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Abstract: Recently emerging non-invasive imaging modality - optical coherence tomography (OCT) – is becoming an 

increasingly important diagnostic tool in various medical applications. One of its main limitations is the presence of speckle noise 

which obscures small and low-intensity features. The use of multiresolution techniques has been recently reported by several 

authors with promising results. These approaches take into account the signal and noise properties in different ways. Approaches 

that take into account the global orientation properties of OCT images apply accordingly different level of smoothing in different 

orientation subbands. Other approaches take into account local signal and noise covariance's.  

So far it was unclear how these different approaches compare to each other and to the best available single-resolution despeckling 

techniques. The clinical relevance of the denoising results also remains to be determined. In this paper we review systematically 

recent multiresolution OCT speckle filters and we report the results of a comparative experimental study. 

We use 15 different OCT images extracted from five different three-dimensional volumes, and we also generate a software 

phantom with real OCT noise. These test images are processed with different filters and the results are evaluated both visually 

and in terms of different performance measures. The results indicate significant differences in the performance of the analyzed 

methods. Wavelet techniques perform much better than the single resolution ones and some of the wavelet methods improve 

remarkably the quality of OCT images. 
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I. INTRODUCTION 

Optical coherence tomography (OCT) [1]-[5] emerges as 

a new and promising non-invasive medical imaging 

modality. Next to its primary application in 

ophthalmology, OCT is becoming increasingly popular 

diagnostic tool in many other medical fields, including 

dermatology, gastroenterology, dentistry and endoscopic 

intra-arterial imaging. The main advantages of OCT are a 

remarkably high resolution both in depth and 

transversally, as well as non-invasive, and contact-free 

imaging. A disadvantage is a limited penetration depth in 

scattering media. 

Likewise all coherent imaging systems, OCT suffers 

from speckle noise. Appearing as a random granular 

pattern, speckle obscures small and low-intensity 

features. While sharing some common properties with 

other types of speckle noise (like, e.g., in ultrasound 

images) OCT speckle has some characteristic properties 

and so does the OCT signal itself. A well-designed OCT 

despeckling method will benefit from taking into account 

these characteristic signal and speckle properties. 

The use of multiresolution (wavelet-based) techniques 

has been recently reported by several authors with 

promising results. These approaches take into account the 

signal and noise properties in different ways. Approaches 

that take into account the global orientation properties of 



OCT images apply accordingly different level of 

smoothing in different orientation subbands. Other 

approaches take into account local signal and noise 

covariance's. So far it remains unclear how these 

different approaches compare to each other and to the 

best available single-resolution despeckling techniques. 

The clinical relevance of the denoising results also 

remains to be determined. In this paper, we review 

systematically recent multiresolution OCT speckle filters, 

we report the results of a comparative experimental 

study, and we give a critical discussion of our findings. 

We evaluate the techniques both on phantom images and 

on real OCT images and on a software phantom image. 

This paper is organized as follows. Section II reviews 

briefly main concepts of OCT imaging: the formation of 

OCT images (Section II-A), some applications (Section 

II-B) and noise properties (Section II-C). A systematic 

classification of representative noise reduction methods 

for OCT is in Section III. Section IV starts with a brief 

overview of the wavelet transform and wavelet denoising 

principles and then describes four representative 

approaches for OCT speckle reduction in the wavelet 

domain. The performance evaluation is in Section V. We 

divide this performance evaluation into visual assessment 

(Section V-A) and objective performance evaluation 

(Section V-B). Next to the widely used performance 

measures, we adapt some other measures for making 

them applicable to our problem and we also define a new 

measure for texture preservation. A discussion is in 

Section VI and the conclusions in Section VII. 

II. COHERENCE TOMOGRAPHY IMAGING 

A. Formation of OCT images 

Optical Coherence Tomography (OCT) [1], [3]-[5] can 

be briefly described as echography with light. Due to the 

speed of light however, practical OCT systems are not 

time-of-flight based (while ultrasound is). Optical 

interferometry is used as an indirect way to visualize 

coherently reflected or scattered light. In the simplest 

form, a partially coherent light source is illuminating a 

Michelson interferometer (see Fig. 1). In the reference 

arm, a mirror is moved (speed in the kHz range, e.g. with 

a voice coil) so that constructive interference can only 

happen at a depth in the tissue corresponding with the 

position of the reference mirror at each moment (taking 

into account the ratio of the refractive indices in the 

tissue and in the air). This way, a vertical linear image 

(“A-Scan” or “needle image”) of the tissue is produced. 

By scanning the beam transversally, a 2D cross-section 

image of the tissue can be made. If the whole 

construction is additionally moved in a direction 

perpendicular to the transversal direction, a full 3D 

image volume can be imaged. 

The light source needs to be partially coherent, in order 

to allow constructive interference only at a certain depth. 

With a coherent source (laser), a constructive 

interference could arise from wherever in the tissue (e.g., 

after multiple scattering) and there would not be any 

depth (z-axis) resolution. In fact, one can prove that the z-

axis resolution of an OCT system is proportional to the 

bandwidth of the light source, thus it is crucial to use 

sources with a bandwidth as high as possible, yet with 

limited cost. Currently, SLDs (Super Luminescent 

Diodes) fit this purpose best with bandwidths of 50-100 

nm for a 1300 nm wavelength. 

A nice feature of OCT is that this z-resolution is fully 

decoupled from the resolution in the perpendicular 

directions (i.e., from x- and y-resolution), which is 

determined by the optics of the system. This is not the 

case, e.g., with confocal microscopy. The choice of 

wavelength is a compromise between better resolution at 

smaller wavelengths versus less scatter at higher 

wavelengths. 

