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Optimization of Packetization Masks for Image
Coding Based on an Objective Cost Function for

Desired Packet Spreading
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Abstract—In image communication over lossy packet networks
(e.g., cell phone communication) packet loss errors lead to
damaged images. Damaged images can be repaired with passive
error concealment methods, which use neighboring coefficient
or pixel values to estimate the missing ones. Neighboring image
data should thus be spread over different packets. This paper
presents a novel robust packetization method for the transmission
of image content in lossy packet networks. We first define novel
criteria for a good packetization. Based on these properties we
propose a cost function for packetization masks. We then use
stochastic optimization to calculate optimal packetization masks.
We test our packetization technique on both wavelet coding and
DCT coding. Compared to other packetization techniques we
are able to achieve the same or better mean quality of the
reconstructed images but with less fluctuation in quality, which is
important for the viewer experience. In this way, we significantly
increase the worst case quality, especially for high packet loss
rates. This leads to visually more pleasing images in case of a
passive reconstruction.

Index Terms—Dispersive packetization, set partitioning, error
concealment, robust image coding.

I. INTRODUCTION

THIS paper deals with the transmission of image data over
low-bandwidth, error-prone channels, such as wireless

cell phone communication. In these networks, bit-errors can
be introduced or even worse, complete blocks of information
(data packets) can get lost. This leads to quality degradations.
When the error rate is too high, the receiver may not even be
able to decode the correctly received information because of
synchronization problems and other errors. Error protection
mechanisms include adding redundant information, such as
in error control coding or forward error correction [1]. In
some cases, the receiver can request the retransmission of
a lost or erroneous packet from the sender. This technique
is known as active error concealment. A good overview of
different techniques is given in [1]. Active error concealment
is impractical in time-critical applications such as real-time
communication. In applications such as broadcasting there is
no return channel and thus retransmission cannot be applied
either.
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Passive or post-processing error concealment exploits the
property that pixel values are highly correlated in space and
time [2], and that lost information can therefore be estimated
by using neighboring information. Although compression tech-
niques remove as much redundancy as possible, some redun-
dancy is still present in the compressed data. This redundancy
can be used to recover lost information. Examples of passive
recovery techniques include [1], [3], [4] where the problem is
the reconstruction of damaged images and video after the loss
of some Discrete Cosine Transformation (DCT) blocks. Re-
construction of wavelet coefficients of wavelet coded images
and intraframe coded video is treated in [5]–[8], and passive
recovery of lost motion vectors is addressed, e.g., in [9].

All these techniques interpolate lost elements (such as
pixels, wavelet coefficients, . . . ) from their correctly received
spatio-temporal neighbors. An implicit assumption is that the
probability of a simultaneous loss of two or more neighboring
elements is low. This is accomplished by the packetization,
i.e., by spreading neighboring elements as much as possible
over many packets. For passive error concealment with a
packetization scheme, a packet is received either completely
without any error, or it is considered as lost. So, small errors
like bit errors (bit switching, bit loss or bit insertion) in a
packet should be detected and repaired at the network level.
If the bit errors cannot be repaired at the network level, the
damaged packet should be flagged as lost, and it should be
repaired by passive reconstruction.

Different approaches to packetization are presented in the
literature. A simple technique is the splitting of a frame into
slices, as depicted in Fig. 1 (a). Slicing does not help for the re-
construction of lost elements in the middle of a slice: if a slice
gets lost, interpolation of the inner elements is almost impossi-
ble. However, slicing prevents errors from propagating all over
the image as the slices are coded independent from each other.
This technique is used in H.263+ [10], MPEG1, MPEG4,
. . . The main disadvantage is that if a packet (i.e., a slice)
gets lost, the neighbors of each lost element (pixel, motion
vector, wavelet coefficient, . . . ) are also lost. Reconstruction
by using neighboring elements is therefore impossible. Better
packetization techniques were introduced in [9], [11]. In [9],
parity based slicing is proposed, where the elements of each
slice are distributed such that four neighboring elements are
stored in four different packets. Therefore if only one packet
is lost, all four neighbors are available for reconstruction. This
technique is illustrated in Fig. 1 (b). This parity based slicing
mechanism allows better reconstruction of lost elements at the
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cost of a small decrease in compression efficiency as shown in
[9]. Even better spreading of the elements among the different
packets is achieved with the technique of [12]. This technique
is based on an algorithm for partitioning the Z2 Lattice [11],
which maximizes the minimum spatial distance between two
elements of the same packet (i.e. it maximizes the minimum
intra-partition distance (i.p.d.)). An example is shown in Fig. 1
(c).

In this paper we propose a new packetization method.
We explain our method using the concept of packetization
masks. A packetization mask (examples are given in Fig. 1)
is a lattice of which the elements are indices identifying the
packets in which the corresponding pixels of an image, or the
coefficients of a subband, are stored. In essence, our approach
is based on the maximization of the intra-partition distance as
in [11], but — in contrast to [11] — we simultaneously aim
at spreading the neighbors of the elements of a packet equally
over all other packets. Our reasoning is that each packet should
ideally carry the same amount of information pertaining to
the interpolation of the elements of every other packet. In
this way, the number of available neighbors is always the
same, even in the case of multiple packet loss, and so the
worst case image quality is maximized. The maximization of
the number of available neighbors is essential for all passive
error concealment techniques. The more available neighbors,
the better the reconstruction quality of a lost coefficient. Not
only the reconstruction quality but also the computation time
depends on the number of available neighbors. For example,
the concealment method of [8] converges faster to its optimal
reconstruction value when more neighbors are available. A
dispersive packetization technique should therefore aim to
maximize the number of available neighbors of a lost coef-
ficient.

The paper is organized as follows. In Section II, we briefly
introduce the problem of passive error concealment for which
packetization is essential. We describe the reconstruction
approach that we will apply to wavelet coded images in
Section II-A and the reconstruction of images with lost DCT-
blocks in Section II-B. In Section III, we define the rules
for good packetization, and we present a novel algorithm for
the optimization of packetization masks based on stochastic
sampling. Numerical comparison of our packetization with
the existing representative techniques is given in Section IV.
The results demonstrate that our packetization masks yield the
highest quality of the reconstructed frames. On average, the
new masks perform equally well as the masks of [12], but the
fluctuation of the quality is minimized. We conclude this work
in Section V.

II. RECONSTRUCTION ALGORITHM

In this section, we illustrate passive error concealment of
images in case of packet loss to point out the need for good
packetization and we describe the passive error concealment
methods that will be used in our experiments in Section IV.
We discuss two examples: reconstruction of wavelet coeffi-
cients and the reconstruction of pixels after the loss of DCT-
coefficients.

A. Reconstruction of wavelet coefficients

Image compression based on wavelet transformation [13]–
[15] has some advantages over compression based on the
Discrete Cosine Transformation (DCT). It often yields a higher
compression factor for the same image quality, and wavelet
compression is more scalable: even at high compression rates,
there is less block distortion than with compression based on
DCT. As in [7], we use the bi-orthogonal wavelet transform
[16]–[18]. We use the following notation: LL` denotes the low
pass subband (the scaling coefficients) at the decomposition
level `; the wavelet coefficients are organized into the subbands
LHi, HLi and HHi, which denote respectively horizontal,
vertical and diagonal details at the decomposition level i. A
detailed overview of wavelet decompositions is given in [16]–
[19].

In image coding, LL`, and LHi, HLi, HHi, i = 1 . . . `, are
quantized and entropy coded to take advantage of similarities
between subbands (e.g., zerotree coding [13], JPEG2000 [15]).
If a wavelet coded image is sent over a network, the com-
pressed coefficients are typically stored into different packets.
For example, if an image with a resolution of 256 × 256
pixels is encoded at a bitrate of 1 bit per pixel, then its
coefficients should be spread over at least 15 packets (of
546 bytes on average) to be suitable for Internet transmission
without fragmentation, as the maximum transfer unit1 where
fragmentation is guaranteed to not occur, is a packet of 576
bytes. In Fig. 2, the packetization techniques of Fig. 1 are
adapted for the packetization of (trees of) wavelet coefficients.

