to train
reconstruction dictionaries for the pairs of high-resolution
(HR) and low-resolution (LR) versions of the same image
patch by enforcing the same sparse coefficients. The motiva-
tion for sharing the same sparse coefficients is the following:
if an image patch can be represented as a sparse linear
combination in some dictionary, then its blurred version can
also be represented with the corresponding blurred dictionary
using the same sparse coefficients due to linearity properties.
In [1], the training set is formed from a large number of
high-resolution patches and their corresponding low-resolution
versions (obtained by subsampling and subsequent bicubic
interpolation). Each LR patch is filtered with high-pass filters
in horizontal and vertical direction to extract useful informa-
tion for dictionary learning. The filtered responses per each
LR patch and its corresponding HR patch are grouped into
one-dimensional arrays (in column-wise order) and stacked
together (see. Fig. 1). A dictionary learning method (such as
[4]) is applied to train the coupled dictionary.

Using the learned coupled dictionaries, the resolution
enhancement is achieved as follows. The low-resolution
input image is divided into overlapping patches and from
each patch the same type of features are extracted in
the same way as in the learning phase and concatenated
together. Each feature patch is then sparsely represented
with the low-resolution part of the coupled dictionary using
a sparse representation algorithm such as [5], [6]. The

Fig. 1. An illustration of the coupled dictionary learning method for still
images.

same representation coefficients are used to synthesise a
high-resolution version of the input patch using atoms from
the high-resolution part of the coupled dictionary.
In [2], the LR dictionary is learned from PCA features
derived from LR patches. The corresponding HR dictionary is
obtained as a solution of a least squares problem given a set of
HR patches and the inherited coefficients from the LR features
that are fixed per each HR patch. This approach achieved a
significant reduction in the computation time in comparison
with method [1]. A recent approach [3] introduced a more
robust training, which alternates between the training of the
LR and HR parts of the coupled dictionary in each iteration
and achieves thereby more stable convergence compared to
[1]. Next to using dictionary learning techniques such as [3],
[7], dictionaries of image atoms can also be formed from
raw image patches sampled from either external data bases
or from the input image sequences at hand.

In video restoration problems the use of temporal
information is crucial due to a significant temporal redundancy
that is typically present. The motion in video sequences can
be treated explicitly (e.g., using motion estimation such as
optical flow) and implicitly [8], [9], where video atoms are
3D patches formed from 2D patches collected along the
same relative positions in the neighbouring frames. Majority
of video SR methods use motion estimation to find similar
content in neighbouring key frames [7], [10]. On the other
hand, video SR methods without explicit motion estimation
were also recently proposed [11]–[13].



Recently emerging video SR methods in the context of a
mixed resolution framework (see Fig. 2) are gaining popularity
[7], [10], [13], [14]. In a mixed resolution framework, HR
frames (key-frames) are present at specific time locations in
a video sequence while other time instances are occupied by
LR frames. Such scenarios are typical in video compression,
but also arise in applications such as video surveillance
where a low resolution video stream is accompanied by
snapshots of higher resolution, taken either periodically
or triggered by a sudden change in the scene. While
dictionary learning based methods are often studied in the
context of SR for still images, their application to video SR
is scarce in the literature; the reported works include [7], [14].

To the best of our knowledge there is no systematic
study yet of the performance of coupled-dictionary based
methods for video super-resolution in terms of the influence
of different parameters (of dictionaries and the reconstruction
procedure) and the effects of dictionary re-training in a mixed
resolution setup. The study presented in this paper aims at
contributing to a better understanding of the potentials of
coupled-dictionary method for video SR focusing in particular
on the mixed resolution scenario, performance gains of 3D
atoms versus 2D ones, different re-training strategies and the
impact of the parameters such as dictionary size and sparsity
of the reconstruction coefficients (hereafter referred to briefly
as sparsity factor).

The main contributions of this paper are the following.
Firstly, we extend the coupled-dictionary method of [2] to 3D
and evaluate the actual performance gain of 3D atoms versus
2D atoms. In contrast [7], where 3D patches for training were
formed by collecting 2D patches from adjacent frames along
motion trajectory, our approach does not involve explicit
motion estimation. We simply collect 2D patches centred at
the same relative position in several adjacent frames and we
learn 3D atoms that describe such video patches. The results
indicate that these performance gains depend on the type
of motion. Secondly, we evaluate the influence of sparsity
of reconstruction relative to the dictionary size. The results
indicate that the optimal sparsity factor in most cases does
not depend much on the dictionary size, in a wide range of
reasonably large dictionary sizes. As expected, the optimal
sparsity may become somewhat larger for smaller dictionaries,
and is in general larger for 3D than for 2D atoms. Finally,
we also analyse two possible re-training strategies in a mixed
resolution setup: uni-directional and bi-directional and discuss
the implications of both on different sequences.

