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ABSTRACT
We introduce a two stage patch-based structure aware

inpainting method within a Bayesian framework. An original
conditional Markov random field (MRF) model is introduced
to encode spatial clustering of image patches with missing
parts. Within this model an anisotropic MRF encodes spread-
ing of given classes of image content in locally dominant
directions. We infer posterior probabilities for each patch to
belong to different classes, and use these to select plausible
candidate replacement patches. The second stage solves
an optimization problem with multiple-candidates for each
damaged patch, as in recent global inpainting methods. The
results demonstrate a clear advantage of our structure-aware
candidate selection.

I. INTRODUCTION

There are two main approaches to image inpainting:
diffusion-based [1], and patch-based [2]–[6]. Diffusion-
based methods propagate (diffuse) local structures in a given
direction, in order to continue straight lines, curves or to
fill in narrow holes. Patch-based methods are superior in
inpainting larger missing regions, as they are capable of
replicating both structure and texture of the surrounding
areas. A recent overview of patch-based methods can be
found in [6]. In a nutshell, these methods operate as follows.
For each patch of the missing region (target patch), a
suitable replacement patch is found in the available part of
the image (source region) and copied to the corresponding
location. Propagating image structures (i.e., continuing lines,
object boundaries etc.) is typically treated by defining the
filling order [2], [6]. Another important aspect is optimizing
the search for plausible candidates (potential replacement
patches) in order to accelerate the inpainting process and
to prevent introduction of wrong textures into the target
region. Solutions include using image segmentation [3], [7]
and contextual descriptors [8], [9] to guide the search for
candidate patches.

The approaches for optimizing filling order and candidate
selection can be combined with both greedy [2], [5] and
global [4], [9] methods. While greedy methods search for
only one, best match for each target patch, global methods
allow multiple candidates for each target patch and subse-
quently solve an optimization problem. This optimization

problem can be understood as solving a puzzle with mul-
tiple pieces at each position, such that the selected patches
agree with the underlying undamaged regions, and among
themselves.

While the state-of-the-art in digital image inpainting is
very advanced, such that even large missing regions can be
filled in a visually plausible way [6], [9], certain limitations
were recently reported in the application of virtual painting
restoration such as crack inpainting [10]. In particular, in
cases where painted structures, like fine inscriptions are
relatively small compared to the crack width, it is very
difficult for the inpainting algorithms to infer the correct
structure locally. The solution proposed in [10] improves the
candidate selection process by detecting locally likely direc-
tions of structure propagation and prioritizing accordingly
certain types of source patches. In particular, directional
neighborhoodsNi(p) are formed around each target patch φp
using a finite number of discrete directions (e.g., horizontal,
vertical, diagonal) and prior preference Pp,x for selecting
a source patch φx as a candidate replacement for φp was
defined as Pp,x = S(φp, φx) + maxi

∑
q∈Ni(p)

S(φx, φq),
where S(φp, φx) is a certain measure of similarity between
φp and φx. This idea was only briefly outlined in [10] and
showed encouraging initial results.

In this paper, we cast a similar idea into a Bayesian
framework and develop a novel algorithm for structure-
aware candidate selection. We employ an anisotropic Markov
random field (MRF) model to encode existence of locally
dominant directional structures. In particular, we allow a
given number (k) of (user-defined or inferred by clustering)
classes ρ ∈ {1, 2, . . . , k} of image content and we estimate
for each target patch φp marginal posterior probabilities
that it belongs to these classes. The selection of plausible
candidates φx is guided by these posterior probabilities
P (ρp | φp). We employ this algorithm as the first stage of
the inpainting process, and in the second stage we solve the
resulting optimization problem (constructing a puzzle out of
the selected candidates) using the MRF-based method of [8],
an extended version of which was recently reported in [9].

This way we obtain a two-stage inpainting method, where
both stages are within a unified Bayesian framework, using
MRF priors and message-passing inference, albeit with dif-
ferent types of clique potentials.



The main novelties are in (i) introducing ideas for se-
lecting candidate patches based on the posterior marginal
probabilities of content classes of target patches; (ii) in-
troducing an original conditional MRF model defined over
image patches with missing parts and (iii) defining a concrete
fitting criterion between the source and the target patches
that employs the inferred posterior probabilities. Apart from
this, as a by-product of our approach we also obtain a
segmentation result, where each image patch, including those
with partially or fully missing pixels, is assigned to one of
the content classes. This result may in itself be of interest,
even though we do not use it here directly. Experimental
results on some parts of the digitized Ghent Altarpiece show
a clear benefit from our two-stage method in virtual crack
inpainting.