If a packet gets lost during transmission, in techniques
without error reconstruction the missing coefficients are typ-
ically replaced by zeros and hence the damaged image has
black holes due to the lost low frequency coefficients [5]–
[8]. In this paper we will adopt a slightly different approach:
all missing coefficients are replaced by zero, except for all
missing LL` coefficients. These are replaced by the value
which corresponds to a pixel value of 128. This very easy
and straightforward technique should not be considered as an
error concealment technique, but it is a fairer comparison than
replacing all missing coefficients with zeros. An example of
an image damaged by packet loss is shown in Fig. 3 (b).

As an example, we illustrate the reconstruction approach of
[7]. This approach estimates low frequency coefficients using
the interpolation kernel from Fig. 3 (c). This interpolation
kernel assigns the biggest weights to the closest neighbors
as they are likely to be most similar in value to the missing
coefficient. For high loss-rates a two pass interpolation can
be used: lost coefficients without correctly received neighbors
are repaired in the second pass, after their neighbors have
been repaired in the first pass. The loss of the high frequency
coefficients has less impact on the visual quality than the
loss of low frequency coefficients, except near edges, where
the coefficients are typically large. For the LHi and HLi

subbands a simple one-dimensional linear interpolation gives

1Each host in the Internet must be prepared to accept datagrams of up to
576 bytes [20]. Therefore, packets bigger than 576 bytes may be fragmented
if there is a router along the transmission path which cannot cope with these
bigger packets. If any of these fragments is lost, the whole packet will be
lost, as the other fragments are useless on their own.
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(a) (b) (c)
Figure 1. Packetization techniques in the literature. Each technique is depicted by a lattice which shows the numbers of the packets in which the elements are
stored: elements with the same number belong to the same packet. One element can be a tree of wavelet coefficients, a block of DCT-coefficients, a motion
vector, . . . as detailed in Section II. (a) Slicing [10]: a lattice is divided into slices. The elements of the same slice are stored in the same packet. (b) Parity
based slicing [9]: the elements of the same slice are divided into four subgroups. (c) Maximization of the minimum intra-partition distance [11]: elements in
the same packet are physically located as far apart from each other as possible.

(a) (b) (c)
Figure 2. Packetization techniques of Fig. 1 applied to wavelet coding. For each technique the coefficients of one packet are marked in gray. Each packet
contains a number of families of wavelet coefficients. (a) Slicing. (b) Parity based slicing. (c) Maximization of the minimum intra-partition distance.
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Figure 3. (a) The original Lena-image. (b) Lena after loss of 1 out of 16 packets (6.25% of the coefficients) with the packetization technique of [12]
(PSNR=25.51dB). (c) The interpolation kernel for the interpolation of LL` coefficients according to the reconstruction technique of [7]. (d) Reconstruction
of the lost coefficients of (b) by using the technique of [7] (PSNR=31.14dB).

satisfactory results [5]–[7]. In the HHi-subbands, the loss of
coefficients is rarely noticeable, and thus coefficients in these
subbands are usually not repaired, but are set to zero. The
reconstruction result of Fig. 3 (b) is shown in Fig. 3 (d).

B. Reconstruction of DCT-coefficients

In DCT compression (e.g., JPEG [21]), the image is first
divided into 8 × 8 pixel blocks. To each of these blocks, the
DCT transform is applied and the resulting coefficients are
compressed. If the image is sent over a network, several 8×8
blocks are grouped and sent as one packet. If a packet gets lost,

the damaged image will have “holes” of 8×8 pixels. Typically,
lost pixels are set to zero, which results in “black holes”. As
mentioned before, we set lost pixels to the value 128, which
results in “gray holes” which are less noticeable than “black
holes”. An example is shown in Fig. 4 (a). In contrast to
wavelet reconstruction, error concealment techniques for DCT-
compressed data operate in the pixel domain rather than the
transform domain. In this case, image pixels from neighboring
blocks are used to reconstruct the pixels in lost blocks.

As an example, we illustrate the reconstruction method
of [3]. In this approach, each pixel from a lost block is
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Figure 4. (a) Lena image after loss of 1 out of 16 packets (6.25% of the DCT-blocks) (PSNR=24.65dB). (b) Interpolation scheme for a pixel of a lost DCT
block for the algorithm of [3]. (c) Reconstruction of (a) by using the technique of [3] (PSNR=35.65dB).

interpolated as depicted in Fig. 4 (b), by using the border
pixels from the neighboring blocks. The interpolation weights
w1, . . . , w4 are inversely proportional to the distance between
the lost pixel and the corresponding border pixel. Fig. 4 (c)
illustrates a result of this method. Other techniques exist [4],
[22], [23] where, for example, the mean value interpolation
is replaced by a median value interpolation, or a two pass
scheme is employed instead of a one pass scheme. All of
these techniques have in common that a good interpolation
depends on the correct reception of as many neighboring
elements as possible. The subject of this paper is to design
good packetization masks which ensure a high number of
correctly received neighbors. In the next section, we discuss
this topic in detail.

III. PACKETIZATION

In this section, we first discuss some known requirements
for good packetization and then we define new desired prop-
erties that improve the quality of packetization. We define
a new cost function based on these desired properties, and
we propose a novel optimization method for minimizing the
proposed cost function. As an introduction, we describe a state
of the art packetization algorithm [11], which is a starting point
in our development.

A. Preliminaries

We adopt the notation of [11], [12]. A signal f (in our
case an image) is defined on a discrete domain D. A partition
P of D is a set {S0, S1, . . . , SP−1} of P non-empty, non-
overlapping subsets Si of D, which cover D. Note that by
definition

⋃P−1
i=0 Si = D, and that Si ∩ Sj = ∅, i 6= j. In the

following, the set Si corresponds to the data of the ith packet
The algorithm of [11] optimizes the packetization, i.e., the

choice of P , by maximizing the overall minimum intra-
partition distance (i.p.d.). The minimum intra-partition dis-
tance of packet Si, is defined as:

dmin(Si) = min
s,t∈Si

s 6=t

d(s, t)

where s = (xs, ys) and t = (xt, yt) are elements of the packet
Si and d(s, t) is the (Euclidean) distance between s and t:
d(s, t) =

√
(xs − xt)2 + (ys − yt)2. The overall minimum
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Figure 5. 8× 8 mask (+ extra neighbors) calculated with the algorithm of
[11] for P = 16. Periodicity vectors are drawn on the mask.

i.p.d. is
dmin(P) = min

i=0,1,...,P−1
Si∈P

dmin(Si).

The optimal partition P∗ in the minimax sense is the partition
which maximizes the minimal i.p.d.:

P∗ = arg max
P∈P

dmin(P)

where P is the set of all possible partitions.
For computational reasons, the 2D minimax optimization

algorithm of [11] treats the partitioning of the Z2 lattice as a
sphere packing problem imposing a periodicity constraint on
the solution. An example of lattice partitioning produced by
the algorithm of [11] for 16 packets (P = 16) is given in
Fig. 5. It has dmin(Si) = 4. This example is also shown in
Fig. 1 (c), and its application for wavelets in Fig. 2 (c).

A limitation of the algorithm of [11] is its restriction to
periodical solutions. This periodicity constraint may hinder
good concealment in case two (or more) packets get lost where
each element of the first packet lies in the vicinity of an
element of the second packet. This can be understood from
the example in Fig. 5: all elements of packet 1 have neighbors
coming from the same packets: 2, 5, 12 and 13. If one or more
of these “neighboring” packets are also lost, the concealment
becomes difficult for all elements of packet 1. We wish to
overcome this problem by removing the periodicity constraint
and by equally spreading the information needed for repairing
all the elements of a packet over all other packets. This enables
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Figure 6. Set of Elements needed for Reconstruction (SER) of an LL`-
coefficient. The nth order elements are marked as δn(n = 1, 2, 3).

better error concealment because more neighbors are available
for the reconstruction of lost elements.

