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Locally adaptive passive error concealment for
wavelet coded images

Joost Rombaut, Aleksandra Pižurica and Wilfried Philips

Abstract— This paper presents a novel locally adaptive error
concealment method for subband coded images. For each lost
low frequency coefficient, we estimate the optimal interpolation
weights from its neighborhood. The calculation of the interpola-
tion weights is optimized in the mean squared error sense, and
takes into account the errors that would arise by horizontally
and vertically interpolating the available neighbors of the lost
coefficient. Compared to methods of similar complexity, the
proposed scheme estimates the lost coefficients more accurately:
on average, the PSNR is increased by up to 4.5 dB. The
reconstructed images also look better and our method is fast
and of low complexity.

Index Terms— Image reconstruction, image communication,
error concealment, wavelet coding.

I. INTRODUCTION

In lossy packet networks such as the Internet, packets can
be dropped, e.g., in case of network congestion. This data
loss is particularly annoying for compressed data, as the
loss of a single bit can make the rest of the data stream
unusable. These problems are typically solved by protecting
the data (e.g., forward error correction) or by implementing a
protocol for resending lost packets. A good overview of the
corresponding Active Error Concealment techniques, is given
in [1]. In certain applications, packet retransmission is not an
option, either because it is too slow (e.g., for real time video)
or because there is no return channel (e.g., broadcasting). In
these cases, Passive Error Concealment is essential.

In video applications, passive error concealment [1] exploits
the remaining redundancy in images: missing pixel values
(or pixel blocks) are estimated from the correctly received
neighboring pixels (or blocks). To ensure maximal availability
of correctly received neighbors, spatially adjacent pixels (or
blocks) must be spread over different packets. This is called
dispersive packetization. Our method requires a dispersive
packetization scheme, but it is not restricted to any particular
scheme. In this paper, we employ the minimax packetization
of [2].

In this letter, we focus on error concealment for wavelet
coded images. We compress images by dispersively spreading
neighboring wavelet coefficients over different packets, and
by coding these packets independently from each other with
the coder of [2]. Then we simulate the loss of coded packets.
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In reality, if a packet gets lost during the transmission, the
missing data are typically replaced by zeros, which results in
annoying black holes in the received image. In our simulations,
we recover the underlying image by an adaptive interpolation
of the lost coefficients.

Compared to more common block-based approaches, rel-
atively few passive concealment methods were reported for
wavelet coded images. The existing methods are mainly tra-
ditional error concealment algorithms from the image domain
which are slightly adapted for the reconstruction of lost low
frequency coefficients. E.g., bilinear interpolation (the lost
coefficient is replaced by the average of its four adjacent
neighbors) has proved very efficient despite its simplicity
[2]. The results are quite good in smooth areas but artifacts
arise near edges and other discontinuities. In [3], a bicubic
interpolation method is proposed. Correct edge placement is
achieved by adapting the interpolation grid in horizontal and/or
vertical direction according to the high frequency content.
This method yields better results than bilinear interpolation,
but is also more complex and slower which may be less
suited for low-end video clients such as portable devices
with only limited processing power. The method in [3] was
only tested on uncompressed images and not in a realistic
compression scenario. In [4], a Maximum A Posteriori (MAP)
approach was applied using a Markov random field prior
in each subband. This technique is highly performant but
also computationally expensive. Other recent approaches are
the block based techniques of [5] and [6]. The approach of
[5] is very different from ours, because it recovers complete
blocks of wavelet coefficients (for block based wavelet coders
such as JPEG2000) simultaneously, while we consider (more
or less) isolated lost coefficients because of the dispersive
packetization. Traditional error concealment algorithms such
as [6] also recover complete pixel blocks for block based
image coders such as JPEG and JPEG2000, and are also not
applicable in a dispersive packetization context.

In this letter, we propose a novel and fast locally adaptive
interpolation scheme. The complexity of our method is similar
to that of bilinear interpolation but the reconstruction quality
is much better. The method is an improvement of our earlier
related scheme [7] which is efficient, but rather heuristic
with experimental parameter optimization and with incomplete
reconstruction of the subbands. In this letter, we optimize
the parameters in the mean squares sense and process all
subbands, which allows an important quality improvement
over the results reported in [7] at the expense of a minor in-
crease in processing time. The results demonstrate a significant
improvement over the best available adaptive MAP approach
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Fig. 1. The proposed concept. A lost coefficient (black square) is interpolated
from its nearest neighbors (grey squares). The horizontal and vertical inter-
polation weights are calculated from the errors made by interpolating these
nearest neighbors in the corresponding directions (marked by arrows).

of [4]. The new method is much less complex than [4] and
yields results that are better in terms of mean squared error
and visually.