The paper is organized as follows: In Section 2, we first
review briefly coupled-dictionary approach for single image
super-resolution. Then, in Section 3 we introduce an extension
of this method to video by replacing 2D atoms with 3D
atoms, trained on 3D patches composed of a number of
spatially collocated 2D patches from consecutive frames. Next,
in Section 4, we present the results of our analysis of these

schemes in a mixed resolution setup, including the effects
of different parameters and different re-training strategies.
Section 5 concludes the paper.

II. BACKGROUND

Let pH
(k,l) denote a square image patch centred at location

(k, l) in a HR image and denote by pL
(k,l) the corresponding

patch of the same size from a LR image, which is a blurred
version of the HR image. In particular, the LR image is
obtained by down-sampling the HR image by a given scale
factor s and up-sampling it again to the original size using
bicubic interpolation [2].
The coupled dictionary learning method [2] for image SR can
now be summarized as follows:

1. Training set construction: Collect a predefined num-
ber of pairs of corresponding HR and LR patches
{pH

(k,l), pL
(k,l)}. In practice this number is typically

200,000 for training on a large data base of images.
2. Feature extraction: first and second derivatives (gradi-

ents) in vertical and horizontal direction are computed
for each pL

(k,l). Principal component analysis (PCA) is
then applied for dimensionality reduction, yielding the
final set of features for dictionary learning fL(k,l).

4. Learning the LR dictionary: The LR dictionary DL and
sparse representation coefficients W for LR features
(ordered as columns in the matrix fL) are learned using
K-SVD [4], [15]:

{DL,W} = arg min
DL,W

(
∣∣∣∣∣∣fL − DLW

∣∣∣∣∣∣2
F
)

subject to:
||wi||0 = K ∀i

(1)

where K denotes the number of non-zero coefficients
(sparsity factor), and wi the coefficient vector per LR
feature.

5. Inferring the HR dictionary DH by solving the least
squares problem:

DH = arg min
DH

(
∣∣∣∣PH − DHW

∣∣∣∣2
F
) (2)

where PH represents a matrix with corresponding HR
patches pH

(k,l) ordered as column vectors.

III. COUPLED DICTIONARY LEARNING FOR VIDEO SR

A. SR for mixed resolution video

We consider in this paper a mixed resolution video format
illustrated in Fig. 2. In this format, a video sequence X is
divided into Ngop groups of pictures (GOPs) {gi}

Ngop

i=1 each
of which consists of G frames. Out of these G frames, the first
GH ones are HR frames and the subsequent GL = G − GH

frames are LR frames. Denoting by XR
i,j the j-th frame in

the i-th GOP gi, where R ∈ {LR,HR} denotes the frame
resolution, we can write:

gi = {XH
i,1, ...,XH

i,GH ,XL
i,GH+1, ...,XL

i,G} (3)



Fig. 2. A mixed resolution video format considered in this study. A
fixed number of consecutive high-resolution frames is placed periodically,
in between of a larger number of low-resolution frames.

Fig. 3. Two analysed scenarios for coupled dictionary video SR in a mixed
resolution setup: uni-directional (top) and bi-directional (bottom).

The goal is to super-resolve the LR part of the GOP
XL

i = {XL
i,GH+1, ...,XL

i,G}, i = {1, ..., Ngop}, by re-training
a coupled dictionary on the HR part XH

i = {XH
i,1, ...,XH

i,GH}
for which we create the corresponding LR part YL

i =
{YH

i,1, ...,YH
i,GH} by sub-sampling and interpolating the cor-

responding frames.
The above described approach where a coupled dictionary is
trained at the beginning of each GOP and used to super-resolve
the rest of it is a causal, or uni-directional approach. We will
also consider an alternative, bi-directional approach, where
the coupled dictionary learned on the basis of the HR part
of a GOP is used to super-resolve the nearest LR frames from
the previous and the current GOP. The two approaches are
illustrated in Fig. 3.
The uni-directional approach imposes no delays, while the bi-
directional one introduces a delay and the need for storing
GL/2 frames. However, the bi-directional approach is ex-
pected to yield better results because dictionary re-training
affects the nearest frames. In a slightly different mixed reso-
lution scenario, where the HR frames do not occur periodically
but are triggered by significant changes in the scene, sudden
motion, etc., the bi-directional approach would not make much
sense, because the frames from the previous GOP would be
much different. Regardless of which of the two approaches
(uni-directional or bi-directional) we consider, coupled dictio-
nary learning will be performed in the same way, making use

Fig. 4. Some examples of 3D atoms from a HR part of a coupled 3D
dictionary. Each 3D atom here is composed of 3 consecutive image patches
along the temporal dimension.

of available HR frames in each GOP, as described next.