In the remainder of this section we focus on the packe-
tization of wavelet coefficients (of which the reconstruction
is treated in II-A), but the theory presented here is widely
applicable, as we show in the results section.

B. Desired properties for good packetization

Let δ(y) denote the Set of Elements needed for Reconstruc-
tion (SER) of an element y. This SER contains all the elements
which are used to repair y if it is lost, according to a given
restoration strategy. The SER of an LL`-coefficient, according
to the restoration strategy of Section II-A, is given in Fig. 3 (c).
It is important to notice that the closer the Elements needed for
Reconstruction (ERs) are to y, the more important they are for
the reconstruction of the lost center element y, as closer ERs
are typically assigned bigger interpolation weights (Fig. 3 (c)).
We distinguish first, second and third order ERs, at a distance
of 1,

√
2 and 2 respectively. We denote the nth order SER as

δn (Fig. 6) and the number of elements in δn by #δn .
We formulate the desired properties for good packetization

as follows:
• Large enough intra-packet distance (i.p.d.). This property

has already been used by other authors [11], [12], where
it is called the intra-partition distance requirement. The
minimal distance between two elements of the same
packet, i.e., the intra-packet distance, should be large
enough (i.e., not in each other’s SER) so that lost el-
ements interfere as little as possible with each other’s
reconstruction.

• Maximal spreading of an SER over packets. No two ERs
of a given element y should be in the same packet if
possible. In this way, we minimize the number of lost
ERs for each element. If this property is not fulfilled,
the loss of the packet containing these ERs makes the
recovery of y very difficult. This situation is not so bad
if these ERs are of high order (i.e., more distant).

• Maximal spreading of the SERs of all elements of a packet
over all other packets. All ERs of all elements of a packet
should be equally spread over all other packets. This
is equivalent to requiring that the number of elements
of a packet Si in the SERs of the elements of another
packet Sj is as close to constant as possible. In this way,
in case of the loss of 2 or more packets, the number
of coefficients with many lost ERs is minimized. For

example, this spreading property is not fulfilled in Fig. 5:
if packets 1, 2 and 5 are lost, every coefficient of packet
1 misses two first order ERs which may hinder good
reconstruction. Note that our second desired property is
fulfilled here.
As a low order ER is more important than a high order
ER, we make this third desired property even stronger by
defining this spreading property for each nth order SER:
all nth order ERs of all elements of a packet should be
equally spread over all other packets. Thus, all packets Si

(i 6= j) should contain (as closely as possible) the same
number of elements that belong to the nth-order SERs
of the elements of packet Sj . We define this number of
elements Nn,j as

Nn,j =
#Sj#δn

P − 1
(1)

where #Sj is the number of elements in the packet Sj

(which we assume the same for all packets), #δn is the
number of elements in the nth order SER, and P is the
total number of packets.

The first desired property (large enough intra-packet dis-
tance) is relevant for the loss of one or more packets, as this
property describes the desired relationship between the ele-
ments of a packet. The second and third desired properties are
relevant for the loss of two or more packets, as these properties
describe the desired relationship between the elements of two
packets. The packetization technique of [12] is based on the
first property, but it does not take into account the other desired
properties defined here.

C. The proposed cost function for a packetization mask

Now we define a cost function that measures how well
a packetization complies with the previously defined desired
packetization properties. Our cost function for the partition P
is a weighted combination of three terms:

Q(P) = αQ1(P) + βQ2(P) + γQ3(P), (2)

where the penalties Qi(P), i = 1, 2, 3, correspond to the
previously defined desired properties and the weighting factors
α, β and γ reflect the importance attached to the different
desired properties. This importance is based on a probabilistic
model for the packet loss.

Q1(P) is the average penalty of all packets according to the
first desired property. If there are x packets lost, the penalty
Q1(P) should be counted x times. Of course, since we don’t
know how many packets will be lost for each image, we
estimate the number of lost packets based on a probabilistic
model for the packet loss. The weight α should be equal to
the expected number of lost packets:

α =
P∑

i=0

i Prob(Nlost = i), (3)

where Nlost is the number of lost packets for an image and
thus Prob(Nlost = i) is the probability that i packets are lost.
From this equation, it is clear that if the expected number
of lost packets is equal to zero (i.e., no packet loss), the
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packetization doesn’t make a difference for the first desired
property. Indeed, if all packets are correctly received, there
is no reconstruction necessary, and it doesn’t matter in which
packets the coefficients are stored.

Q2(P) is the average penalty of all couples of packets
according to the second desired property. If there are x packets
lost, the penalty Q2(P) should be counted for all the couples
of lost packets, i.e., x(x − 1) times2. The weight β should
be equal to the expected number of ordered couples of lost
packets:

β =
P∑

i=0

i(i− 1) Prob(Nlost = i) (4)

From this equation, it is clear that if there is never more than
one packet lost for each encoded image, the packetization
doesn’t make a difference for the second desired property
(there is never a loss of a couple of packets).

Q3(P) is the average penalty of all couples of packets
according to the third desired property. As for the penalty
Q2(P), the penalty Q3(P) should be counted for all the
couples of lost packets. The weight γ is equal to the weight
β.

γ =
P∑

i=0

i(i− 1) Prob(Nlost = i) (5)

Our first penalty Q1(P) penalizes small intra-packet dis-
tances according to the first desired property. We use the
following notation: sP

i,k is the position (i.e., the Euclidean
coordinates) of the kth element of the ith packet (i.e., Si)
of partition P . d(s, t) is defined as the modulo distance
between the elements s and t because in this way, we take into
account that masks will be periodically extended: d(s, t) =√

((xs − xt) mod M)2 + ((ys − yt) mod N)2, where M
and N are the number of rows and columns respectively3,
and “mod” is the modulo operator. So, the distance between
s and t is the smallest distance between s and t after periodic
extension of the mask. The average penalty per packet for not
satisfying the first property is:

Q1(P) =
1
P

P−1∑

i=0

#SP
i −1∑

k=0

#SP
i −1∑

l=0
l 6=k

C(d(sP
i,k, sP

i,l )) (6)

where C(d) is the cost attached to two elements separated by
a distance d being in the same packet, as defined in Table I.
For these costs we use the absolute values of the interpolation
weights from the interpolation mask in Fig. 3 (c) as they are
a measure of the importance of an ER at a distance d.

According to the second property (maximal spreading of
an SER over packets) no two ERs of the same SER should
be in the same packet in the ideal case. Therefore, if two or
more ERs from the same SER are stored in one packet, we
assign a cost to that and we group these costs in Q2. This cost

2Note that we count ordered couples, as we want to measure the influence
from packet Si on packet Sj and vice versa.

3Note that M and N (which define the periodicity) should be chosen large
enough such that (1) could still be fulfilled as good as possible. This is
explained in Section III-D.

Table I
COST FUNCTION C(d) FOR THE nTH ORDER SER, AT A DISTANCE dn , IN

CASE OF THE CONCEALMENT TECHNIQUE OF SECTION II-A. THE
HIGHEST ORDER SER HAS n = 3.

n dn C(dn)
1 1 32
2

√
2 10

3 2 4
>3 > 2 0

is proportional to the number of ERs and their order: lower
order ERs receive a higher cost as these lower order ERs are
more important. In particular, we define the average penalty
for not satisfying the second property per couple of packets
as:

Q2 (P) =
1

P (P − 1)

P−1∑

i=0

P−1∑

j=0
i6=j

#SP
i −1∑

k=0




#SP
j −1∑

l=0

C
(
d

(
sP

i,k, sP
j,l

)) · 1



#SP
j −1∑

l=0

1
(
d

(
sP

i,k, sP
j,l

) ≤ dN

) ≥ 2





 .

(7)
In the expression (7) 1(expr) evaluates to 1 if expr is true,
otherwise it evaluates to 0. As defined before, C(d) is the cost
attached to two elements at a distance d away from each other
(Table I). dN is the distance at which the highest order SER
is located; in our case N = 3, dN = 2.