The contrast or signal is based on Fresnel reflection: only 

where there are significant changes of the index of 

refraction (within the coherence length) a signal will be 

generated. It can be shown that the detector signal is 

proportional to the square root of the sample power 

reflectivity. The remarkable result is that relative contrast 

changes as small as 10
-6

 can still be detected since they 

are “square rooted” to a 1/1000 contrast, which can still 

be detected, even with a normal CCD. In other words: the 

small contrast variation is amplified considerably by the 

interferometer mechanism. 

A typical waveform coming from a needle scan is shown 

in Fig. 2 - the “bumps” indicate depths where there was a 

significant change in tissue characteristics (i.e., in the 

refractive index). This signal is then typically 

demodulated by first of all rectifying, and then filtering 

with some kind of low-pass or band pass filter to detect 

the actual reflections. Fig. 3 illustrates the resulting, 

demodulated waveform. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Principle of an OCT interferometer. 
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Fig. 2. Raw A-Scan OCT signal acquired by probing vertically 

down into an object. 

 

 

 

 

 

 

 

 

 
Fig. 3. Demodulated A-Scan OCT Signal. 

 

Assigning the measured intensity values in a pixel matrix 

results in an image representative of the tissue structure 

changes. 

 

B. Some applications of OCT 

The very first commercialized applications are in the 

field of opthalmology: OCT enables a totally non-

invasive view of the retina tissue structure. This allows to 

precisely diagnose and monitor diseases like Age-related 

Macular degeneration (AMD), retinopathy, etc. - albeit 

that most methods still have relatively low resolution (10 

microns) and do not cope well with eye movements. 

The capability of bringing microscopic detail in vivo 

equals a kind of “virtual biopsy” which potentially could 

replace many invasive biopsy procedures to support 

diagnosis - in many fields beyond ophthalmology. The in 

vivo capability, combined with the totally harmless 

character of the near-infrared radiation, will also allow 

quality control (e.g. verification of cancer-free tissue 

after surgery, verification of lens thickness during 

LASIK procedures etc.). The weakness of the limited 

working depth (in practice in the order of 1 mm 

currently) obviously has to be overcome by miniaturizing 

the technology so that it could be used in endoscopes and 

even catheters. A thorough review of OCT applications is 

in [5]. 

C. Speckle noise in OCT 

OCT images, as well as all other imaging modalities that 

involve a coherent light source, are affected by speckle 

noise. Speckle, arising from constructive and destructive 

interferences of the backscattered waves appears as a 

random granular pattern [6] that significantly degrades 

image quality and complicates further image processing 

tasks, like image segmentation and edge detection. In 

addition to the optical properties (like multiple scattering 

and phase aberrations of the propagating light beam) and 

target motion, the speckle formation is also influenced by 

the physical parameters of the imaging device: size and 

temporal coherence of the light source and the aperture of 

the detector [4]. 

Speckle is well modeled by a multiplicative noise. In 

denoising studies, it is often simplified that a 

logarithmical transform converts multiplicative speckle 

noise into additive white Gaussian noise [7]-[9]. In [10], 

it is shown that this assumption is oversimplified and a 

preprocessing procedure is proposed, which modifies the 

acquired images so that the noise in the log-

transformation domain becomes close to white Gaussian 

noise. 

The marginal statistics of (fully developed) speckle is 

well modeled by a Rayleigh distribution [11], [12]. The 

Rayleigh model proves to be a good model for the first-

order statistics of OCT images as well [13], [14], even 

though under certain conditions a Gaussian model holds 

[15]. An analytical model that describes the performance 

of OCT signals in both single and multiple scattering 

regimes is presented in [16] and [17] and the influence of 

multiple scattering on the measurement of the total 

attenuation coefficient is described in [18] and [19]. In 

[20], the correlation between OCT speckle and the 

statistical and optical properties of the sample tissue are 

discussed. Higher order speckle statistics (speckle 

autocorrelation, roughness and randomness of the 

structure, etc.) are studied, e.g., in [12], [21]-[23] and in 

classical optical literature [24]. 

III. SPECKLE REDUCTION IN OCT 

Standard despeckling methods include the Lee [25], 

Kuan [26] and Frost [27] filters, which use the second 

order statistics within a minimum mean squared error 

estimation approach and a multiplicative speckle model. 

A comparative analysis of these and related filters is, 

e.g., in [28]. For OCT images, the Rotating Kernel 

Transform (RKT) filter [29], [30] is one of the best 

performing single-resolution filters. The RKT technique 

filters an image with a set of oriented templates (kernels) 

and keeps the largest filter output at each pixel [29]. The 

filtering kernel consists of zeroes and ones and is 

typically an elongated, line-like structure that is rotated 

in small discrete steps through 360
o
. In essence, the RKT 

filter calculates the weighted average of the pixel values 

in an elongated neighborhood, repeats that along 

different directions and retains the maximum result. This 

technique is efficient, but rather ad hoc and uses no 

information concerning the speckle statistics. Several 

multi-resolution (wavelet-based) speckle filters will be 

reviewed in the next Section. 
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Noise reduction can be applied before or after OCT 

image formation. The techniques that are applied to the 

magnitude of the OCT interference signal (i.e., after an 

OCT image is formed) are also called image post 

processing techniques. Other techniques are applied to 

the complex interference signal itself (complex domain 

methods) [4], [31].[35]. In this paper, we address the first 

category. 

We can make a distinction between generic techniques, 

developed for other (or for more general) imaging 

modalities, which can be applied to OCT (like various 

speckle filters [36]-[41] or filters for correlated noise 

[42]) and techniques specifically developed or adapted 

for OCT [29], [30], [43], [44]. 

Another possible categorization is into single-resolution 

and multi-resolution techniques, such as wavelet-based 

techniques [39]-[44]. 