In the next section, we explain the proposed interpolation
method, and we also present its iterative extension. Results
and findings are in Section III, and conclusions in Section IV.

II. THE PROPOSED CONCEALMENT METHOD

The proposed method focuses on wavelet coded images but
is applicable to all multiresolution codecs (such as bandelets,
contourlets, etc.). For optimal error concealment, the recovery
of the lost low-frequency coefficients (i.e., scaling coefficients)
is essential and our method concentrates on that problem.

The loss of high frequency coefficients has much less
impact on the visual quality and we recover them with one
dimensional linear interpolation as in [2], [3]; we set lost
coefficients in diagonal subbands to zero.

The proposed method for low frequency coefficients could
be extended to the high frequency subbands, but because these
subbands benefit greatly from directional interpolation, we
would need to adapt the scheme to take into account the
preferential interpolation direction. This would increase the
complexity, while we assume that it would yield only modest
gains in image quality.

In the following, we focus on the reconstruction of lost
scaling coefficients. A scaling coefficient at position (i, j) will
be denoted by Si,j .

The aim of the proposed approach is to estimate the locally
optimal interpolation direction from the correctly received
neighboring coefficients, and to adapt the interpolation weights
accordingly. The main idea is to estimate the interpolation
errors in different directions by measuring errors that arise
from interpolating nearest correctly received neighbors in the
corresponding directions (see Fig. 1). These measurements are
built in a minimum mean square error parameter optimization
procedure.

Let ŜH
i,j and ŜV

i,j denote the estimates of the coefficient Si,j

by respectively horizontal and vertical linear interpolation. We
denote the corresponding interpolation errors as eH

i,j and eV
i,j

such that:{
ŜH

i,j = (Si,j−1 + Si,j+1) /2 = Si,j + eH
i,j ,

ŜV
i,j = (Si−1,j + Si+1,j) /2 = Si,j + eV

i,j .
(1)

We assume that E(eH
i,j) = 0 and E(eV

i,j) = 0, and we
denote the local variances of the interpolation errors by:
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Assuming that eH
i,j and eV

i,j are approximately uncorrelated,
E
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)
= 0, we find:

αH
i,j = argαH

i,j
min

{
αH

i,j

2
(
σH

i,j

2
+ σV

i,j

2
)
− 2αH

i,jσ
V
i,j

2
+ σV

i,j

2
}

= σV
i,j

2
/

(
σH

i,j

2
+ σV

i,j

2
)

, (3)

and from αV
i,j = 1 − αH

i,j , we have
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i,j = σH

i,j

2
/

(
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i,j

2
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2
)

. (4)

We estimate the variance σH
i,j

2
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[(
eH
i,j

)2
]

and σV
i,j

2
=

E
[(
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i,j

)2
]

at each spatial position (i, j) from the available
measurements on the nearest correctly received neighbors:
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2
=

(
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2
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i+1,j

2
)

/2

=
(
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)
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2
+ eV

i,j+1

2
)

/2

=
(
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2

)
/2.

If σH
i,j = σV

i,j = 0, then we choose αH
i,j = αV

i,j = 1/2.
In the bilinear interpolation method and in the proposed

method, a lost coefficient is interpolated from its four nearest
neighbors. Therefore, if a neighbor of a lost coefficient is also
missing, this has an impact on its reconstruction. Although
the dispersive packetization minimizes the probability that
coefficients adjacent to a lost coefficient are also lost [2], this
situation can still occur, especially at high packet loss rates.