B. Coupled dictionary learning for video SR

To learn coupled dictionaries for video SR we need first to
collect pairs of the corresponding HR and LR patches, similar
as we did for still images in Section II. While in the case of
still images, those patches were two-dimensional (2D), we
can operate either with 2D patches (hence, frame per frame)
or with 3D patches (spreading over the adjacent frames). In
both cases, we will use for this coupled dictionary learning
the available HR frames within each GOP, as described in
the previous subsection.

Suppose that we need to learn coupled 2D dictionaries.
In this case, for each XH

i,j we simulate the corresponding
LR version YL

i,j = Φ(XH
i,j), where Φ denotes some low-pass

filtering operation. Then we extract from these pairs of images
(XH

i,j ,YL
i,j) the pairs of patches centred at the same relative

positions (k, l) : (pH
i,j,(k,l), pL

i,j,(k,l)) and we employ these for
a coupled dictionary learning, as described in Section II.

Suppose now that we wish to learn 3D coupled dictionaries.
We again need to produce first the LR versions YL

i,j of the
HR XH

i,j frames above, but we now sample 3D patches from
these pairs of sequences. Let pH

i,(k,l) denote a 3D patch
formed from a collection of 2D patches centred at (k, l)
in each of the frames XH

i,1, ...,XH
i,GH . Form in the same

way the corresponding LR patch pL
i,(k,l) by collecting 2D

patches centred at (k, l) in each of the frames YL
i,1, ...,YL

i,GH .
The training set is now composed of pairs of 3D patches
(pH

i,(k,l),pL
i,(k,l)) for each GOP gi and for chosen coordinates

(k, l).
By stacking the content of these patches into column
vectors, we can further proceed with the same training steps
as described in Section II. In practice, we apply feature
extraction and PCA to each 2D slice from a 3D patch pL

i,(k,l)

separately (which leads to 90 features per each 3D patch).



Fig. 5. Test video sequences used in our experiments. Top row, from left to
right: Akiyo, Flowers, Foreman and Mobile. Bottom row: News, Walking and
Waterfall.

This learning process yields a coupled dictionary
CDi = (DH

i ,DL
i ), re-trained in the GOP gi.

Fig. 4 illustrates 3D atoms in the HR part of a coupled
dictionary trained from three consecutive frames of the Mobile
sequence. Each 3D atom consists of three 2D slices shown
next to each other horizontally. Notice that in most of these
3D atoms the constituent 2D slices have similar structures,
linearly displaced from one slice to the other, which reflects a
translatory motion.

C. Enhancing resolution of LR frames

Once the coupled dictionary CDi = (DH
i ,DL

i ) is learned
using the HR part of gi, it is applied to super-resolve the LR
frames of the same GOP: XL

i,GH+1, ...,XL
i,G (uni-directional

scheme) or two groups of LR frames, from the previous GOP:
XL

i−1,GH+1+(G−GH)/2, ...,XL
i−1,G and from the same GOP:

XL
i,GH+1, ...,XL

i,GH+(G−GH)/2 (bi-directional scheme).
For compactness, assume in the following the uni-directional
scheme, having on mind that analogous procedure is applied
in the bi-directional case to the two groups of LR frames,
as written above. Note that in the training phase LR patches
were of the same size as the HR ones, only blurred. Hence,
we first up-sample, by a simple interpolation, the LR frames
to the size of HR frames. Denote the sequence of the resulting
LR frames in gi by ZL

i = {ZL
i,GH+1, ...,ZL

i,G}. Now we
can extract 2D and 3D patches and their features from ZL

i

in an analogous way that they were extracted from YL
i in

the learning phase. For each LR feature vector fLi,j,(k,l) from
ZL
i , the sparse representation coefficients wi are computed

using the Orthogonal matching pursuit (OMP) [6], [16] by
coding fLi,j,(k,l) with DL

i . Finally, the same sparse coefficients
wi are used to generate the HR information of the patch
pH
i,j,(k,l) = DH

i wi.