Some methods suppress only noise, while others attempt 

at deblurring as well and apply deconvolution combined 

with noise suppression. The deconvolution methods 

developed for OCT require a priori information about the 

point-spread function of the imaging optics, as well as 

the optical properties of the imaged tissue. 

In Table 1, we give an overview of some representative 

OCT speckle reduction techniques and we classify them 

according to the criteria mentioned above. 

 

Method PP or C G or O N or D I or T 

[31] C O N *** 

[32], [34], [45] C O D *** 

[29] PP O N I 

[36]-[38], [46] PP G N I 

[43], [44] PP O N T 

[39]-[41], [47],[89] PP G N T 

Table 1. Classification of some state of the art OCT speckle 

reduction techniques. From left to right: image Post Processing 

(PP) or Complex domain processing (C); Generic technique (G) 

or adapted to OCT (O); only Noise suppression (N) or also 

Deconvolution (D); working in the Image domain (I) or 

working in a Transform domain (T) (if relevant). 

IV. WAVELET BASED OCT FILTERS 

In this Section, we review several representative wavelet 

based denoising methods for OCT ranging from 

thresholding to vector based minimum mean squared 

error estimation. Other notable examples of wavelet 

based OCT denoisers include the optimal non-linear 

wavelet thresholding (ONWT) method of [43], originally 

developed for ultrasound [48], which applies soft-

thresholding, with image dependent and sub-band 

dependent thresholds and the multi-dimensional method 

of [49], which processes multiple OCT image slices by 

making use of both spatial and temporal correlations. 

A. Wavelet transform 

The wavelet transform reorganizes image content into a 

low-resolution approximation and a set of details of 

different orientations and different resolution scales. A 

fast algorithm for the discrete wavelet transform is an 

iterative filter bank algorithm of Mallat [50], where a 

pair of high-pass and low-pass filters followed by down 

sampling by two is iterated on the low-pass output. In a 

non-decimated wavelet transform that we consider in this 

paper, down sampling is excluded, and instead the filters 

are up sampled at each decomposition stage as explained 

later in the text. The outputs of the low pass filter are the 

scaling coefficients and the outputs of the high-pass filter 

are the wavelet coefficients. At each decomposition level, 

the filter bank is applied sequentially to the rows and to 

the columns of the image. Low-pass filtering of both the 

rows and the columns yields the low-pass LL sub-band 

and other combinations of low-pass and high-pass 

filtering yield the wavelet sub-bands at different 

orientations: High-pass filtering of rows and low-pass 

filtering of columns (HL) yields horizontal edges and the 

opposite combination (LH) yields vertical edges, while 

high-pass filtering of both the rows and the columns 

(HH) yields highest frequency information, corners and 

edges that are close to diagonal orientations. The j-th 

decomposition level yields the coefficients at the 

resolution scale 2
j
. 

Critically sampled (orthogonal) wavelet transform is not 

shift-invariant. In such a representation, small errors in 

estimation of the coefficients result in annoying blobs 

and ringing artifacts. Denoising performance is much 

improved when using redundant and (nearly) shift-

invariant transforms. The resulting gain in PSNR is often 

1dB or even more [52]. Common approaches include 

using non-decimated wavelet transform [52,53,74-77], 

dual-tree complex wavelet transform [86] and cycle-

spinning [51]. Cycle-spinning consists of denoising 

multiple cyclical shifts of the image and averaging over 

unshifted results, which yields a similar improvement 

over the critically-sampled case as the non-decimated 

transform [52]. More recent approaches achieve further 

improvements in the denoising performance by using 

highly redundant representations with multiple 

orientation bands such as curvelets [87,88] and steerable 

pyramids [42,47,89]. 

 

We use a non-decimated wavelet transform implemented 

with the algorithm à trous [53]. The algorithm inserts 

12 −j
 zeroes (i.e., holes, French trous) between the 

filter coefficients at the resolution level j. The size of 

each wavelet sub-band equals the size of the input image. 

For compactness, denote the spatial position vector [m,n] 

by a single index l, and denote the scaling coefficients at 

the resolution level j by j
la  and the wavelet coefficients 



at the corresponding scale in three orientation sub-bands 

by HLj
ly , , LHj

ly ,  and HHj

ly , . With this notation, we have: 
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where the input image is approximated by a
0
 with a 

negligible error [53]. 

B. Preliminaries and Notation 

Wavelet transform is attractive for denoising since it 

compresses the essential information about image/signal 

into a few large coefficients, while input noise tends to 

be spread among all the coefficients. Hence even in the 

presence of large amounts of noise, the wavelet 

coefficients representing strong image edges can be 

identified. This facilitates construction of discontinuity-

adaptive filtering, where noise is smoothed out without 

excessive blurring of significant image edges and other 

important image details. 

A common shrinkage approach is thresholding [54]-[57], 

where the coefficients with magnitudes below a certain 

threshold are treated as “non significant” and are set to 

zero, while the remaining, “significant” ones are kept 

unmodified (hard-thresholding) or reduced in magnitude 

(soft-thresholding). Shrinkage estimators can also result 

from a Bayesian approach [41], [42], [52], [58]-[76], 

which imposes a prior distribution on noise-free data. 

Inter- and intrascale dependencies among the wavelet 

coefficients are often accounted for by using local 

contextual measurements (such as locally averaged 

magnitudes, local variances, and related local spatial 

activity indicators) [42], [52], [70], [77] or more complex 

contextual models, such as Hidden Markov Tree (HMT) 

models [68], [69], [78] and Markov Random Field 

(MRF) models [74]-[76], [79]. Other recent approaches 

use spatial connectivity information to refine the 

selection of the wavelet coefficients in a hard-

thresholding procedure (so-called feature-based or 

“geometric” hard-thresholding [83]) explained in Section 

IV.D. 