The right hand side of equation (7) sums products of two
factors. The second factor is a condition which determines
whether or not a cost is counted: if two or more elements
from the same packet Sj appear in the SER of an element
from another packet Si, then the second factor evaluates to
one and a cost (defined by the first factor) is added to Q2(P).
Otherwise (i.e., if only one or no elements from the packet Sj

appear in the SER of an element from another packet Si), the
second factor evaluates to zero and no cost is added. The first
factor is the actual cost, proportional to the distances between
the element of Si and its ERs stored in Sj , as defined in
Table I.

Our third penalty component expresses the third desired
property (maximal spreading of the SERs of all elements of
a packet over the other packets) from Section III-B. We count
how many elements of each packet lie in the nth order SER of
the elements of other packets, and we compare this number to
the desired number of elements as given by (1). The absolute
difference between the actual value and the desired value is
then multiplied with the weight factor C(dn) of this nth order
SER, as given in Table I. For the cost factor C(d), we have
again chosen the absolute values of interpolation weights as
their magnitude is an indication for the importance of the nth
order SER in the interpolation. The average penalty for not
satisfying the third property per couple of packets is:

Q3 (P) =
1

P (P − 1)

P−1∑

i=0

P−1∑

j=0
i6=j

N∑
n=1


C(dn)

∣∣∣∣∣∣

#SP
i −1∑

k=0

#SP
j −1∑

l=0

1
(
d

(
sP

i,k, sP
j,l

)
= dn

)−Nn,j

∣∣∣∣∣∣


 .

(8)
The right hand side of this equation sums the product of two
factors. The second factor calculates how much the number
of elements from each packet in the nth order SER of the
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elements of another packet differs from the desired number
Nn,j as given by (1). The first factor is the actual cost C(dn)
for the nth order SER, as given in Table I.

D. The proposed algorithm for minimizing the cost function

Finding the optimal packetization for any given mask size
is not trivial due to the large number of candidate solutions.
For example, an M × N mask of which the elements have
to be divided into P packets has (MN)!

((MN/P )!)P (P !)
candidate

partitions. For ease of calculation we have assumed that MN
is a multiple of P , and that we have equally sized packets: each
packet consists of MN/P elements. An exhaustive search is
impossible. For example, a 256 × 256 lattice of which the
elements have to be divided into 16 packets has 2.57e78867
candidate solutions.

A possible (suboptimal) simplification is to search for the
optimal solution for a submask. This is a smaller mask with
fewer elements, and hence with a reduced computation time.
By periodically extending this solution, we obtain the desired
mask size. Note that we must choose a mask size which is big
enough so that cost Q3 (P) can be as small as possible. In
the case of Fig. 5 the size of the submask is 4×4 which is too
small: the first order SER δ1 of all elements of each packet
are spread over 4 packets only (e.g., δ1 of packet 1 is spread
over packets 2, 5, 12 and 13). Any combined loss of two or
more of these packets will affect the SER of all elements of
these packets. If the SER of packet 1 was spread over more
(ideally all) packets, the number of elements with one or more
lost ERs would be minimized, which would lead to a higher
PSNR and visual quality.

According to (1) each packet in the submask should contain
N1,0 = 4 · 1/(16 − 1) = 0.2667 elements of δ1 of packet 1,
which is of course infeasible: 4 packets contain 1 element of
δ1 of packet 1, and the other 11 packets none. By increasing
the size of the submask to, e.g., 8 × 8 the third property can
be fulfilled much better. In this case, according to (1) each
packet in the 8×8 submask should contain N1,0 = 4 ·4/(16−
1) = 1.0667 elements of δ1, which is still infeasible, but now
fourteen packets can contain one element and the fifteenth
packet contains 2 elements. Due to the better spreading (i.e.,
a closer approximation of N1,0), this results in a smaller cost
Q3 (P). So the larger the size of the submask, the bigger the
period, so the better the third property can be fulfilled.

By using submasks the number of possible candidates is
drastically decreased, but it is still too large to allow an
exhaustive search. For example, the optimal solution for an
8×8 sublattice for 16 packets should be chosen from 5.01e53
candidate solutions. Therefore we use stochastic optimization
to find the optimal sublattice with high probability. In partic-
ular, we use Metropolis sampling [2], [24] within a simulated
annealing framework. The Metropolis algorithm, modified for
use in our packetization problem, is outlined in Fig. 7. We
start with a randomly generated mask. A candidate mask
(new_mask) is generated by switching two labels from the
previous configuration. If new_mask lowers the penalty, it is
accepted and the new mask becomes the best mask. Otherwise
the candidate mask is accepted with a certain probability which

mask:=init_mask;
while(equilibrium_not_reached) {
new_mask:=generate_new_mask(mask);
delta_penalty:=penalty(new_mask)-penalty(mask);
threshold:=exp(-delta_penalty/Tk);
if(rand(1)<threshold) {

mask:=new_mask;
if(threshold>1) {
best_mask:=new_mask;

}
}

}
return [mask, best_mask];

Figure 7. Metropolis sampling at temperature Tk .

Tk:=init_T;
mask:=init_mask;
while(equilibrium_not_reached) {
[mask,best_mask]:=Metropolis(mask,best_mask,Tk)
Tk:=decrease(Tk);

}
return best_mask;

Figure 8. The simulated annealing algorithm.

depends on the sampling temperature Tk, which is defined by
the simulated annealing framework [2], [25], [26] (Fig. 8). The
stop criterion equilibrium_not_reached is defined as
follows: Metropolis should stop after 10 ×M × N accepted
masks, where M × N is the size of the submask. If this
criterion is not reached after 100×M×N tries, the algorithm
should also stop.

A stochastic optimization algorithm reaches the global op-
timum with a high probability. A disadvantage is the large
number of required iterations. This makes it impossible to
generate masks on the fly in a client. However, this is not
a problem as masks can be calculated in advance and stored
in each client’s memory. Important parameters are the mask
size, the number of packets, and the distribution of the packet
loss. In practice masks can be generated for a selected range
of values of these parameters. As the probabilistic model for
the packet loss, we propose the binomial distribution [27], [28]
with an either low (about 5%) or high (between 10% and 25%)
average packet loss rate. We propose the binomial distribution
as this distribution is the most general: it models the loss of
packets as independent and identically distributed (iid) events,
and is therefore the easiest to use in the optimization of the
packetization mask. This general iid binomial model is a good
assumption if the real packet loss model is unknown. After
generation, masks should be stored in the memory of all clients
for subsequent use. An M ×N submask with P packets uses
only M ×N × dlog2 P e bits, e.g., an 8× 8 submask with 16
packets uses 32 bytes. If a client does not have the necessary
mask in its memory (e.g., because of memory restrictions) it
can be communicated in advance without much overhead.

IV. RESULTS

We compare our packetization method to the representative
methods from the literature [9]–[11]. We tested both the re-
construction of lost wavelet coefficients and lost DCT-blocks,
using the reconstruction methods from Section II-A and II-B
respectively.
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Figure 10. The initial mask used for the proposed stochastic sampling
algorithm.

A. Influence of packetization on the reconstruction of unquan-
tized wavelet coefficients

In this section, we compare the quality of error-concealed
wavelet coded images for different packetization schemes.
Each image has 256×256 pixels, organized in 16 packets. We
consider the slicing technique as given in [10], parity based
slicing [9], and the packetization based on the maximization
of the minimum i.p.d. [11], all introduced in Section I. For
the proposed technique we have calculated two masks by the
algorithm given in Section III-D. In the stochastic sampling,
we used, as the probabilistic model for the packet loss, the
binomial distribution with an average packet loss rate of
12.5%, i.e., on average 2 out of 16 packets get lost. For com-
munication in the Internet with the User Datagram Protocol
(i.e., without packet retransmission techniques), packet loss
rates are typically in the range of 2% to 10% [1]. However, due
to error bursts, the instantaneous packet loss rate can be higher
than the average loss rate. Therefore, in the optimization of
our packetization masks, we have chosen a loss rate of 12.5%,
as this gives good results for both low and high loss rates, as
shown further on in this Section.

