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Abstract—Recent studies have demonstrated the potential of
dictionary learning for painter style analysis. The main idea
behind these approaches is to train a dictionary of image atoms
on a set of drawings/paintings of the same artist and to test
how well this dictionary can represent a painting with disputed
authorship, by evaluating the sparsity of representation. We
extend this approach such that it can evaluate the goodness of
fit between the trained dictionary and the test image both in the
synthesis direction (similar to existing approaches) and in the
opposite, analysis direction. We evaluate these approaches on oil
paintings, focusing on a case study on the Ghent Altarpiece. The
results give new insights into the potential of dictionary learning
for painter style characterisation and suggest advantages of the
proposed analysis based approach irrespective of the scale and
redundancy of trained dictionaries.

I. INTRODUCTION

The process of artistic style identification (using
computational methods) in paintings has its roots in the
discipline of “stylometry” or in the process of finding
personal “signature” or authorship. A basic idea behind
this process is to find some kind of “holistic” statistical
representation in the works of a particular artist or an
author. Automated methods for this purpose are still in
their infancy even though this topic attracts a lot of
attention in image processing community, with a number of
devoted symposia and special issues [1], [2]. Some of the
recent approaches were reported in [3], [4]. Methods based
on dictionary learning were applied to this problem in [5], [6].

In this work, we build on the method of Hughes et al
[6], the main idea of which is to train a dictionary of image
atoms from a set of drawings of the same artist. The resulting
dictionary represents some kind of artist’s handwriting. This
characteristic handwriting, as a set of particular atoms, is
“recognized” in a new test image if its content at each
location matches well a superposition of relatively few atoms
from that dictionary. In particular, the approach of [6] selects
a number of patches from a test image and correlates each
image patch with all atoms in the dictionary. The resulting
correlation coefficients give an indication of which (and how
many) atoms mainly contribute to synthesizing the image
patch, hence we call this method “synthesis-based”. By
applying this method to the drawings of Pieter Bruegel the
Elder and his copyists, authors in [6] were able to separate
the original drawings of the artist from the copies.

The goals of this paper are: (i) studying the potentials of
the dictionary learning-based identification approach on other
types of art works, and in particular on oil paintings of old
masters; (ii) defining a similar method but in the “analysis”
direction. This means, instead of correlating an image patch
with all dictionary atoms, correlate an atom with all selected
image patches; (iii) comparing the performance of the two
approaches and analysing the influence of the redundancy
factor and resolution scale.
As a case study, we apply our analysis to the famous polyptych
“Adoration of the Mystic Lamb” (also known as “The Ghent
Altarpiece”) painted by brothers Van Eyck in the 15th century
(see Fig. 1). This painting provides a nice test case for
painter style identification: one of the original panels “The
Just Judges” was stolen and was replaced by a copy made
by Joseph Van der Veken (1945). It is interesting to see how
successful are state-of-the-art painter style authentication tools
in detecting the difference in style in this panel and other,
genuine panels of the painting. The second dataset that we
consider in our experiments is a set of paintings by Charlotte
Caspers, that was also used in [7].
The paper is organized as follows: In Section 2, we review
briefly the use of dictionary learning for painting style char-
acterization. Then, we extend the approach in [6] and analyse
the performance of the “analysis” versus “synthesis” - based
approach at different levels of dictionary redundancy and at
different scales. We conclude the paper in Section 4.

II. METHODOLOGY

A. Dictionary learning

Suppose a signal vector x ∈ RN is represented as a linear
combination of atoms di ∈ RN from a dictionary D ∈ RN×L:

x = Da =
L∑

i=1

diai (1)

where a is a coefficient vector. This representation is sparse
if only a small portion of the coefficients are non-zero:
||a||0 < K , where K << N . If the number of atoms exceeds
the dimensionality of the signal (L > N), the dictionary is
overcomplete or redundant (its atoms are linearly dependent).
For an overcomplete dictionary, a is not unique. Sparse rep-
resentation algorithms seek solution for a with the smallest
number of non-zero coefficients. This problem is in general
NP hard, and is in practice typically solved by greedy methods



Fig. 1. The Ghent Altarpiece (open and closed views).

based on variants of matching pursuit [8] and approximate
methods based on basis pursuit [9]. A dictionary D is typically
learned from a set of n signal examples X = [x1x2...xn] such
that [10]:

arg min
D,A

(||X − DA||2F ) subject to ||ai||0 ≤ K ∀i (2)

where ||.||F is the Frobenius-norm and ||.||0 is l0 “norm”,
which counts the number of non-zero elements in the
representation. A = [a1a2...an] is the matrix of approximation
coefficients for all training samples and K the sparsity factor.
In our application, the training samples are M × M image
patches, that are stacked (column-wise) in vectors of size
M2. The minimisation problem (2) is solved by the following
algorithm:

Initialize j = 0; choose D(0) (randomly)
Repeat j = j + 1

1) Sparse approximation: solve (2) for D = D(j−1) to find
A(j)

2) Dictionary update: solve (2) for A = A(j) to find D(j)

Until convergence or fixed number of iterations

Since the above optimisation is computationally expensive,
dictionary learning methods usually work with small image
patches, i.e., typically below 32 × 32 pixels [11]. In our
experiments we used K-SVD dictionary learning algorithm
[12], [13], where Sparse approximation step is solved via
Orthogonal Matching Pursuit (OMP) [14] and the Dictionary
update via Singular Value Decomposition (SVD).

B. Painter style characterisation via dictionary learning

By learning a dictionary of image atoms from a set of
drawings of the same artist, we might be able to capture, at
least partially, features of the unique style of the artist. This
idea was introduced by Hughes et al in [6]. Their reasoning
was that a dictionary learned on the set of drawings of one
artist will be able to represent better (i.e, more compactly,
with fewer non-zero coefficients) the works of the same artist
than those of others. The approach of [6] selects at random
NP patches from a test image and “projects” each of these
onto the learned dictionary D. If the test image matches well

the style of the images on which the dictionary D was trained,
then (most of) its patches will be sparsely represented in D,
meaning that relatively few atoms di will produce large inner
products with the image patch. Since this approach correlates
an image patch, with atoms that synthesise the patch, we call
it “synthesis-based” approach.
Let cij = ⟨pi, dj⟩ denote the inner product between an image
patch pi and an atom dj (see Fig. 2) and collect the inner
products over all atoms dj , j = 1, ..., L per patch pi into the
vector Ci = [ci1, ci2, ..., ciL]. If Ci is sparse, pi correlates
very well with relatively few atoms dj and hence it can be
also synthesized from a relatively few of these atoms (even
though the inner products are not exactly the coefficients
for this synthesis, unless the dictionary is orthogonal, which
typically is not the case). The sparsity of Ci can be evaluated
via its kurtosis: κi = kurtosis(Ci). The sparser Ci, the larger
κi. The synthesis-based approach calculates the kurtosis κi

of each vector Ci and averages these over all indices i. The
Pseudo-code is listed in Procedure 1.

In this work, we propose an alternative approach. Instead
of examining the correlations of an image patch with all
atoms in the dictionary, we now want to examine correlations
between an atom dj with all (selected) image patches. In this
approach, the image is analysed by the atom, hence we call
it “analysis-based” approach.
Let Cj = [c1j , c2j , ..., cNP j ] denote the vector of inner
products over all patches pi, i = 1, ..., NP per atom dj . If Cj

is sparse, it means that dj correlates very well with relatively
few patches pi. We shall evaluate the sparsity of Cj via its
kurtosis: κj = kurtosis(Cj) and we average over all atoms
(see Pseudo-code in Procedure 2).
Histograms of Ci in the synthesis- and analysis-based
approach are illustrated in the first row in Fig. 3. Note that
the analysis based histograms were made on a basis of more
coefficients in comparison with the synthesis-based approach
because NP ≫ L even for a redundant dictionary. Examples
of histograms of kurtosis values are shown in the second row
in Fig. 3.
The analysis and the synthesis based approaches can be
used with both non-redundant and redundant dictionaries.
Our goal is to make comparative analysis between these two
approaches and to explore the influence of both dictionary
redundancy and scale on this comparative performance. In
the next Section we present an evaluation setup, where both
the analysis- and the synthesis-based approaches described
above can be used.
Since the authors in [6] use a different dictionary learning
method, [15], and different preprocessing of the test patches,
this work does not make the exact comparisons with their
method. We chose for K-SVD learning because it was faster
than the method in [15], especially with higher redundancies.
Furthermore, the convergence can be easily verified in the
case of K-SVD.



Fig. 3. Characteristic histograms at various levels of our analysis. First row: Example of coefficient histogram for a patch (Synthesis case) or for an atom
(Analysis case). Second row: Example histograms of kurtosis values. Third row: Histograms of kurtosis means after 25 repetitions of the experiment per
fragment. Fourth row: Histograms of kurtosis means for all fragments.