The paper is organized as follows. In Section 2, an outline
of the complete proposed two-stage method is presented
and the notation is set. Section 3 addresses the first stage
and introduces a method for inferring posterior marginal
probabilities of content classes of target patches. Section
4 establishes the fitting criterion based on the marginal
posterior probabilities, and sets the way for the second
stage of actual inpainting. Section 5 presents the results, and
Section 6 concludes the paper.

II. A TWO-STAGE PATCH-BASED INPAINTING
METHOD

In order to infer correctly the geometry of image structures
in an inpainting process, we propose a novel two-stage patch-
based impainting method. Here we give the basic outline of
the algorithm. The role of each stage is as follows.

1) Bird’s view
Determining how image objects spread in the missing
regions, following their geometry in a wider context.
This yields plausible candidates for each target patch.

2) Fine tuning
Solving a puzzle out of the selected candidates for
replacement patches, such that they fit with each other
and the known part of the image.

The problem defined under 2) has been well studied and
can be solved by various inpainting algorithms. Our focus
is on stage 1.

II-A. Notation
Let S denote an image grid. For a set of positions Q ⊂ S,

I(Q) denotes the set of the corresponding pixel values of the
image I. Further on, let Ω ⊂ S be the missing part (target
region), and Ψ ⊂ S the known part of the image (source
region), where Ω ∪Ψ = S.

For a fixed integer ω we define a set of positions: U =
{(x, y) | x = kω + 1, y = lω + 1, k, l ∈ N0, (x, y) ∈ S}.

From now on, we will refer to pixel positions with p, instead
of (x, y) for a simpler notation.

We define a (2ω + 1) × (2ω + 1) square mask ψ as a
set of positions centered at the origin (0, 0), and denote by
ψs := ψ + s a translated mask centered at s ∈ S.

Further on, G = {p | p ∈ U ∧ ψp ⊂ S ∧ ψp ∩Ω 6= ∅}
is the set of positions from U which are centers of over-
lapping patches containing unknown pixels (the patches to
be inpainted), and the set of central positions of all possible
source patches is Λ := {s ∈ S | ψs ⊂ Ψ}.

We denote by φp the content of the patch occupying the
positions in ψp.

III. A STRUCTURE-AWARE APPROACH: A
BAYESIAN MODEL

In this section, we address the problem of inferring how
probable it is that a given target patch (with partially or fully
missing pixels) belongs to a given class of image content.
This is made possible by taking into account the geometry
of the classes by using wide neighborhoods of the patches.

We propose the neighborhood system shown on the left
of Fig. 1. However, the proposed approach can be applied
with an arbitrary neighborhood as well.

Let G′ ⊂ U be a set of positions consisting of the elements
of G and their neighbors (denoted by G̃) according to the
chosen neighborhood system. We refer to the elements of G̃
as quasi-nodes. See the image in the center of Fig.1 for an
illustration. N (p) denotes the neighborhood of p ∈ G′.

The class of a patch is inferred based on the dominant
class of its pixels and the pixels of the neighboring patches.
The image content classes are modeled in a color or feature
space F .

Let ρp ∈ {1, 2, . . . , k} be a random variable denoting the
class of the patch centered in p ∈ G′. The problem we are
addressing can be formulated in the Bayesian framework.
Denote by P (ρ | φ) the joint a posteriori probability over
all patches in our MRF model. With the assumption that
the variables φp for p ∈ G′ are conditionally indepen-
dent given their classes ρp, the likelihood is expressed as
P (φ | ρ) =

∏
p∈G′ P (φp | ρp). Further on, we have

P (φp | ρp) ∝ e−D(φp | ρp), where D(φp | ρp) is the data
cost.

The prior probability P (ρ) is expressed by modeling ρ
as a Markov random field. Let G = (G′, EG′) be a graph,
where G′ is the set of nodes, and the set of edges EG′ ⊂
G′ × G′ is defined according to the chosen neighborhood
system. Assuming that local Markov properties hold, the set
of random variables {ρp}p∈G′ forms a MRF with respect to
the graph G. The prior can be expressed as P (ρ) ∝ e−E(ρ),
where E(ρ) is the prior energy, which is a sum of clique
potentials.