One generated mask consists of a periodically extended
8 × 8 submask (Fig. 9 (a)), and the other one consists of
a periodically extended 16 × 16 submask (Fig. 9 (c)). The
initial 8×8 mask used in the metropolis algorithm is given in
Fig. 10. The initial 16× 16 mask is a periodical extension of
this initial 8 × 8 mask. We use these two submasks to show
the influence of the size of the submask on the quality of the
reconstructed images. The bigger the submask, the easier the
desired properties can be fulfilled, so the better the quality of
the reconstructed images.

In Table II, the penalties (as defined in Section III-C) for
each packetization technique are given for both the binomial
packet loss model (B(16,0.125)) used in our stochastic sam-
pling mask optimization and for two other packet loss models.
For all models, the best mask according to the proposed
criterion is the 16 × 16 mask produced by our algorithm
(Fig. 9 (c)). For the packet loss model B(16,0.125), this mask
is indeed optimal. For the other models, we can generate
even better masks with lower penalties. Visual results later
in this paper demonstrate that the values of the penalties
for the different masks are consistent with the quality of the
reconstructed images using the corresponding masks.

We used three test images in our experiments: Lena, Gold-
hill and Barbara. The images are wavelet transformed, and the
coefficients are packed with different packetization techniques.
In this test, the wavelet coefficients are not quantized and

Table II
MASK PENALTIES FOR WAVELET CODED DATA, WHERE THE PACKET LOSS
MODEL IS THE BINOMIAL DISTRIBUTION B(16,π) FOR LOSS PROBABILITY
π OF 6.25%, 12.50%, AND 25.00%. OUR MASKS ARE THOSE FROM FIG. 9

(A) (8× 8) AND FIG. 9 (C) (16× 16) OPTIMIZED FOR AVERAGE LOSS
RATE OF 12.5%.

Penalties
Packetization B(16,0.0625) B(16,0.125) B(16,0.25)
Technique α=1,β=0.9375 α=2,β=3.75 α=4,β=15
Slicing [10] 8939 19886 47803
PB slicing [9] 2660 8851 31820
Maximum i.p.d. [11] 1220 4480 17920
Our method 8× 8 388 1555 6222
Our method 16× 16 259 1035 4132

entropy coded, so there is no loss of quality due to com-
pression. Initially, we do not use quantization in order to be
able to study packet loss artifacts separately from quantization
artifacts. The results of a similar test with quantization are
given in Section IV-B.

We have simulated the loss of every possible combination
of p packets out of a total of 16 for the three images, for
p = 1, . . . , 5. For every combination of packet loss and for
each packetization method, we have repaired the images by us-
ing the same reconstruction method, which is the interpolation
technique of [7] introduced in Section II-A. The results for the
three test images are given in Table III. It also lists the average
quality in case of no concealment. In this case lost coefficients
are replaced by zero, except for the LL` coefficients. These
are replaced by the value which corresponds to a pixel value
of 128.

The results in Table III demonstrate that for the loss of
one packet out of 16 (6.25% of the coefficients; p = 1), all
packetization techniques perform similarly, except the slicing
technique which performs much worse. The reason for this is
that for each lost coefficient all the ERs are correctly received,
except in the slicing technique. All the other techniques satisfy
our first packetization property, i.e., have large (enough) intra-
packet distances. This is also visible in the theoretically calcu-
lated penalty in Table II: the penalty of the slicing technique
is much higher than those of the other techniques.

For the loss of two and more packets we notice that our
method outperforms all the others in terms of the standard
deviation of the quality of the reconstructed images and in
terms of the worst case quality of the reconstructed images.
For the other tested techniques, there is a stronger variation
in reconstruction quality depending on which packets are lost,
and a lower worst case reconstruction quality4. As expected,
our 16 × 16 mask has a higher performance than our 8 × 8
mask. For a larger submask, periodicity have less of an impact,
and our third packetization property (maximal spreading of the
SERs of all elements of a packet over the other packets) can be
better fulfilled. On the other hand, the calculation of a 16×16
submask takes about 12 times more computation time than the
calculation of an 8× 8 submask5.

4The worst case is the combination of lost packets which yields the lowest
reconstruction quality.

5The calculation of an 8 × 8 submask with 16 packets with a Matlab
implementation on an AMD 3400+ lasts about 25 minutes.
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Figure 9. (a) and (c) 8× 8 and 16× 16 packetization masks respectively, optimized for the reconstruction of lost wavelet coefficients. (b) and (d) 8× 8
and 16× 16 packetization masks respectively, optimized for the reconstruction of lost DCT coefficients. In the stochastic sampling, we used, for all masks,
as the probabilistic model for the packet loss, the binomial distribution with an average packet loss rate of 12.5% (α = 2, β = 3.75).

Table III
COMPARISON (PSNR IN DB) OF THE PROPOSED PACKETIZATION METHOD AND EXISTING METHODS FOR THE LOSS OF p PACKETS (p = 1 . . . 5) FOR THE

RECONSTRUCTION AFTER LOSS OF UNQUANTIZED WAVELET COEFFICIENTS.

Lena Goldhill Barbara

p = 1 mean stdv min mean stdv min mean stdv min
Without concealment 24.67 26.02 26.31
Slicing [10] 29.30 0.90 28.04 30.38 1.72 25.94 28.88 1.16 26.50
PB slicing [9] 30.60 0.72 29.50 33.99 1.81 31.29 30.44 0.32 29.96
Maximum i.p.d. [11] 30.59 0.60 29.62 33.65 0.29 33.18 30.44 0.30 30.06
Our method 8× 8 30.57 0.48 29.91 33.65 0.35 32.93 30.44 0.33 29.69
Our method 16× 16 30.58 0.54 29.72 33.66 0.41 33.06 30.46 0.54 29.51

p = 2 mean stdv min mean stdv min mean stdv min
Without concealment 21.63 22.99 23.28
Slicing [10] 26.03 0.84 22.95 27.00 1.44 19.54 25.63 0.88 23.16
PB slicing [9] 27.47 0.75 24.73 30.60 1.29 26.02 27.34 0.45 24.99
Maximum i.p.d. [11] 27.42 0.51 25.93 30.48 0.33 29.41 27.32 0.31 26.08
Our method 8× 8 27.41 0.35 26.35 30.48 0.27 29.76 27.31 0.25 26.54
Our method 16× 16 27.41 0.37 26.55 30.48 0.30 29.72 27.32 0.37 26.46

p = 3 mean stdv min mean stdv min mean stdv min
Without concealment 19.86 21.22 21.51
Slicing [10] 23.99 0.88 19.96 24.93 1.40 19.09 23.66 0.75 21.14
PB slicing [9] 25.58 0.75 23.54 28.55 1.10 24.79 25.47 0.48 23.73
Maximum i.p.d. [11] 25.50 0.50 23.93 28.55 0.36 27.28 25.43 0.33 23.94
Our method 8× 8 25.48 0.32 24.38 28.54 0.24 27.76 25.42 0.23 24.58
Our method 16× 16 25.48 0.31 24.67 28.54 0.26 27.69 25.42 0.31 24.45

p = 4 mean stdv min mean stdv min mean stdv min
Without concealment 18.60 19.97 20.26
Slicing [10] 22.44 0.91 18.14 23.36 1.39 18.41 22.21 0.67 20.01
PB slicing [9] 24.18 0.75 19.11 27.03 1.03 20.88 24.10 0.50 20.32
Maximum i.p.d. [11] 24.06 0.51 22.16 27.10 0.39 25.42 24.03 0.35 22.44
Our method 8× 8 24.04 0.32 22.52 27.08 0.23 26.23 24.02 0.23 23.10
Our method 16× 16 24.04 0.28 23.10 27.08 0.24 26.22 24.02 0.28 23.14