In the following, we will assume that a logarithmic 

transform has been applied to the input image, which 

transforms the input multiplicative noise into additive 

Gaussian noise. Due to linearity of the wavelet transform, 

the noise in the wavelet domain remains additive 

Gaussian. We use the following notation 

                               
dj

l
dj

l
dj

l nyw
,,, +=  (3) 

where dj
ly ,  denotes the noise-free coefficient component 

at spatial position l, resolution level j and orientation d. 
dj

ln
,

 is a Gaussian distributed noise contribution and 

dj
lw ,  the observed noisy coefficient. 

 

 

C. Spatially adaptive thresholding for OCT 

Effective and simple denoising approach is wavelet soft-

thresholding [54] with a level-dependent threshold T, 

where )0,|max(|)sgn(ˆ ,,,
Twwy

dj
l

dj
l

dj
l −= . The choice of 

the threshold T has been a subject of many research 

papers. A well known approach is the so-called universal 

threshold [54]: NT n log2σ= , where nσ  is the noise 

standard deviation and N is the number of the 

coefficients in a given subband. The rationale behind this 

threshold is to remove all the coefficients that are smaller 

than the expected maximum of i.i.d. normal noise. Many 

other threshold selection procedures exist, see, e.g., [90]. 

Despite its theoretically proved optimality for a broad 

class of functions [54], [55], thresholding with spatially 

fixed threshold tends to over smooth the image. High-

quality denoising is achieved by making the threshold 

dependent on the sub-band statistics but also on the local 

spatial context. 

An efficient method for the suppression of additive white 

Gaussian noise employing sub-band adaptive and 

spatially adaptive threshold dj
lT , was proposed by Chang 

et al in [52], where it was called spatially adaptive 

wavelet thresholding (SAWT). The SAWT estimator is 

               )0,|max(|)sgn(ˆ ,,,, dj

l

dj

l

dj

l

dj

l Twwy −=  (4) 

with 

                                 
dj

ly

nd
jlT

,2

2

,
)(σ

σ
=  (5) 

where 2
nσ  is the noise variance (equal in all the subbands 

when orthogonal wavelets are used) and 
dj

ly
,2

)(σ is the 

signal variance, estimated from the coefficients with 

similar spatial context within the same subband. 



A modification of this filter that takes into account 

specific properties of OCT images was proposed by 

Adler, Ko and Fujimoto in [44]. There, SAWT is applied 

to the logarithmically transformed image (which maps 

multiplicative type of noise into additive) and with an 

increased threshold in the vertical subbands. The 

subsequent exponential operation yields the denoised 

OCT image. The modified thresholds account for the 

OCT statistics as follows. The actual signal in OCT 

images consists mainly of horizontal edges arising from 

reflections at the layer boundaries. Hence most of the 

edge information is contained within LH subbands and 

some of it in HH subbands, while vertical HL subbands 

contain mainly noise. Therefore the authors reason that 

increasing the threshold in HL subbands by a constant 

multiplier K decreases further noise with a minimal effect 

on the edge sharpness. In experiments they find that the 

SNR is maximized for K=4. We will use this filter in our 

evaluation, where we shall denote it by OCTWT (from 

OCT-specific wavelet thresholding). 

D. Feature based wavelet thresholding 

In classical hard thresholding [55], the coefficients below 

a certain threshold are zeroed while the remaining ones 

are kept unchanged. This procedure introduces less 

smoothing than the soft-thresholding but leaves more 

annoying blob-like artifacts. However the idea of keeping 

a subset of the information-carrying coefficients (selected 

according to well-defined inter- and intrascale criteria) 

and zeroing all the others has led to many efficient 

denoising algorithms [80], [81] reflecting early Marr's 

vision of image reconstruction from its edges [82]. Also, 

in medical image processing some researchers advocate 

keeping unchanged the coefficients that are identified as 

significant in order to avoid blurring of diagnostically 

relevant features. This should be approached critically 

because at positions where the coefficients are wrongly 

selected as significant more visible artifacts are likely to 

arise.  

A recent method of Balster et al [83] reconstructs the 

denoised image from a selected subset of the wavelet 

coefficients, where the selection criterion combines the 

coefficient magnitude, spatial regularity and regularity 

across the scales. The spatial regularity criterion means 

that only coefficients that form connected edge-like 

structures are candidates for the selection. The regularity 

across the scales refers to the evolution of the coefficient 

magnitude from fine to coarse scales. This criterion, 

using the same reasoning as [80], [81] discards the 

coefficients that diminish quickly with the increasing the 

scale, because these are likely to represent noise. 

In a first stage, the method of [83] selects the “valid” 

coefficients according to the magnitude criterion. This 

results in a preliminary binary classification 

                          


 >

=
else0,

||if,1 ,
, τdj

ldj

l

w
I  (6) 

where τ is a threshold proportional to the noise standard 

deviation. In the next stage, the method examines spatial 

regularity by counting the number of spatially connected 

labels “1” around each nonzero label dj

lI , . The number 

of connected labels “1” defines the support value dj

lS , for 

the corresponding spatial position (and for the other 

spatial positions with label “1” spatially connected to it)
1
. 

The preliminary binary classification is refined based on 

the intra-scale support value dj

lS ,  and based on a 

recursive inter-scale criterion: 

        


 =>

=
+

else0,

1orif,1 ,,1,
,

dj

l

dj

l

dj

ldj

l

IJsS
J  (7) 

According to this criterion, the coefficient dj

lw ,  is 

selected as significant if it is locally supported ( sS dj

l >, ) 

or if it is large ( 1, =dj

lI ) and its parent is significant 

( 1,1 =+ dj

lJ ). The denoised image is then reconstructed 

from the selected subset of the coefficients. In our 

notation: 

                       dj

l

dj

l

dj

l wJy ,,,ˆ =  (8) 

In our study, we apply this method to the logarithmically 

transformed OCT image and we denote it as FBT (from 

feature-based thresholding). A related method with an 

extension to soft-thresholding was proposed in [84]. 