By Bayes’ formula we have P (ρ | φ) ∝ P (φ | ρ)P (ρ),
and using P (ρ | φ) ∝ e−E(ρ | φ), the posterior energy can



Fig. 1: Left: the proposed neighborhood: green dots repre-
sent centers of patches (nodes), different directions (horison-
tal, vertical, diagonal) are separate sub-neighborhoods. The
sub-neighborhood marked is the one indicating the presence
of a letter in the central patch. Center: Illustration of nodes:
nodes subject to inpainting (green) and quasi-nodes (purple).
The yellow frame indicates the size of each patch. Black
and white indicate the class of the pixels, while cracks are
marked by red; Right: Illustration of the result of stage 1:
different shades represent different a posteriori probabilities
of belonging to the classes.

be expressed as:

E(ρ | φ) =
∑
p∈G′

γ ·D(φp | ρp) +
∑
c∈C

δ · Vc(ρ), (1)

where γ > 0 and δ > 0 express the parameters within the
two terms, and Vc(ρ) is the potential of the clique c.

Let us remark here that
∑k
i=1 P (ρp = i | φp) = 1 holds

for all p ∈ G′, as each node belongs to one of the classes.
We can rewrite (1) by defining a neighborhood potential

VN (ρp,ρN (p)) determined by the potentials of cliques be-
longing to the neighborhood of a given central node p. In
this setting the second sum in the above expression can be
replaced by summing VN (ρp,ρN (p)) over p ∈ G′, as in [11]
and [12].

We propose a natural choice of the parameters that balance
the two terms of the posterior energy, based on the fraction
of the known pixels αp within a given image patch φp as
follows:

E(ρ | φ) =
∑
p∈G′

αp ·D(φp | ρp)+(1−αp) ·VN (ρp,ρN (p)),

For patches with fully unknown content (αp = 0), we rely
solely on the neighboring content, while for fully known
patches (αp = 1), we rely on the likelihood term.

For easier further discussion, in the above sum we denote
the terms by Ep := αp·D(φp | ρp)+(1−αp)·VN (ρp,ρN (p)).

III-A. Data cost
We model the local evidence by a multivariate Gaussian

distribution. Let patch φp be represented by a vector φ̂p of
the mean value of its known pixels in the feature space F .
We have:

P (φp | ρp = i) =
1√

(2π)l|Σ2
i |
e−

1
2 (φ̂p−mi)

T Σ−1
i (φ̂p−mi),

where l is the number of dimensions of the feature space, k
denotes the number of classes as before, and mi,Σi for i =
1, 2, . . . , k, are the means (vectors of size l) and covariance
matrices of the data sets:

Ti = {φ̂s | ψs ⊂ Ψ ∧ s ∈ U ∧ ρ̂s = i},

where ρ̂s denotes the class to which most of the pixels of
patch φs belong.

Using the relationship between the energy and the pos-
terior probability, the data cost function can be expressed
as:

D(φp | ρp = i) = c1,i · (φ̂p −mi)
TΣ−1i (φ̂p −mi) + c2,i,

where c1,i, c2,i are constants.

III-B. Neighbourhood potential: an anisotropic MRF
approach

In order to infer the geometric structure of objects in the
damaged regions, we turn to an anisotopic approach: the
neighborhood potential (for each central node p ∈ G) will be
determined by a sub-neighborhood that indicates presence of
dominant local structures (edges,lines, etc.). The basic idea
is that each sub-neighborhood represents a direction (or a
pattern) in which the geometrical structure of interest can
possibly spread. For example, the sub-neighborhood marked
in Fig. 1 (left), is dominant, as it suggests the propagation
of the letter in the central node.

The potential of each sub-neighborhood is the sum of
clique potentials of its cliques. For simplicity, we will
consider only pair-wise cliques in our model. This idea
originates from [13], where it was introduced in a form of a
binary anisotropic model (two classes) for pixels, and used
for noise removal in images.

Let N1(p), . . . ,Nj(p) ⊂ N (p) be sub-neighborhoods of
the neighborhood N (p) of node p, such that all Ni(p) are
of the same size and ∪ji=1Ni(p) = N (p).

The pair-wise clique potential function is defined as:

V2(ρp, ρq) :=

{
−β , ρp = ρq
0 , ρp 6= ρq

, (2)

where β is a positive constant. We define sub-neighborhood
potential functions VNi

as

VNi
(ρp, ρNi(p)) :=

∑
q∈Ni(p)

V2(ρp, ρq).