p = 5 mean stdv min mean stdv min mean stdv min
Without concealment 17.63 18.99 19.29
Slicing [10] 21.15 0.92 17.54 22.07 1.36 17.49 21.05 0.60 19.02
PB slicing [9] 23.03 0.78 18.63 25.78 1.02 20.57 22.99 0.52 19.77
Maximum i.p.d. [11] 22.88 0.53 20.92 25.90 0.40 24.34 22.89 0.37 21.36
Our method 8× 8 22.86 0.33 21.45 25.88 0.23 24.88 22.87 0.23 21.94
Our method 16× 16 22.85 0.27 21.72 25.88 0.24 25.07 22.87 0.26 21.96
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We also illustrate our results with some image material.
Fig. 11 shows the damaged and the reconstructed Goldhill-
images with the minimal quality, i.e., the worst combination
of five lost packets for each packetization scheme. These
results are also numerically presented in Table III for p = 5.
For the slicing technique [10], if five slices get lost, it is
impossible to reconstruct the lost inner coefficients of adjacent
lost slices. The parity based slicing [9] gives better results,
but if four adjacent slices get lost, the situation is the same
as with normal slicing, and there is no advantage due to
interleaving. The minimax method [11] gives better results.
Even with five packets out of sixteen lost, it rarely happens
that a lost coefficient has no correctly received ERs. Therefore
lost coefficients can almost always be interpolated, especially
in this example where there is a two pass interpolation: if
a coefficient cannot be repaired because none of its first
order ERs are available in the first pass, then it can still be
repaired in the second pass, after some of the ERs have been
repaired. However, due to the unequal spreading of the coef-
ficients, there is the same repetitive pattern of lost coefficients
throughout the whole image, as explained in Fig. 5, which
may result in undesirable situations of lost elements with lost
SERs. The highest worst case PSNR value is obtained with
the proposed new packetization technique. By spreading the
coefficients more equally, the repetitive pattern is broken. On
average there are more ERs available than with the other
packetization techniques. This gives a better reconstruction
with a higher PSNR value. To compare the technique of [11]
with our technique, Fig. 12 presents details of Fig. 11 (h),
(i) and (j). Fig. 12 (a) clearly shows the black spots on the
white house. Due to a better spreading of the coefficients and
hence a better reconstruction, these spots are less visible in
Fig. 12 (b) and (c).

B. Influence of packetization on the reconstruction of quan-
tized wavelet coefficients

Now we repeat the experiment from Section IV-A but on
quantized wavelet coefficients. We used the same test images
Lena, Goldhill and Barbara. Their wavelet coefficients were
quantized to a quality of respectively 33.64 dB, 31.66 dB and
36.13 dB. For state of the art wavelet image coders (JPEG2000
[15]) this corresponds to 0.66, 0.88 and 1.74 bits per pixel. For
compression with packetization, the bitrate will be higher as
the correlation between coefficients in the same packet will be
lower due to the spreading of the coefficients. This is discussed
further on in this Section.

The results for the three test images are given in Table IV.
If we compare these results to Table III, we notice that
the quality of the reconstructed images is always lower in
this quantized case. Relative comparison between the meth-
ods remain the same as in Section IV-A. For p = 1, all
packetization techniques perform well, except for the slicing
technique. For the loss of two and more packets we notice
that our method outperforms all the others in terms of the
standard deviation and in terms of the minimum quality of
the reconstructed images. In terms of the average quality of
the reconstructed images, [9], [11], and the proposed technique
are all comparable.

 (a)  (f)

 (b)  (g)

 (c)  (h)

 (d)  (i)

 (e)  (j)

Figure 11. Wavelet coded Goldhill-image after the loss of 5 packets (31.25%
of the coefficients). Left: images after packet loss. Right: reconstructed
images. Top to bottom: slicing [10], parity based slicing [9], maximization of
the minimum i.p.d. [11] and our technique for a 8×8 mask and for a 16×16
mask. The PSNR values of the images in the right column are respectively:
17.49 dB, 20.57 dB, 24.34 dB, 24.88 dB and 25.07 dB.
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 (a)  (b)  (c)

Figure 12. Enlarged details of the images of respectively Fig. 11 (h), (i) and (j).

Table IV
COMPARISON (PSNR IN DB) OF THE PROPOSED PACKETIZATION METHOD AND EXISTING METHODS FOR THE LOSS OF p PACKETS (p = 1 . . . 5) FOR THE

RECONSTRUCTION AFTER LOSS OF QUANTIZED WAVELET COEFFICIENTS.

Lena Goldhill Barbara

p = 1 mean stdv min mean stdv min mean stdv min
Without concealment 24.17 25.02 25.90
Slicing [10] 28.03 0.65 27.10 28.02 1.08 24.86 28.20 1.01 26.10
PB slicing [9] 29.00 0.50 28.24 29.78 0.70 28.61 29.56 0.26 29.18
Maximum i.p.d. [11] 29.00 0.42 28.31 29.73 0.13 29.51 29.55 0.24 29.26
Our method 8× 8 28.99 0.34 28.50 29.73 0.15 29.42 29.56 0.27 28.93
Our method 16× 16 28.99 0.38 28.40 29.73 0.17 29.48 29.57 0.43 28.80

p = 2 mean stdv min mean stdv min mean stdv min
Without concealment 21.39 22.50 23.09
Slicing [10] 25.45 0.73 22.68 25.84 1.17 19.29 25.35 0.83 22.99
PB slicing [9] 26.72 0.63 24.35 28.34 0.77 25.15 26.97 0.41 24.80
Maximum i.p.d. [11] 26.68 0.43 25.39 28.32 0.20 27.63 26.95 0.28 25.82
Our method 8× 8 26.67 0.30 25.73 28.32 0.17 27.85 26.95 0.23 26.23
Our method 16× 16 26.67 0.31 25.94 28.32 0.19 27.84 26.95 0.34 26.16

p = 3 mean stdv min mean stdv min mean stdv min
Without concealment 19.71 20.91 21.39
Slicing [10] 23.66 0.81 19.83 24.22 1.24 18.88 23.51 0.73 21.06
PB slicing [9] 25.14 0.67 23.29 27.14 0.80 24.13 25.28 0.45 23.64
Maximum i.p.d. [11] 25.08 0.45 23.63 27.16 0.26 26.21 25.25 0.32 23.83
Our method 8× 8 25.07 0.30 24.04 27.16 0.18 26.58 25.24 0.22 24.43
Our method 16× 16 25.06 0.28 24.33 27.16 0.20 26.53 25.24 0.29 24.32

p = 4 mean stdv min mean stdv min mean stdv min
Without concealment 18.50 19.75 20.18
Slicing [10] 22.23 0.87 18.07 22.90 1.29 18.24 22.13 0.66 19.96
PB slicing [9] 23.91 0.70 19.04 26.08 0.83 20.62 24.00 0.48 20.27
Maximum i.p.d. [11] 23.81 0.48 22.06 26.17 0.31 24.70 23.94 0.34 22.36
Our method 8× 8 23.80 0.31 22.31 26.16 0.19 25.43 23.93 0.22 23.02
Our method 16× 16 23.79 0.27 22.91 26.16 0.20 25.45 23.93 0.27 23.08

p = 5 mean stdv min mean stdv min mean stdv min
Without concealment 17.56 18.84 19.23
Slicing [10] 21.02 0.89 17.49 21.76 1.29 17.37 21.00 0.60 18.99
PB slicing [9] 22.87 0.74 18.58 25.13 0.88 20.35 22.95 0.51 19.75
Maximum i.p.d. [11] 22.73 0.51 20.80 25.27 0.34 23.83 22.85 0.37 21.32
Our method 8× 8 22.71 0.32 21.32 25.25 0.20 24.37 22.84 0.22 21.92
Our method 16× 16 22.71 0.26 21.62 25.25 0.21 24.55 22.84 0.25 21.95