Since in the proposed method, the interpolation weights
are estimated from the surrounding coefficients, loss of any
of these adjacent coefficients decreases the reliability of the
estimated interpolation weights. A solution for this problem
is iteratively recalculating the optimal weights and the lost
coefficients. Initially, the lost coefficients are estimated with
the bilinear interpolation scheme which uses the available
neighbors. In a second iteration, the interpolation weights αH

i,j

and αV
i,j take into account estimated lost coefficients of the

first iteration. This process can be iterated a number of times.
In this case, quality improvement comes at the expense of a
higher computational cost.
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TABLE I

AVERAGE PSNR [DB] FOR: BILINEAR INTERPOLATION (BI), THE ADAPTIVE MAP APPROACH [4] AND THE PROPOSED METHOD, FOR p LOST PACKETS

Lena (0.21 bpp)
p BI MAP [4] Proposed
0 32.18 32.18 32.18
1 28.80 29.05 29.07
2 26.81 27.14 27.16
3 25.35 25.71 25.75
4 24.15 24.55 24.58

Couple (0.84 bpp)
p BI MAP [4] Proposed
0 33.33 33.33 33.33
1 30.27 29.94 30.50
2 28.38 27.94 28.66
3 26.95 26.49 27.26
4 25.74 25.33 26.11

Tweety (0.84 bpp)
p BI MAP [4] Proposed
0 45.95 45.95 45.95
1 36.21 39.61 40.66
2 33.19 36.43 37.59
3 31.13 33.93 35.13
4 29.40 31.79 32.97

III. RESULTS

Typical packet loss rates in the Internet, without retrans-
mission, are in the range of 2% to 10% [1]. As data packet
loss is typically bursty in nature, the instantaneous packet loss
rate can be much higher. We tested the proposed interpolation
method in a realistic scenario with both low and high packet
loss rates, in an experiment similar to the one in [4]. We
simulated the transmission of three test images, Lena (512 ×

512), Couple (256 × 256), and Tweety (256 × 256), over a
lossy packet network. The wavelet coefficients (calculated with
the Daubechies 9/7 bi-orthogonal wavelet with four levels1

of wavelet decomposition) of each image were stored in 16
packets using the dispersive packetization strategy of [2]. By
using dispersive packetization, we avoid the possibility that all
neighbors of a lost coefficient are also lost, if the number of
lost packets p is equal to or smaller than 4. On average, the
number of lost neighbors is minimized.

After packetization, each packet was coded independently of
the other packets by using the coder of [2]. This guarantees in-
dependent decodability which is important for error recovery.
We then simulated the loss of every combination of p packets
for p = 1, . . . , 4. For p = 1, . . . , 4, there are respectively
16, 120, 560 and 1820 possible combinations. The lost low
frequency coefficients were repaired using three reconstruction
methods: bilinear interpolation as in [2], the adaptive MAP
approach of [4], and the proposed locally adaptive method. For
each p, we calculated the average PSNR of the reconstructed
images for each reconstruction method. The results of this
experiment are given in Table I.

If no packets are lost, the PSNR of the reconstructed
image is equal to the PSNR of the broadcasted compressed
image. For Lena (compressed at 0.21 bpp), the PSNR of the
compressed image is 32.18 dB. The PSNR of the compressed
Couple and Tweety images (both 0.84 bpp) are respectively
33.33 dB and 45.95 dB. Note that, for each image, these
compression ratios produce an average packet size of 430
Bytes, which is suitable for Internet transmission without
fragmentation.

The results in Table I show that our proposed method
outperforms bilinear interpolation by 0.2 dB up to 4.4 dB
for low packet loss rates and by 0.4 dB up to 3.5 dB for
high packet loss rates. For Lena, the average PSNR results of
the new method are similar to those of the MAP approach of
[4]. For the Couple and Tweety images, the proposed method

1We use four levels of wavelet decomposition as this provides the ideal trade
off between compression ratio (which is close to optimal for four or more
levels) and reconstruction quality (reconstruction of low frequency coefficients
gives optimal results for four or fewer levels).

TABLE II

AVERAGE PSNR [DB] FOR THE PROPOSED METHOD FOR 2 AND 4

ITERATIONS

Lena Couple Tweety
p n = 2 n = 4 n = 2 n = 4 n = 2 n = 4

0 32.18 32.18 33.33 33.33 45.95 45.95
1 29.07 29.07 30.50 30.50 40.66 40.66
2 27.19 27.18 28.68 28.68 38.02 38.11
3 25.81 25.82 27.31 27.32 36.02 36.32
4 24.68 24.72 26.19 26.21 34.19 34.81

outperforms [4] by 0.6 dB up to 1.0 dB for low packet loss
rates and by 0.8 dB up to 1.2 dB for high packet loss rates.
The experiment was repeated on other images (e.g., Peppers,
Boat, Barbara), resulting in similar conclusions: for both low
and high packet loss rates, our method always outperforms
bilinear interpolation and the MAP approach of [4].