We distinguish two types of classes: directed and non-
directed. An example of a non-directed class is background,
or any class with structures that spread uniformly throughout
different directions, while the directed classes are those
with a structured geometry, relating to the defined sub-
neighborhoods. Let D ⊂ {1, 2, . . . , k} be the set of all



directed classes. Finally, we define neighborhood potential
as:

VN (ρp, ρN (p)) :=

{
mini VNi

(ρp, ρNi(p)) , ρp ∈ D
maxi VNi

(ρp, ρNi(p)) ,¬ρp ∈ D

so that if any sub-neighborhood indicates the presence of an
object (structure) belonging to a directed class in the patch
centered at p, that class is encouraged at node p. Otherwise,
if there is no indication of any directed class, non-directed
classes take over.

III-C. The optimization problem
Note that in the energy function E(ρ | φ) the term Ep

for a quasi-node p ∈ G̃, reduces to Ep = D(φp | ρp),
as αp = 1. Therefore, in the optimization process, we
don’t visit (update) quasi-nodes, in each iteration, as their
contribution Ep to the energy remains unchanged. This leads
to less computational complexity and faster executing time.

Further on, the normalization issues are solved naturally
by using P (ρp | φp) ∝ e−Ep and

∑k
i=1 P (ρp = i | φp) = 1.

Hence, in practice we solve

ρ̂ = argmaxρP (ρ | φ). (3)

The resulting marginal posterior distributions are illus-
trated on the right of Fig. 1, in a case of 2 classes (one
directed, and one non-directed).

IV. SELECTING CANDIDATE REPLACEMENT
PATCHES

The marginal posterior probability P (ρp| φp) regarding
node p is a vector of length k (number of classes), where
the i-th coordinate is P (ρp = i|φp), for i ∈ {1, 2, . . . , k}.
Recall that

∑
i P (ρp = i|φp) = 1. For the sake of finding

suitable candidates for inpainting at node p ∈ G, a vector
comparable to P (ρp| φp) needs to be defined for patches in
the source region (potential replacement patches). For x ∈ Λ,
this is the weighted (normalized) likelihood vector L(ρx φx)
of length k, where the i-th coordinate is L(ρx = i | φx) ∝
e−D(φx=i | ρx), and

∑
i L(ρx = i | φx) = 1 holds.

x ∈ Λ is considered a suitable candidate for inpainting at
the node p ∈ G if:

‖P (ρp | φp)− L(ρx φx)‖2 < ε, (4)

for some small ε > 0. Note that for a quasi-node q ∈ G̃
we have P (ρp| φp) = L(ρx φx), as G̃ ⊂ Λ (patches repre-
sented by quasi-nodes are themselves potential replacement
patches). This makes the defined vector L(ρx φx) and fitting
criterion (4) fully consistent.

The search for candidates satisfying (4) can be carried
out in different ways from exhaustive search to searching
efficiently structured data using various approaches. For
simplicity, we choose to divide the interval [0, 1] into (say
m) disjoint subintervals of equal lengths. Denote the set of
these subintervals by I. Ik is the Cartesian power of the set

I. We consider patch x with center in Λ a suitable candidate
for inpainting at node p ∈ G if:

(∃J ∈ Ik)(P (ρx | φx) ∈ J ∧ P (ρp | φp) ∈ J). (5)

All the possible replacement patches (patches with centers
in Λ) are classified into these subintervals. This can be done
also per large enough non-overlapping blocks of the image,
so the classification is more efficient. Such implementation
fits very well if a context aware inpainting, based on selec-
tion of the appropriate blocks, is used in the second stage. If
there is no such block selection mechanism, we simply take
the candidates from the whole image.

When the appropriate candidates are selected as described,
they are further pruned according to the inpainting method
used in stage 2. As we are using the inpainting algorithm
from [8] in the second stage, the final selection of candidate
replacement patches is based on SSD (sum of squared
differences) between the known part of the target patch and
the same part of the candidate patch.

V. IMPLEMENTATION AND RESULTS
We solve the optimization problem (3) by Neighborhood

Consensus Message Passing (NCMP) [14], which is an
efficient, low-complexity alternative to standard loopy belief
propagation (LBP). Convergence is achieved in less than 20
iterations in each experiment.