A disadvantage of the proposed packetization technique is
that it has worse coding performance due to the interleaving
of wavelet trees. Compression schemes typically achieve a
high compression ratio by exploiting redundancy between
neighboring (inter or intra subband) wavelet coefficients. By
spreading neighboring coefficients over different packets (and
by coding each packet independently), the redundancy be-
tween coefficients in the same packet is significantly lowered.
This results in a worse compression performance. For the
coding of the different packets, we use a similar approach as in
[29]: trees of coefficients of a packet are coded independently

of trees in other packets. Due to this independent coding of
the coefficient trees, the compression ratio will not be as high
as in the case of Zerotree Coding [13] or Set Partitioning in
Hierarchical Trees Coding (SPIHT) [14]. These problems are
typical for robust packetization and also occur for parity based
slicing [9], the technique of [12] and the compression method
of [29]. In [9] the loss in coding performance is about 4% due
to the parity based slicing packetization of the motion vectors
(compared to the normal slicing). In [29] and [12], the quality
of a wavelet coded image with an interleaving packetization
scheme is compared to the quality of an image coded with
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SPIHT coding where the packetization is nothing more than
dividing the bitstream into packets of a fixed length. Both
[29] and [12] report a difference in quality of circa 1 dB,
in favor of the SPIHT coding. We may therefore conclude
that our technique will also suffer from this loss of coding
efficiency. On the other hand, our packetization technique
assures a graceful degradation in case of packet loss. In case of
the SPIHT coding, packet loss will have a devastating effect
on the image quality, as the loss of one packet could make
other packets also useless.

C. Influence of packetization on the reconstruction of unquan-
tized DCT coefficients

In case of packet loss, complete DCT-blocks (of 8×8 pixels)
are lost as all coefficients from a block are coded together. In
this case, interpolation is based on border pixels of correctly
received neighboring blocks, as explained in Section II-B. So,
in this case only the first order SER is used for interpolation.
In contrast to the two pass interpolation scheme for wavelet
coefficients (used in the previous experiment), we now use
a simple one pass interpolation scheme. If a lost DCT block
has no correctly received ERs, interpolation is impossible, and
gray holes will be visible in the reconstructed image.

For this experiment we also calculated two masks to show
the influence of the size of the submasks. Bigger submasks
take more calculation time, but can fulfill the desired properties
much better. We interpolate lost DCT blocks from the first
order neighboring blocks only. The generated 8 × 8 and
16 × 16 masks are given in Fig. 9 (b) and (d) respectively.
The initial 8 × 8 mask used in the metropolis algorithm is
again the mask from Fig. 10. The initial 16 × 16 mask is a
periodical extension of this initial 8 × 8 mask. The packet
loss was again modeled by the binomial distribution with an
average packet loss rate of 12.5%, i.e., B(16,0.125) model.
In Table V, the penalties (as defined in Section III-C) for
each packetization technique are given for both the model
B(16,0.125) used in our stochastic sampling mask optimization
and for two other packet loss models. For all models, the
best mask according to the proposed criterion is the 16 × 16
mask produced by our algorithm (Fig. 9 (d)). For the packet
loss model B(16,0.125), this mask is indeed optimal. For the
other models, we can generate even better masks with lower
penalties. The quality measurement will be proven correct by
the image reconstruction tests.

For this setup, we also simulated the loss of every pos-
sible combination of p packets out of a total of 16 packets
(p = 1, . . . , 5). Reconstruction is done by using the method of
Section II-B. Results are given in Table VI for respectively the
Lena, Goldhill and Barbara-images. The general conclusions
for DCT coding are similar to those for wavelet coding. For
p = 1, 2, 3 all packetization techniques perform equally well,
except for slicing, which gives significantly worse results.
For p ≥ 4, in terms of the average PSNR, the minimax
technique of [11] (maximization of the minimum i.p.d.), and
our technique performs similarly and better than both slicing-
based methods. Our method outperforms [11] and both slicing
methods in terms of standard deviation and the higher minimal
quality of the reconstructed images.

Table V
MASK PENALTIES FOR DCT CODED DATA, WHERE THE PACKET LOSS

MODEL IS THE BINOMIAL DISTRIBUTION B(16,π) FOR LOSS PROBABILITY
π OF 6.25%, 12.50%, AND 25.00%. OUR MASKS ARE THOSE FROM FIG. 9

(B) (8× 8) AND FIG. 9 (D) (16× 16) OPTIMIZED FOR AVERAGE LOSS
RATE OF 12.5%.

Penalties
Packetization B(16,0.0625) B(16,0.125) B(16,0.25)
Technique α=1,β=0.9375 α=2,β=3.75 α=4,β=15
Slicing [10] 211.7 462.9 1083.7
PB slicing [9] 39.7 158.9 635.7
Maximum i.p.d. [11] 23.5 93.9 375.5
Our method 8× 8 6.4 25.6 102.3
Our method 16× 16 4.1 16.5 66.1

In Fig. 13 we compare the results of the tested packetization
methods on the Goldhill-image, showing minimal quality
for the loss of 5 packets (31.25% of the coefficients). The
corresponding PSNR results are in Table VI for p = 5. The
visual results show that our 16 × 16 mask yields the highest
quality. To make the improvement over [11] better visible,
we show in Fig. 14 enlarged details of images from Fig. 13
(h), (i) and (j). The detail in Fig. 14 (a) (the method of [11])
shows a lot of gray blocks. The reconstructed images which
were encoded with our packetization technique (Fig. 14 (b)
and (c)) clearly have less gray holes due to a better spreading.

D. Influence of packetization on the reconstruction of quan-
tized DCT coefficients

In a fourth experiment we investigated the packetization
of quantized DCT coefficients. For this experiment the test
images Lena, Goldhill and Barbara were compressed with
a JPEG coder [21] to a quality of respectively 27.71 dB,
33.82 dB and 28.77 dB, which corresponds to respectively
0.37, 1.90 and 1.23 bits per pixel. If the JPEG compression is
modified with a packetization step, the bitrate will be higher as
the correlation between DCT blocks in the same packet will be
lower due to the spreading of the blocks. This is comparable to
the compression/packetization of wavelet coefficients. On the
other hand, our packetization assures a graceful degradation
in case of packet loss. If the compressed JPEG image is
transferred without any intelligent packetization (e.g., dividing
the bitstream into packets of a fixed length), any packet loss
or error will have a devastating effect on the image quality, as
the loss of one packet could make other packets also useless.

The results for the three test images are given in Table VII.
We notice that the quality of the reconstructed images is
always lower than in the case where no compression is used
(Table VI). Apart from that, we can draw the same conclusions
as in Section IV-C. For low packet loss rates (p = 1), all
packetization techniques perform well, except for the slicing
technique. For the loss of two and more packets we notice
that our method outperforms all the others in terms of the
standard deviation and in terms of the minimum quality of
the reconstructed images. In terms of the average quality
of the reconstructed images, the packetization based on the
maximization of the minimum i.p.d. [11] and the proposed
technique are comparable, while parity based slicing [9] per-
forms slightly worse.
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Table VI
COMPARISON (PSNR IN DB) OF THE PROPOSED PACKETIZATION METHOD AND EXISTING METHODS FOR THE LOSS OF p PACKETS (p = 1 . . . 5) FOR THE

RECONSTRUCTION AFTER LOSS OF UNQUANTIZED DCT-COEFFICIENTS.