E. Spatially adaptive shrinkage with Gamma-

Exp model 

The adaptive speckle suppression scheme from [40] 

estimates the noise-free coefficients as 

                               dj

l

dj

l

dj

l wqy ,,,ˆ =  (9) 

where dj

lq ,  is a shrinkage factor 0≤ dj

lq , ≤1, which shrinks 

wavelet coefficients depending on the estimated 

probability that the coefficient represents an important 

noise-free image feature. The corresponding probability 

is estimated based on two sources of information: (i) 

coefficient magnitude and (ii) spatial context 

information. 

Let us denote the coefficient magnitude by dj

lm , , and let 

us associate with each wavelet band dj ,w a mask dj ,x  of 

                                                           
1
 All the spatially connected positions with label “1” have the 

same support value. 



binary labels, where dj

lx , = 0 (“non-edge” label) if dj

lw ,  

represents mainly noise, and dj

lx , = 1 (“edge” label) if 

dj

lw ,  represents useful signal. In the following, for 

compactness, we suppress the indices that denote the 

scale and orientation, unless in case where explicitly 

needed. The likelihood of lm given the label value lx  

will be denoted by )|( ll xmp . Further on, the label value 

lx  is a realization of  a random variable lX . Hence 

capital letters will denote random variables and the 

corresponding small letters their realizations. 

The method of [40] defines the shrinkage factor as 

follows 

                           )',|1( llll mXPq x==  (10) 

where lx'  denotes the mask labels at all positions except 

l. It is shown in [40] that this expression can be rewritten 

as 

                                
ll

ll
lq

ηξ

ηξ

+
=

1
 (11) 

where lξ  is the likelihood ratio at the current position l 

                           
)0|(

)1|(

=

=
=

ll

ll
l

Xmp

Xmp
ξ  (12) 

and lξ  is derived from a spatial surrounding l∂  as 

follows [40]: 

                        ( )








−= ∑

∂∈ lk

kl x 12exp γη  (13) 

Note that if there is equal number of “edge” and “non-

edge” labels in the neighborhood l∂  then the 

neighborhood information is “neutral” and (13) yields 

lη = 1. This means that in case where there is equal 

number of edge and non-edge labels in l∂ the spatial 

context information does not influence the calculation of 

the shrinkage factor in Eq (12). In that case, the 

suppression factor depends only on the coefficient 

magnitude (through ξl). If the neighborhood l∂  contains 

a majority of edge (“1”) labels then lη  is greater than 1 

and it increases the shrinkage factor in (12). The opposite 

is true when there is a majority of “non-edge” (zero) 

labels in the corresponding neighborhood. In this way, 

the spatial context information, expressed through lη , 

favors suppressing less those wavelet coefficients that are 

surrounded by the majority of “edge” coefficients and it 

favors suppressing heavier the isolated big coefficients 

(that are more likely to originate from noise). 

The binary labels are estimated using a preliminary 

coefficient classification as follows: 
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where dj ,σ is the noise standard deviation in the subband 

at scale j and orientation d. In this process, a coarse-to 

fine strategy is employed, where a previously denoised 

wavelet subband from a coarser scale j+1 is used to 

estimate the edge positions at the next finer scale j. 

For the calculation of the likelihood ratios, the following 

model was proposed in [40]: 
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where the parameters a and b are computed 

automatically during the denoising procedure by 

maximum likelihood approach. Like in the previous two 

methods, we apply this method to the logarithm of the 

OCT image. We shall denote this method by WGE 

(referring to wavelets and to gamma-exponential priors).  

F. Denoising methods taking into account noise 

correlation 

The methods presented in the previous Sections ignore 

noise correlation. A starting approximation there was that 

the logarithmic transform maps the OCT speckle into 

additive white Gaussian noise. 

Even though this approximation is for simplicity often 

employed in speckle denoising literature, there exist 

more elaborate models that take into account noise 

correlation. A wavelet domain denoising method of 

Portilla et al [47] model noise by a correlated Gaussian 

model and the signal by a correlated Gaussian Scale 

Mixture (GSM) model. This method is an extension of 

[42] with the main difference that the noise covariance is 

estimated directly from the image using a generalized 

expectation maximization algorithm. The method applies 

minimum mean squared error estimator on the vectors of 

coefficients from (overlapping) blocks, resulting in a 

Wiener-like estimator under the assumed prior model. 

For details, we refer  to [42], [47]. The application of this 

method to OCT was demonstrated in [47]. A related 

model with spatially varying GSMs is in [89]. In this 

study, we use the Bayesian least squares estimator with 

the GSM model (BLS-GSM) from [47]. The software for 

this method is publicly available at the web-site 

http://www.io.csic.es/PagsPers/JPortilla/denoise/software

/index.htm. 



V. PERFORMANCE EVALUATION 

We evaluate the performance of the analyzed speckle 

filters on OCT images taken from six different three 

dimensional volumes and on a software phantom image. 

The scans were made on different biological tissues 

including liver, finger tip, breast and rat bone, with the 

following OCT apparatus: SkinDex 300 (ISIS Optronics, 

Mannheim Germany). The scan depth is 904 µm and the 

width is 1005 µm (i.e., approx 1mm). The distance 

between the slices was 1.1µm and the size of each image 

slice (in axial×transverse direction) is 556×500 pixels. 

One volume consisted of 60 slices, another of 126 and 

the remaining three of 252 slices. Out of these volumes, 

we selected a number of slices for objective evaluation 

and for visual assessment of the filtering results.  