The second stage, where the actual inpainting takes place,
formulated as an optimization problem within a MFR model
as well, is also implemented by NCMP as in [8]. In each
experiment we used 100× 100 blocks.

NCMP is not only simpler and much faster than belief
propagation, but it was also proven to give good results
in applications that employ models related to ours. For
example, in [14] it was shown that NCMP can yield in
much shorter time similar quality of the results as LBP
in applications like segmentation of a noisy image and
patch based super-resolution with MRF priors. However, our
framework is not tuned to a particular inference method
and allows using LBP as well. We do not expect that this
would affect significantly the quality of the results, only the
number of required iterations to achieve convergence and the
complexity per iteration is likely to change.

The number of final candidate replacement patches per
node is chosen to be k4, where k is the number of classes.
In the bottom image of Fig. 2 we have 3 classes, while 2
in the other experiments (top of Fig. 2, and Fig. 3). Patch
size (2ω + 1) × (2ω + 1), varies according to the size of
images, and the size of unknown regions and structures to
be followed. In our experiments ω = 8 for the top image in
Fig. 2, ω = 6 for the bottom image in the same figure, and
ω = 10 for Fig. 3.

The algorithm is tested on different parts of the Ghent
Altarpiece, to inpaint cracks and regions of removed over-
paint. We compare the results with [8] and with Content



Fig. 2: In the two subfigures different parts of the book from the panel Annunciation to Marry from two different collections
of scans are shown. Left to right: the original scan (up: 758×707; down: 495×415), crack inpainting result using Adobe
Photoshop’s Content Aware Fill, crack inpainting result using method from [8], and crack inpainting results of the proposed
method.

Fig. 3: A small part of the John the Evangelist, panel where overpaint is removed. Left to right: the original scan (827×550),
the result using Adobe Photoshop’s Content Aware Fill, the result of [8], the result of the proposed method.

Aware Filling available in the commercial software Adobe
Photoshop CS5 based on [15], [16]. The results of Content
Aware Filling show more artefacts in comparison to [8], but
in the results of [8] some parts of letters are deleted as
well. The improvements achieved by our method are clearly
visible in Fig. 2 - Fig. 4. The structure of the letters is
better inferred, as hence the letters are better inpainted (see
enlarged parts in Fig. 4).

As a feature space we used a concatenation of RGB, Lab
and HSV color spaces (9 channels in total). A more general
and perhaps more effective solution could be found, however
this is not a central question in the proposed method, but
rather an implementation detail.

For initialization, we used pixel-wise segmentation using
standard methods such as k-means. The parameter β was
optimized experimentally (stable results are achieved with
values between 1 and 1.2).

A major portion of the computation time in the complete
inpainting process is taken by the second stage. A compre-

hensive analysis of the time and space complexity in this
stage (also in comparison to related inpainting methods) was
already reported in [9], showing, e.g., significant savings in
comparison to the MRF-based method of [4]. The analysis
in [9] also shows that the computation time of the second
stage is mostly influenced by the number of the required SSD
computations. The overall number of calculations depends
on the number of potential candidate replacement patches
before pruning, and on the number of final candidates per
node. As our method limits the number of potential candi-
dates by allowing only those consistent with the inference
from the first stage of the algorithm, the extent of the SSD
comparisons in the pruning process can be reduced greatly.
This reduces the overall complexity of the algorithm, as
the first stage is much less computationally expensive than
the second one. We leave a more precise quantification of
the resulting computation speed-up for a follow-up paper,
because certain parts of our algorithms are not yet optimized
in terms of speed. In particular, (5) is a computationally



Fig. 4: Some enlarged parts of Fig. 2: rows: different
enlarged parts (1-2 upper, 3-4 lower image); columns (left
to right): original image, inpainting results using the method
from [8], and the proposed method.

expensive approach to find candidate replacement patches
satisfying (4), and depends greatly on the number of classes.
Optimizing the implementation of this criterion will be a part
of a future work.

VI. CONCLUSION
In this paper we introduced a structure-aware candidate

selection mechanism based on the posterior marginal proba-
bilities of content classes of target patches, which can be
employed to improve the results of existing patch based
inpainting methods. The potential of such an approach is
evident from the presented experiments. The inference can
be carried out based on different feature spaces, wherever
the desired classes are distinguishable. Furthermore, the pro-
posed selection criterion of replacement patch candidates can
be further constrained by combining it with other existing
approaches, what gives the proposed method lots of possible
applications and ways for future developments.
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