Lena Goldhill Barbara

p = 1 mean stdv min mean stdv min mean stdv min
Without concealment 24.64 26.00 26.29
Slicing [10] 30.39 1.57 26.56 30.62 2.50 22.99 29.46 1.01 27.93
PB slicing [9] 34.30 1.37 32.88 35.99 2.32 33.98 32.64 0.51 31.96
Maximum i.p.d. [11] 34.20 0.88 32.58 35.53 0.40 35.08 32.63 0.33 32.04
Our method 8× 8 34.19 0.80 32.66 35.54 0.50 34.48 32.63 0.33 32.00
Our method 16× 16 34.17 0.71 32.80 35.55 0.60 34.36 32.64 0.48 31.58

p = 2 mean stdv min mean stdv min mean stdv min
Without concealment 21.62 22.98 23.27
Slicing [10] 26.76 1.64 21.86 26.98 2.23 19.59 26.15 0.88 23.68
PB slicing [9] 31.01 1.05 26.28 32.48 1.47 28.15 29.45 0.56 27.39
Maximum i.p.d. [11] 30.93 0.75 28.73 32.31 0.44 30.83 29.45 0.37 28.45
Our method 8× 8 30.91 0.58 29.67 32.31 0.39 31.22 29.44 0.26 28.91
Our method 16× 16 30.90 0.53 29.76 32.31 0.44 31.12 29.44 0.35 28.32

p = 3 mean stdv min mean stdv min mean stdv min
Without concealment 19.85 21.21 21.51
Slicing [10] 24.39 1.64 19.74 24.73 2.04 19.13 24.10 0.83 21.43
PB slicing [9] 28.91 1.29 22.45 30.30 1.46 24.13 27.45 0.74 23.75
Maximum i.p.d. [11] 28.88 0.76 26.11 30.31 0.50 28.13 27.48 0.43 26.16
Our method 8× 8 28.84 0.51 26.71 30.29 0.35 29.10 27.46 0.24 26.69
Our method 16× 16 28.84 0.47 27.36 30.29 0.39 29.13 27.47 0.30 26.47

p = 4 mean stdv min mean stdv min mean stdv min
Without concealment 18.60 19.96 20.26
Slicing [10] 22.56 1.51 18.22 23.04 1.86 18.17 22.59 0.76 20.18
PB slicing [9] 27.17 1.59 18.22 28.52 1.67 19.10 25.89 0.90 20.32
Maximum i.p.d. [11] 27.27 0.82 23.66 28.76 0.60 25.89 25.98 0.50 24.05
Our method 8× 8 27.22 0.50 25.14 28.73 0.37 26.90 25.95 0.24 25.06
Our method 16× 16 27.21 0.45 25.57 28.73 0.37 27.54 25.95 0.28 24.91

p = 5 mean stdv min mean stdv min mean stdv min
Without concealment 17.63 18.99 19.29
Slicing [10] 21.07 1.32 17.15 21.69 1.67 17.51 21.36 0.68 19.23
PB slicing [9] 25.58 1.81 17.87 26.89 1.84 18.96 24.54 1.00 19.88
Maximum i.p.d. [11] 25.87 0.90 22.12 27.41 0.72 23.69 24.70 0.55 22.67
Our method 8× 8 25.80 0.52 23.77 27.37 0.43 25.39 24.67 0.26 23.73
Our method 16× 16 25.80 0.45 24.17 27.36 0.38 25.83 24.67 0.26 23.72

 (a)  (b)  (c)

Figure 14. Enlarged details of the images of respectively Fig. 13 (h), (i) and (j).

V. CONCLUSION

We have presented a novel packetization method for robust
transmission of image content. We formulated three desired
properties for good packetization in terms of spreading the
Elements needed for Reconstruction (ERs). The essence of
these properties is in maximizing the probability that the ERs
of a lost element are correctly received, both by avoiding
that ERs are stored in the same packet, and by spreading the
information needed for repairing a lost packet equally among
all other packets. Starting from the defined desired properties,

we proposed a novel cost function and developed the corre-
sponding stochastic sampling based optimization method.

We have tested our method for the packetization of wavelet
coefficients as well as for blocks of DCT coefficients. Com-
pared to other packetization techniques we are able to achieve
the same or better mean quality of the reconstructed images
while we also reduce the fluctuation of the quality. Further-
more, we significantly increase the quality of the worst case
scenario, especially for high packet loss rates. Extensions
of the proposed method to video and to color images/video
will be topics of further research. In video communication
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Table VII
COMPARISON (PSNR IN DB) OF THE PROPOSED PACKETIZATION METHOD AND EXISTING METHODS FOR THE LOSS OF p PACKETS (p = 1 . . . 5) FOR THE

RECONSTRUCTION AFTER LOSS OF QUANTIZED DCT-COEFFICIENTS.

Lena Goldhill Barbara

p = 1 mean stdv min mean stdv min mean stdv min
Without concealment 22.27 25.37 24.44
Slicing [10] 24.47 0.41 23.23 28.87 1.89 22.65 26.13 0.48 25.33
PB slicing [9] 25.35 0.11 25.09 31.77 0.73 31.04 27.44 0.15 27.24
Maximum i.p.d. [11] 25.35 0.12 25.12 31.72 0.16 31.54 27.44 0.10 27.24
Our method 8× 8 25.35 0.12 25.12 31.72 0.21 31.27 27.44 0.10 27.23
Our method 16× 16 25.35 0.08 25.23 31.72 0.25 31.20 27.44 0.15 27.09

p = 2 mean stdv min mean stdv min mean stdv min
Without concealment 20.36 22.68 22.31
Slicing [10] 23.22 0.77 20.46 26.18 1.94 19.44 24.33 0.59 22.58
PB slicing [9] 24.90 0.26 23.32 30.23 0.82 27.24 26.34 0.29 25.18
Maximum i.p.d. [11] 24.90 0.20 24.23 30.19 0.28 29.24 26.34 0.19 25.82
Our method 8× 8 24.90 0.15 24.55 30.18 0.23 29.50 26.34 0.12 26.06
Our method 16× 16 24.90 0.12 24.61 30.19 0.27 29.42 26.34 0.17 25.77

p = 3 mean stdv min mean stdv min mean stdv min
Without concealment 19.03 21.02 20.89
Slicing [10] 22.04 0.95 18.92 24.26 1.87 18.99 22.92 0.62 20.76
PB slicing [9] 24.39 0.54 21.03 28.87 1.08 23.72 25.35 0.49 22.72
Maximum i.p.d. [11] 24.41 0.29 23.18 28.92 0.38 27.24 25.38 0.27 24.48
Our method 8× 8 24.40 0.19 23.66 28.91 0.25 28.03 25.37 0.15 24.85
Our method 16× 16 24.40 0.16 23.77 28.92 0.28 28.03 25.37 0.19 24.70

p = 4 mean stdv min mean stdv min mean stdv min
Without concealment 18.02 19.83 19.82
Slicing [10] 20.93 0.99 17.69 22.74 1.74 18.07 21.76 0.61 19.75
PB slicing [9] 23.76 0.84 17.69 27.56 1.39 18.98 24.40 0.67 19.87
Maximum i.p.d. [11] 23.86 0.40 21.86 27.80 0.49 25.37 24.48 0.36 23.02
Our method 8× 8 23.85 0.23 22.89 27.78 0.30 26.27 24.46 0.17 23.81
Our method 16× 16 23.85 0.20 23.05 27.78 0.30 26.83 24.46 0.20 23.70

p = 5 mean stdv min mean stdv min mean stdv min
Without concealment 17.19 18.89 18.96
Slicing [10] 19.90 0.95 16.75 21.48 1.60 17.44 20.76 0.58 18.91
PB slicing [9] 23.02 1.10 17.43 26.25 1.62 18.85 23.47 0.81 19.49
Maximum i.p.d. [11] 23.24 0.53 20.88 26.73 0.62 23.39 23.61 0.44 21.92
Our method 8× 8 23.22 0.29 22.02 26.69 0.36 24.96 23.59 0.20 22.84
Our method 16× 16 23.22 0.24 22.20 26.69 0.32 25.34 23.59 0.20 22.84

applications, the proposed technique can be used for the
dispersive packetization of I-frames. The packetization masks
for the motion vectors and for the P-frames can then be shifted
versions of the masks for the I-frames as in [12]. For the
extension to color images, a similar mask shifting technique
can be used. However, if a decorrelated color space is used
(such as YUV), it might be beneficial to use the same masks
for all the color channels, which restricts transmission errors
to as few places in the image as possible.
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