 

We test two single-resolution filters:  

• Lee [25] and RKT [29], [30]  

and four multiresolution filters, that we denote as 

• OCTWT (Wavelet Thresholding for OCT) [44] 

(Section IV-C);  

• FBT (Feature based Wavelet Thresholding) [83] 

(Section IV-D);  

• WGE (Wavelet shrinkage with Gamma-

Exponential model) [40] (Section IV-E);  

• BLS-GSM (Bayesian Least Square estimator 

with Gaussian Scale Mixture prior) [42], [47] 

(Section IV-F).  

First we show visual results and then we define and 

evaluate some objective performance measures. 

A. Visual comparison 

Visual results on two test images from Fig. 4 are shown 

in Fig. 5, Fig. 6 and Fig. 7. Fig. 5 and Fig. 6 show a 

comparison between the six tested methods. For the 

WGE method, the results are illustrated for two different 

values of the parameter γ. These results demonstrate that 

the single resolution filters are inferior with respect to the 

wavelet based ones. Among the wavelet based methods, 

the FBT approach achieves a very good contrast and 

edge preservation, but seems to flatten severely textures. 

The other three multiresolution methods (OCTWT, WGE 

and BLS-GSM) are more conservative in this respect and 

preserve better fine image structures.  

We compare visual results of the three best performing 

methods on enlarged details in Fig. 7. The parameter of 

the WGE method was in this case set to γ=0.4, which was 

visually found as a best compromise between noise 

suppression and detail preservation. The three results in 

Fig. 7 are very similar in quality; the WGE method is 

most conservative of all when it comes to point-like 

structures. The BLS-GSM and OCTWT methods give a 

natural appearing mildly smoothed textures. Vague 

horizontal artifacts are visible in the background region 

of the OCTWT result, which is apparently due to 

different suppression factors in differently oriented 

subbands. The result in Fig. 8 illustrates clearly that noise 

reduction enhances visually OCT images.  

B. Objective performance measures 

To assess objective performance of the analyzed filters, 

we define several regions of interest (ROI), similarly as it 

was done in [44]. Fig. 9 shows seven chosen regions of 

interest being small rectangular areas with interesting 

details, edges or textural features inside. The largest, 

elongated rectangle in this image is used only to assess 

the background statistics. In the same way, we choose the 

ROI’s on other 12 images displayed in Fig. 10. 

We use some standard objective performance measures, 

but we also define new ones because the standard 

measures have some limitations that we discuss below. 

Some of these measures are global, i.e., evaluated over 

the whole image, while others are local, i.e., evaluated 

over regions of interest. A global performance measure is 

Signal to Noise Ratio that we evaluate as SNR= 

20log(Imax/σb), where Imax is the maximum value in the 

processed image, and σb is the standard deviation of noise 

in the background region, which estimates the standard 

deviation of the remaining noise. 

From the standard local measures, we use contrast to 

noise ratio and equivalent number of looks. In addition, 

we define a local edge-preservation measure and we 

introduce a new texture preservation measure. These 

local measures are summarized below. 

Contrast to Noise Ratio (CNR) - measures the contrast 

between a feature of interest and background noise. In 

the m-th region of interest, CNR is defined as [44] 
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where mµ  and 2

mσ  denote mean value and variance of 

the m-th ROI, respectively, and bµ  and 2

bσ  denote mean 

value and variance of the background region, 

respectively. From the definition of CNRm in (17) it is 

clear that this performance measure will be large if m-th 

ROI contains a prominent feature with larger mean mµ  

than the background bµ , but with a rather small variance 

2

mσ . For highly textured region (large 2

mσ ) the evaluated 

contrast can mistakenly appear small. Therefore, we 

introduce a new performance measure (that we call 

texture preservation) to account for this important 

property of filters. 



Texture Preservation (TP) - we define a new measure 

of preserving texture in a region of interest as 

                              
in

den

m

m
mTP

µ

µ

σ

σ
2

2

)'(
=  (18) 

where 2)'( mσ  is the standard deviation of the m-th ROI 

in the unprocessed input image (before noise 

suppression), denµ  is the mean value of the denoised 

image and inµ  is the mean value of the noisy image. 

Ideally, denµ  should be equal to inµ , but for some 

methods it does not hold. The role of the second term in 

(18) is to compensate for this change of the total mean 

and to evaluate the preservation of the texture regardless 

of the brightness level in the image. We average the TP 

measure over the ROI’s: 
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TP ranges between 0 and 1, and remains close to 0 for 

filters that severely flatten the image structures. 

Edge Preservation (EP) - we start from a performance 

measure of [85] that correlates locally edges in the 

processed image and in the ideal noise-free image. Since 

in our case, the ideal image is not available, we correlate 

the edges in the processed and in the original noisy 

image, similarly like in [44], but locally over the selected 

ROI's rather than globally over the whole image. Our 

edge preservation measure for the m-th ROI is 
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where mI  and mI '  are sub-matrices that contain the 

denoised and the input noisy image regions, respectively, 

in the m-th ROI. The operator ∆ is a Laplacian operator. 

In practice, ∆I is a highpass version of I obtained by 

convolving I with a standard 3×3 approximation of the 

Laplacian operator. I  denotes the empirical mean of I. Γ 

operator denotes correlation inside the ROI: 
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We average the edge preservation measure over the M 

selected ROI’s: 
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This EP measure ranges between 0 and 1, having smaller 

values when the edges inside the ROI are more blurred. 

 

Equivalent number of looks (ENL) - a commonly used 

performance measure for speckle suppression, which 

measures smoothness in areas that should appear 

homogeneous, but are corrupted by speckle. While in 

[44] this measure is averaged over the ROI's of an OCT 

image, we calculate it only in the background region. The 

reason for this is that only in the background we can 

safely assume that the ideal intensity should be 

homogeneous. Hence we evaluate 
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where 2

bµ  and 2

bσ  denote mean value and variance of the 

background region, respectively. A larger ENL indicates 

a stronger speckle smoothing in the corresponding 

region. 