Procedure 1 Synthesis-based approach
Input: Patches: pi, i = 1, ..., NP and atoms: dj , j = 1, ..., L.
Output: The value µκ .

for i = 1 to NP do
for j = 1 to L do

cij = ⟨pi, dj⟩
end for
Ci = [ci1, ci2, ..., ciL]
κi = kurtosis(Ci)

end for
K = [κ1, ...,κNP ]
µκ = mean(K)

Procedure 2 Analysis-based approach
Input: Patches: pi, i = 1, ..., NP and atoms: dj , j = 1, ..., L.
Output: The value µκ .

for j = 1 to L do
for i = 1 to NP do

cij = ⟨pi, dj⟩
end for
Cj = [c1j , c2j , ..., cNP j ]
κj = kurtosis(Cj)

end for
K = [κ1, ...,κL]
µκ = mean(K)

Fig. 2. Top: Atoms and patches. Bottom: Synthesis (left) and analysis (right)
based approaches.

C. Evaluation setup

Applying the principles described above to painter style
identification in practice assumes that we have a set of
authenticated paintings of the same artist, the authorship
of which is beyond doubt. A subset of these is then used
for training (dictionary learning) and the remaining images
are kept for testing (analysing the goodness of fit with
the learned dictionary). The test set can also include other



labelled samples (e.g., those which are known to have a
different authorship) and unlabelled samples (with unknown
or disputed authorship).

Let A = {A1, ...,ANA} denote the set of authenticated
paintings of the same author and let B = {B1, ...,BNB}
denote the set of paintings under investigation. To make
better use of the annotated samples from the set A, k-fold
cross-validation is typically used, where k samples are picked
at random from A and used for training, and the remaining
NA−k for testing. This is repeated

(
NA
k

)
times, with different

k samples each time.

Various aspects need to be taken into account in practice,
such as: how to deal with possibly different resolutions of
the scans that are at our disposal; scanning artefacts may
also vary from one scan to the other and the scans may have
been taken under different lighting conditions. Furthermore,
various degradations that are present in old paintings, such
as cracks may contaminate the learned atoms. Dealing with
these aspects and building accordingly a practical painter
style identification system is beyond the scope of this paper.

We shall compare abilities of the synthesis- and the
analysis-based approaches from Section II-B to detect
difference in style in pairs of paintings that are 1) made by
different authors, where one is copying the style of the other;
and 2) made by the same author, but using intentionally
different painting techniques.

Since we have only one painting for learning the dictionary
and for testing, we divide the painting into non-overlapping
fragments and we form the set A as the set of these fragments:
Ak is the k-th fragment from image A. In the same way, we
form the set B as the set of fragments from image B.
The goal of the study is to evaluate how successful are the two
dictionary learning approaches in recognizing that the style of
an arbitrary fragment from image B is less similar to the style
of A than A to itself. Motivated by k-fold cross-validation
principles, we define the following evaluation setup.

STEP 1: Pick at random a sample Ak from A, and pick
at random a sample Bk from B.

STEP 2: Form the training set as
T = {A1, ...,Ak−1,Ak+1, ...,ANA}.

STEP 3: Pick at random NT patches form T and use
these to train the dictionary D = {d1, ...,dL}.

STEP 4: Pick NP patches from Ak and calculate the kur-
tosis vector KA and its mean µA = mean(KA)
for the analysis or for the synthesis based ap-
proach (Procedure 1 or Procedure 2, respec-
tively).

STEP 5: Repeat STEP 4 for NP patches from Bj to get
KB , µB .

STEP 6: Go to STEP 3. Repeat R times.
STEP 7: Go to STEP 1. Repeat until all samples from A

have been picked.

In practice, we allow in STEP 1 only to pick a sample Ak

which has not been picked previously. In this way, STEP 1
will be repeated exactly NA times, which defines the number
of outer iterations. The number of inner iterations R (STEP
6) is a parameter which should ensure statistical significance
of the results. In our experiments we found that R = 25 was
sufficient to guarantee statistically significant results.
Fig. 3 illustrates some characteristic intermediate results from
this analysis in the case where A and B images are two
panels from the Ghent Altarpiece (case study in Section III-B).
Histograms of µA and µB obtained after R repetitions for one
particular fragment (STEP 6) are shown in the third row of
Fig. 3 and for all fragments together in the fourth row.
Note that the histograms of µA are mostly shifted to the right
with respect to those for µB , which means that the kurtosis of
correlation coefficients was higher for test fragments A than
those from B, i.e., the fragments from A match better the
learned dictionary than those from B, which is as expected.
To quantify this in a way that is easier to interpret, we define
classification accuracy per each fragment Ak by counting how
many times µA has exceeded µB . Since we repeat the eval-
uation R times for each fragment Ak (see STEP 6), we have
R values for µA and R values for µB per fragment, hence, in
total we have R2 distinct pairs (µA, µB) for each fragment.
Let P denote the number of pairs for which µA > µA. The
classification accuracy is this expressed as

CA = (P/R2) (3)

In the following, we will analyse CA for the analysis- and
synthesis-based approach in two case studies and for different
scales and redundancy factors of the dictionary.