The proposed method not only yields a higher PSNR than
the adaptive MAP approach of [4], it is also considerably less
complex. The method of [4] was reported to require 1540 ad-
ditions and 1456 multiplications for each lost coefficient. Our
new method requires only 14 additions and 13 multiplications
for each lost coefficient, which is a reduction of a factor 100
compared to [4]. For comparison, the bilinear interpolation
requires 3 additions and 1 multiplication.

The results for bilinear interpolation in Table I are higher
than the corresponding ones in [4], because we processed all
the levels of the decomposition to optimize the performance.
The same was done for the other two methods.

In the previous experiment, each lost coefficient was recon-
structed only once, and as a result, the loss of adjacent coeffi-
cients decreased the reconstruction quality as the estimates of
αH

i,j and αV
i,j are not optimal when neighboring coefficients

are lost. Table II shows the results for 2 and 4 iterations
of our reconstruction method. For small packet loss rates,
these iterations have little or no impact on the reconstruction
quality of the proposed method. This is due to the dispersive
packetization: lost coefficients are spread as far apart from
each other as possible, so that there is little or no interference
between their reconstruction. In this case, the first iteration will
immediately calculate the optimal interpolation coefficients.
For higher packet loss rates (p > 1), the iterative method
produces a gain in PSNR but this gain is image dependent.
For p = 4 and n = 2, there is an increase of 0.10 dB for
Lena, 0.08 dB for Couple, and 1.22 dB for Tweety compared
to the non-iterative approach from Table I. For n = 4, the gain
is a little higher.

Note that n iterations of our proposed method need 14n
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 (a)  (b)

 (c)  (d)

 (e)

Fig. 2. (a) The Lena-image compressed at 0.21 bpp (PSNR = 32.18 dB).
(b) Lena-image after loss of packet 8. (c) Bilinear interpolation (PSNR =
28.35 dB). (d) Adaptive MAP approach [4] (PSNR = 28.92 dB). (e) The
proposed method (PSNR = 28.86 dB).

additions and 13n multiplications, which is still negligible
compared to the number of operations of the adaptive MAP
approach of [4].

We also illustrate visual results for two images. Fig. 2 (a)
is the Lena-image compressed at 0.208 bpp. Fig. 2 (b) is the
image after the loss of packet 8 (i.e., 6.25% of the coefficients
lost). Fig. 2 (c), (d) and (e) are the images after reconstruction
with respectively bilinear interpolation as in [2], the adaptive
MAP approach of [4] and the proposed reconstruction method.
While [4] and the proposed method yield almost the same
PSNR, the visual quality of our method is better.

In Fig. 3 we illustrate the results for the iterative version of
the proposed method, with two iterations, for a high packet
loss rate of 25%. Without reconstruction (Fig. 3 (b)), it is
difficult to see the image content. The reconstructed image
shows a clear improvement over [4] in terms of PSNR and
visually.

IV. CONCLUSION

This letter presents a novel locally adaptive interpolation
method for lost low frequency wavelet coefficients in image
and video communication. Our method estimates the op-
timal interpolation weights from neighboring coefficients using

 (a)  (b)

 (c)  (d)

Fig. 3. (a) The Tweety-image compressed at 0.84 bpp (PSNR = 45.95 dB).
(b) Tweety-image after loss of packets 1, 6, 7 and 14. (c) Reconstruction
with the adaptive MAP approach of [4] (PSNR = 32.66 dB). (d) Iterative
reconstruction with our proposed reconstruction method (PSNR = 35.07 dB).

novel error measures for horizontal and vertical interpolation,
calculated from the neighbors of the lost coefficient. Exper-
iments on different images have demonstrated a significant
improvement over bilinear interpolation (up to 4.4 dB in case
of 6.25% coefficients lost, and up to 3.5 dB in case of 25%
loss) and over state-of-the-art methods.

An iterative version of the proposed method further in-
creases its PSNR gain. While yielding a very good recon-
struction quality, our interpolation method is of very low
complexity.
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