 

Table 2 shows the results of objective performance 

evaluation of the tested filters, with the performance 

measures described above, for three test images (the 

image from Fig. 9 and two other images from Fig. 10). A 

relative comparison between different filters (to be 

discussed in more detail in the next Section) is consistent 

over these different images. The average results over a 

set of 12 test images from Fig. 10 are shown in Table 3. 

From the results in Table 2 and Table 3, it is clear that all 

the tested filters improve (to a different extent) CNR, 

ENL and SNR in comparison to the original image. It is 

also clear that all the filters deteriorate edge preservation 

(EP) and texture preservation (TP) measures comparing 

to the original, since these are the requirements that have 

to be compromised against noise reduction.  

C. Software phantom evaluation 

We also perform an objective performance evaluation on 

our originally generated software phantom image. This 

software phantom image combines an artificially 

generated software phantom (Fig. 11(a)) and real noise 

extracted from a large uniform region of an actual OCT 

image as we explain next. Alternatively, we could have 

generated some simplified type of speckle noise 

artificially. However, there exist already many studies 

that compare different filters on artificially generated 

speckle noise and it is not our intention to repeat here 

such an analysis. We aim for OCT specific analysis with 

true noise characteristics. 

In real OCT images that are at our disposal there is 

always a relatively large region with practically pure 

noise (see the bottom half of images in Fig. 4). We 



extract such a “pure noise region” of the same size as our 

noise-free phantom f and we form the noisy phantom fn 

by combining the noise-free phantom image f and the 

extracted noise image n. Since speckle is multiplicative 

noise, we will form fn by a point wise multiplication of f 

and n, or equivalently, the logarithm of fn will be 

produced by summing log(f) and log(n). Note however 

that in reality mean value of the noise field n equals 1. 

Since our noise field n is extracted not from raw OCT 

data but from an image in a classical image format, the 

mean value of n is not 1 but much larger. We have to 

compensate for this bias in the noise field and hence we 

generate the noisy image as: 

                )log()log()log()log( nµ−+= nffn  (24) 

Where nµ  denotes the mean value of the extracted noise 

field n.  

The resulting noisy image nf  is shown in Fig. 11. This 

image has nearly the same noise statistics as real OCT 

images in Fig. 4 and Fig. 10, but now we have a ground 

truth for the signal structures.  

The results of applying different filters to the noisy 

phantom image nf  are shown in Fig. 12 and the PSNR 

values, for each denoised image denf , are calculated as  
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To avoid the influence of the global intensity change 

produced by some methods (like RKT), we corrected the 

mean values of the images before calculating the PSNR 

in (25). The results are tabulated in Table 4 and visual 

results are shown in Fig. 12. These results on the 

phantom image show a similar comparison between the 

analyzed techniques as the evaluation on real OCT 

images in Section V.B. Single-resolution filters 

obviously produce excessive blurring. The results of the 

BLS-GSM and the WGE filters are better visually and in 

terms of PSNR than for the other filters. The WGE filter 

preserves best small details (see Fig. 12) and yields also 

the highest PSNR (see Table 4).  

VI. DISCUSSION 

The quantitative evaluation results from Table 2 and 

Table 3 agree well with visual evaluation in Fig. 5 and 

Fig. 6. These results also indicate that different filters 

may be preferred depending on whether priority is given 

to detail and texture preservation or to stronger noise 

smoothing and more pronounced contrast of the most 

prominent features. 

We tested two single-resolution filters (the Lee filter and 

RKT) and four multiresolution filters (OCTWT, FBT, 

WGE and BLS-GSM). The RKT method performs in this 

study better than the Lee filter, but both of these single-

resolution filters appear to be inferior with respect to the 

multiresolution filters.  

Out of all the tested filters, the feature based wavelet 

thresholding method FBT performs best in terms of ENL 

and SNR and scores also high in terms of CNR. This 

filter however gives worse results in terms of texture 

preservation (TP) and edge preservation (EP) measures, 

which is also evident from visual results in Fig. 5 and 

Fig. 6. This filter probably can be interesting as a 

preprocessing for segmentation of the most prominent 

features in the image but less interesting for visual 

enhancement of the image content because some 

important structures/details may get smoothened out. 

Exactly the opposite performance appears in the case of 

the WGE method with a small constant γ. In this case, the 

textural details and edges are best preserved but uniform 

areas are also less well flattened and hence ENL and 

SNR are only mildly improved comparing to the original. 

With increasing the constant, noise is stronger smoothed 

out, which also imposes increase in SNR, ENL and CNR 

measures, while EP and TP measures inevitably 

deteriorate, but not severely. This is evident both from 

Table 2 and from Fig. 5 and Fig. 6. The WGE filter with 

γ=1 shows a similar performance as BLS-GSM according 

to objective measures in Table 2 and also according to 

visual results. Similar is also performance of OCTWT, 

which shows slightly weaker noise suppression ability 

then WGE and BLS-GSM, but also a good texture 

preservation. If some of the remaining noise is tolerable, 

and the emphasis is on texture and edge preservation, 

then WGE filter with γ=0.4 and OCTWT seem best 

choices among the evaluated ones. Similar conclusions 

follow from the evaluation on the software phantom in 

Section V.C. 

In summary, the filters that showed best compromise 

between noise smoothing and detail preservation in this 

study are OCTWT, BLS-GSM and WGE with γ between 

0.4 and 1. Out of these, BLSGSM is of highest 

complexity but is also the only one that takes into 

account noise correlation. OCTWT and WGE methods 

appear very attractive in terms of detail preservation and 

also in terms of complexity. 

VII. CONCLUSION 

We gave a review of wavelet based denoising methods 

for OCT together with a performance evaluation. 