III. EXPERIMENTS AND RESULTS

A. Study on the Caspers dataset

The image dataset introduced in [7], that we will refer to as
the Caspers dataset, contains 7 pairs of paintings which differ
in material and type of brushes. We consider the Original
painting number 3 (image A) and Original painting number
1 (image B) from this dataset (see Fig. 4). In this case study,
the two images are depicting the same content and are painted
by the same artist, but intentionally using different paining
techniques and different ground (image A-Smooth CP Board,
image B-CP Canvas).
The original size of the fragments is down-sampled by a factor
of two, yielding the size 512× 512 pixels. The training patch
size is 8×8, the number of atoms in the dictionary is L = 64,
and the number of training patches NT = 90000. The number
of repetitions is R = 25 and the number of test patches per
each fragment NP = 2048. In our experiments, the mean value
of each dictionary atom is zero.
Fig. 5 shows the results on this dataset. Both approaches
perform very well in terms of CA (Eg. 3): every image A
fragment can be distinguished from every image B fragment
with both approaches. It can be also noted that the analysis-
based approach outperforms slightly the synthesis-based one
for all fragments.



Fig. 4. Images A (left) and B (right) from the Caspers dataset, together with
the selected fragments.

Fig. 5. Classification accuracy CA from Eq. (3) in distinguishing between
the painter styles in two images from the Caspers dataset in Fig. 4.

B. Study on the Ghent Altarpiece

In this case study, we test the ability of the two dictionary
learning methods to detect the difference in style between the
Just Judges-copy and the Knights of Christ-original panels
from the Ghent Altarpiece in Fig. 1. The two panels and the
selected fragments are shown in Fig. 6. Digital scans of these
panels were acquired under uniform conditions. The size of
these panels is approximately 2050 × 6000 pixels, and the
fragment size is 1024× 1024.

Here, image A is the Knights of Christ and image B is
Van der Veken’s copy of the Just Judges. Four levels of the
Gaussian pyramid are applied to each fragment. We train
non-redundant as well as two-times and four-times redundant
dictionaries (L = 64, L = 128 and L = 256) at each scale.
Fig. 8 illustrates trained dictionaries at four scales, for L = 64.
All other parameters are the same as in Section III-A.
The results are shown in Fig. 7 for four different scales and
for the three levels of dictionary redundancy. Note that the
analysis-based approach outperforms the synthesis-based one
on the majority of fragments at scale 1, which also gives
overall best classification results.
Synthesis-based approach performs better when the redun-
dancy of the dictionary is increased, especially at scale 1. The
influence of the dictionary redundancy is much smaller with
the analysis-based approach.
Both the analysis and the synthesis approach at scale 1 perform
poorly on the first two fragments, which correspond to the sky,

Fig. 6. Knights of Christ (left) and Just Judges panel (right) with the selected
fragments.

Fig. 8. Examples of non-redundant dictionaries trained at four scales of the
Gaussian pyramid. Each square in these dictionaries represents a particular
atom. The Dictionaries were trained on patches from the Knights of Christ
panel (Fig. 6).

while the performance on the rest of the fragments differs
from one fragment to the other. The influence of the scale on
CA varies depending on the content of fragments (the sky
fragments were better classified at coarser scales, but most
others not). It would be interesting to explore the influence of
the scale on very high resolution scans, like those that were
recently released for the Ghent Altarpiece [16]. Unfortunately,
digital scans of the Just Judges panel are not available yet at
this higher resolution.

IV. CONCLUSION

This paper investigated the use of patch based dictionary
learning for painter style characterisation in old oil paintings.
In our central study, the difference in style between two
panels in the Ghent Altarpiece was analysed. The analysis
was done on several different resolution scales and dictionary
redundancies. It was shown that the analysis-based approach
is able to detect difference in style between the genuine panel



Fig. 7. Classification accuracy CA from Eq. 3 in distinguishing between the painter styles in the panels Knights of Christ and Just Judges, from the Ghent
Altarpiece, for four different scales of the Gaussian pyramid and for different levels of dictionary redundancy.

and the copy one for all analysed redundancies at the finest
scale. However, the synthesis-based approach did not lead to
obvious differentiation of style between the genuine panel and
the copy one at any of the analysed scales and redundancies.
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