IV. PERFORMANCE ANALYSIS

Here we analyse the performance of the video SR schemes
introduced above and we evaluate the influence of the design
parameters: dictionary size and sparsity of the reconstruction.
We selected seven test sequences in CIF resolution containing
different types of content and different motion patterns. Fig. 5
shows their representative frames. From these sequences, we

create mixed-resolution videos, with G = 16 and GH = 3.
The LR frames in each GOP are obtained by down-sampling
the original corresponding frames by a factor of 2. Hence, SR
will be applied with up-scaling factor of 2. We use HR patch
size of 8× 8. The size of HR dictionary atoms in the 2D case
is also 8×8 and in 3D case 8×8×3. Using the original video
sequence before downsampling as ground truth, we evaluate
the analysed SR schemes by means of the resulting peak signal
to noise ratio (PSNR) per frame, or in terms of averaged PSNR
per sequence. All the results correspond to the uni-directional
scheme, unless explicitly stated otherwise. The PSNR values
were not calculated starting from a mixed resolution video,
but starting form a video with all frames in LR and the HR
frames at the beginning of each GOP were only employed as
an external information for dictionary re-training. We re-train
coupled dictionaries at the beginning of each GOP, using all
GH available HR frames (3D version) or using only the first
frame (2D version).

A. 3D versus 2D coupled dictionary

On most of the tested sequences, 3D coupled dictionaries
yielded better results than 2D dictionaries. Visually, less tem-
poral flickering is observed and the reconstructed details often
appear sharper. Fig. 7 shows the average PSNR gain of the 3D
over 2D scheme, per sequence. A significant PSNR gain can be
observed only on three out of seven sequences, all of which
show relatively slow translatory motion. On two sequences,
the 2D scheme yielded a higher average PSNR, which could
be attributed to the limitations of 3D atoms to capture more
complex or rapid motion patterns.

B. The influence of dictionary size and sparsity

Fig. 8 illustrates the influence of the dictionary size on the
reconstruction quality on two sequences. As the dictionary size
increases the mean PSNR score increases as well, at the cost
of more computationally intensive training and reconstruction.
On some sequences, the PSNR continued to increase even after
8000 atoms. For larger dictionary sizes, numerical problems
arose.
Fig. 9 and 10 show the influence of the reconstruction sparsity
factor for various dictionary sizes, in the 2D and 3D case,
respectively. It can be observed that the optimal reconstruction
sparsity is higher for 3D than for 2D dictionaries, which can
be attributed to more complex structure of the 3D atoms. A
higher sparsity factor imposes also a higher computational
complexity.
With a sparsity factor of 6 and dictionary size of 1024, a good
compromise is achieved for most of the tested sequences.

C. The effect of dictionary re-training

Fig. 6 illustrates the influence of dictionary re-training,
on examples of two test sequences. Obviously, the PSNR is
peaked at positions where dictionaries were re-trained, due to
a good fit between the coupled dictionary and the test frame.
However, the performance tends to drop significantly (in
many cases with more than 0.5dB) already in the next frame.



Fig. 6. The effect of coupled dictionary re-training at the beginning of each
GOP, illustrated for two test sequences.

Fig. 7. The PSNR gain of the 3D versus 2D dictionary learning, averaged
per sequence.

This behaviour is observed with both 2D and 3D schemes
and, rather surprisingly, even on parts of sequences without
sudden changes of the content. A possible explanation is
that during down-sampling of the original high-resolution
version differences occurred in the edges and textures of the
neighbouring frames, which can lead to differences in the
selected atoms during the reconstruction. This effect may
hinder practical applicability of coupled dictionary schemes
in video SR and deserves to be studied thoroughly in a follow
up paper.

Fig. 8. Influence of the coupled dictionary size. The sparsity factor at the
reconstruction was 6.

Fig. 9. Influence of the sparsity factor at the reconstruction, for the case of
2D dictionaries.

Fig. 10. Same as Fig. 9, for 3D dictionaries.



Fig. 11. A comparison between uni-directional and bi-directional video SR
schemes, on test sequences News, Flowers and Akiyo.

D. Bi-directional versus uni-directional video SR.

As expected, bi-directional video SR scheme, explained in
Section III-A, yields improved PSNR over the uni-directional
scheme on most of the test sequences, both for 2D and 3D
dictionaries. Fig. 11 compares the PSNR results of the two
schemes per frame on three test sequences. Evidently, the
performance improves on the last part of each GOP.

V. CONCLUSION

In this work, we analysed the performance of coupled
dictionary learning in the context of video super-resolution. We
extended the coupled dictionary method of [2] to 3D, such that
video SR is handled without explicit motion estimation. An ob-
vious improvement over 2D dictionaries in this application was
observed on some, but not on all test sequences. Bi-directional
schemes were shown to outperform the uni-directional ones,
both with 2D and 3D dictionaries. Further research is needed
to understand and overcome a relatively fast performance drop
in the first frames after dictionary re-training.
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