Different objective performance measures were assessed 

and also a novel measure for texture preservation was 

defined. The results of the presented objective 

performance analysis agree well with visual assessment. 

The results indicate that different filters have different 

strong points and that the choice of the particular filter 

may depend on the particular use (e.g., enhancement for 

visual inspection or pre-processing for segmentation of 



most prominent features/regions). Several filters were 

identified which offer a remarkable image quality 

improvement with a good compromise between detail 

preservation and noise smoothing. 
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Fig.4. Examples of high-resolution OCT images used in our performance evaluation. 

Fig. 9. Test image used in objective performance evaluation 

with chosen regions of interest. The seven rectangles in the 

upper part of the image are the ROI’s and the large 

rectangle in the lower part is used as the background 

region. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. (a) Noisy image (crop out) and the results of (b) Lee filter; (c) RKT filter [29,30]; (d) FBT [83]; (e) OCTWT [44]; (f) BLS-GSM 

42], [47]; (g) WGE [40] with γ=0.1 and (h) WGE [40] with γ=1. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 

(c) (d) 

(e) (f) 

(g) (h) 

Fig. 6. (a) Noisy image (crop out) and the results of (b) Lee filter; (c) RKT filter [29,30]; (d) FBT [83]; (e) OCTWT [44]; (f) BLS-GSM 

42], [47]; (g) WGE [40] with γ=0.1 and (h) WGE [40] with γ=1. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. (a) A part of an original OCT image and (b) the result of WGE [40] with γ=0.4. 

(a) (b) 

(c) (d) 

Fig. 7. An illustration of the results of the best performing filters in this study. (a) Noisy image detail and the results of (b) OCTWT 

[44]; (c) WGE [40] with γ=0.4 and (d) BLS-GSM 42], [47]. 



TEST IMAGE 1 

 CNR ENL SNR[dB] TP EP 

Original 0.61 107.83 11.93 1.00 1.00 

Lee 2.30 457.87 23.21 0.78 0.52 

RKT 1.75   604.56 19.73 0.81 0.70 

OCTWT 0.98 892.22 19.80 0.86 0.89 

FBT 0.83 366.11 17.46 0.94 0.97 

WGE γ=0.2 0.94 576.10 20.03 0.92 0.98 

WGE γ=0.4 0.95 3189.43 26.24 0.91 0.95 

WGE γ=1 0.93  4511.86 27.78 0.92 0.93 

GSM-BLS 1.03 2499.60 25.05 0.88 0.87 

 

TEST IMAGE 2 

 CNR ENL SNR[dB] TP EP 

Original 0.27 105.79   13.94 1.00 1.00 

Lee 0.49 190.22 21.32 0.86 0.91 

RKT 0.65 7556.3 31.89 0.87 0.86 

OCTWT 0.39 350.16 19.01 0.97 0.98 

FBT 2.12 2842.1 24.57 0.45 0.60 

WGE γ=0.2 0.45 676.2 21.75 0.95 0.98 

WGE γ=0.4 0.44 3002.8 28.28 0.96 0.97 

WGE γ=1 0.42 5042.9 30.58 0.97 0.95 

GSM-BLS 0.65 7556.3 31.89 0.87 0.86 

 

TEST IMAGE 3 

 CNR ENL SNR[dB] TP EP 

Original 0.68 114.77 18.91 1.00 1.00 

Lee 0.19 244.79 24.48 0.73 0.92 

RKT 0.83 2985.1 32.71 0.92 0.92 

OCTWT 0.72 238.01 22.04 0.99 0.99 

FBT 1.86 2693.4 30.16 0.58 0.67 

WGE γ=0.2 0.73 744.66 26.97 0.99 0.99 

WGE γ=0.4 0.72 2986 33.03 0.99 0.98 

WGE γ=1 0.71 4515.4 34.85 0.99 0.97 

GSM-BLS 0.83 2985.1 32.71 0.92 0.92 

        

 

 

Table 2. Objective performance evaluation results for three test 

images. Test image 1: the image from Fig. 9; Test image 2: the 

image 8 from Figure 10 and Test image 3: the image 11 from 

Figure 10. 

 

 

 

 

 

 

 

 

AVERAGE OVER A SET OF 12 TEST IMAGES  

 CNR ENL SNR[dB] TP EP 

Original 0.91 108.54 14.63 1.00 1.00 

Lee 1.75 332.91 23.53 0.72 0.77 

RKT 2.04 607.68 22.10 0.80 0.74 

OCTWT 1.06 536.11 20.56 0.89 0.95 

FBT 1.93 1985.63 23.29 0.68 0.72 

WGE γ=0.2 1.09 676.34 22.79 0.96 0.99 

WGE γ=0.4 1.08 3296.44 29.24 0.96 0.97 

WGE γ=1 1.05 5118.23 31.19 0.97 0.97 

GSM-BLS 1.22 5965.114 30.32 0.89 0.88 

Table 3. Objective performance evaluation results averaged 

over 12 test images from Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

PSNR VALUES FOR PHANTOM IMAGE  

 PSNR 

Lee 22.29 

RKT 19.98 

OCTWT 30.10 

FBT 29.80 

WGE γ=0.2 34.15 

WGE γ=0.4 34.95 

WGE γ=1 35.98 

BLS-GSM 34.92 

Table 4. PSNR values for the reference methods. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. A set of other 12 images (numbering left to right, top to bottom) used in objective performance evaluation together with ROI’s, 

like in Fig. 9. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. A part of the phantom image with the corresponding results of the different analyzed method. First row, left to 

right: noise-free, noisy, the results of the Lee filter and the RKT filter. Second row, left to right: the results of the 

OCTWT, FBT, BLS-GSM and WGE filters. 

Fig. 11. The noise-free phantom image (left) and the noisy software phantom (right). 


